// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
* Copyright (C) 2009-2016, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: normalizer2.cpp
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* created on: 2009nov22
* created by: Markus W. Scherer
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_NORMALIZATION
#include "unicode/edits.h"
#include "unicode/normalizer2.h"
#include "unicode/stringoptions.h"
#include "unicode/unistr.h"
#include "unicode/unorm.h"
#include "cstring.h"
#include "mutex.h"
#include "norm2allmodes.h"
#include "normalizer2impl.h"
#include "uassert.h"
#include "ucln_cmn.h"
using icu::Normalizer2Impl;
#if NORM2_HARDCODE_NFC_DATA
// NFC/NFD data machine-generated by gennorm2 --csource
#define INCLUDED_FROM_NORMALIZER2_CPP
#include "norm2_nfc_data.h"
#endif
U_NAMESPACE_BEGIN
// Public API dispatch via Normalizer2 subclasses -------------------------- ***
Normalizer2::~Normalizer2() {}
void
Normalizer2::normalizeUTF8(uint32_t /*options*/, StringPiece src, ByteSink &sink,
Edits *edits, UErrorCode &errorCode) const {
if (U_FAILURE(errorCode)) {
return;
}
if (edits != nullptr) {
errorCode = U_UNSUPPORTED_ERROR;
return;
}
UnicodeString src16 = UnicodeString::fromUTF8(src);
normalize(src16, errorCode).toUTF8(sink);
}
UBool
Normalizer2::getRawDecomposition(UChar32, UnicodeString &) const {
return FALSE;
}
UChar32
Normalizer2::composePair(UChar32, UChar32) const {
return U_SENTINEL;
}
uint8_t
Normalizer2::getCombiningClass(UChar32 /*c*/) const {
return 0;
}
UBool
Normalizer2::isNormalizedUTF8(StringPiece s, UErrorCode &errorCode) const {
return U_SUCCESS(errorCode) && isNormalized(UnicodeString::fromUTF8(s), errorCode);
}
// Normalizer2 implementation for the old UNORM_NONE.
class NoopNormalizer2 : public Normalizer2 {
virtual ~NoopNormalizer2();
virtual UnicodeString &
normalize(const UnicodeString &src,
UnicodeString &dest,
UErrorCode &errorCode) const U_OVERRIDE {
if(U_SUCCESS(errorCode)) {
if(&dest!=&src) {
dest=src;
} else {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
}
}
return dest;
}
virtual void
normalizeUTF8(uint32_t options, StringPiece src, ByteSink &sink,
Edits *edits, UErrorCode &errorCode) const U_OVERRIDE {
if(U_SUCCESS(errorCode)) {
if (edits != nullptr) {
if ((options & U_EDITS_NO_RESET) == 0) {
edits->reset();
}
edits->addUnchanged(src.length());
}
if ((options & U_OMIT_UNCHANGED_TEXT) == 0) {
sink.Append(src.data(), src.length());
}
sink.Flush();
}
}
virtual UnicodeString &
normalizeSecondAndAppend(UnicodeString &first,
const UnicodeString &second,
UErrorCode &errorCode) const U_OVERRIDE {
if(U_SUCCESS(errorCode)) {
if(&first!=&second) {
first.append(second);
} else {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
}
}
return first;
}
virtual UnicodeString &
append(UnicodeString &first,
const UnicodeString &second,
UErrorCode &errorCode) const U_OVERRIDE {
if(U_SUCCESS(errorCode)) {
if(&first!=&second) {
first.append(second);
} else {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
}
}
return first;
}
virtual UBool
getDecomposition(UChar32, UnicodeString &) const U_OVERRIDE {
return FALSE;
}
// No need to U_OVERRIDE the default getRawDecomposition().
virtual UBool
isNormalized(const UnicodeString &, UErrorCode &errorCode) const U_OVERRIDE {
return U_SUCCESS(errorCode);
}
virtual UBool
isNormalizedUTF8(StringPiece, UErrorCode &errorCode) const U_OVERRIDE {
return U_SUCCESS(errorCode);
}
virtual UNormalizationCheckResult
quickCheck(const UnicodeString &, UErrorCode &) const U_OVERRIDE {
return UNORM_YES;
}
virtual int32_t
spanQuickCheckYes(const UnicodeString &s, UErrorCode &) const U_OVERRIDE {
return s.length();
}
virtual UBool hasBoundaryBefore(UChar32) const U_OVERRIDE { return TRUE; }
virtual UBool hasBoundaryAfter(UChar32) const U_OVERRIDE { return TRUE; }
virtual UBool isInert(UChar32) const U_OVERRIDE { return TRUE; }
};
NoopNormalizer2::~NoopNormalizer2() {}
Normalizer2WithImpl::~Normalizer2WithImpl() {}
DecomposeNormalizer2::~DecomposeNormalizer2() {}
ComposeNormalizer2::~ComposeNormalizer2() {}
FCDNormalizer2::~FCDNormalizer2() {}
// instance cache ---------------------------------------------------------- ***
U_CDECL_BEGIN
static UBool U_CALLCONV uprv_normalizer2_cleanup();
U_CDECL_END
static Normalizer2 *noopSingleton;
static icu::UInitOnce noopInitOnce = U_INITONCE_INITIALIZER;
static void U_CALLCONV initNoopSingleton(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) {
return;
}
noopSingleton=new NoopNormalizer2;
if(noopSingleton==NULL) {
errorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
ucln_common_registerCleanup(UCLN_COMMON_NORMALIZER2, uprv_normalizer2_cleanup);
}
const Normalizer2 *Normalizer2Factory::getNoopInstance(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return NULL; }
umtx_initOnce(noopInitOnce, &initNoopSingleton, errorCode);
return noopSingleton;
}
const Normalizer2Impl *
Normalizer2Factory::getImpl(const Normalizer2 *norm2) {
return &((Normalizer2WithImpl *)norm2)->impl;
}
Norm2AllModes::~Norm2AllModes() {
delete impl;
}
Norm2AllModes *
Norm2AllModes::createInstance(Normalizer2Impl *impl, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) {
delete impl;
return NULL;
}
Norm2AllModes *allModes=new Norm2AllModes(impl);
if(allModes==NULL) {
errorCode=U_MEMORY_ALLOCATION_ERROR;
delete impl;
return NULL;
}
return allModes;
}
#if NORM2_HARDCODE_NFC_DATA
Norm2AllModes *
Norm2AllModes::createNFCInstance(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) {
return NULL;
}
Normalizer2Impl *impl=new Normalizer2Impl;
if(impl==NULL) {
errorCode=U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
impl->init(norm2_nfc_data_indexes, &norm2_nfc_data_trie,
norm2_nfc_data_extraData, norm2_nfc_data_smallFCD);
return createInstance(impl, errorCode);
}
static Norm2AllModes *nfcSingleton;
static icu::UInitOnce nfcInitOnce = U_INITONCE_INITIALIZER;
static void U_CALLCONV initNFCSingleton(UErrorCode &errorCode) {
nfcSingleton=Norm2AllModes::createNFCInstance(errorCode);
ucln_common_registerCleanup(UCLN_COMMON_NORMALIZER2, uprv_normalizer2_cleanup);
}
const Norm2AllModes *
Norm2AllModes::getNFCInstance(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return NULL; }
umtx_initOnce(nfcInitOnce, &initNFCSingleton, errorCode);
return nfcSingleton;
}
const Normalizer2 *
Normalizer2::getNFCInstance(UErrorCode &errorCode) {
const Norm2AllModes *allModes=Norm2AllModes::getNFCInstance(errorCode);
return allModes!=NULL ? &allModes->comp : NULL;
}
const Normalizer2 *
Normalizer2::getNFDInstance(UErrorCode &errorCode) {
const Norm2AllModes *allModes=Norm2AllModes::getNFCInstance(errorCode);
return allModes!=NULL ? &allModes->decomp : NULL;
}
const Normalizer2 *Normalizer2Factory::getFCDInstance(UErrorCode &errorCode) {
const Norm2AllModes *allModes=Norm2AllModes::getNFCInstance(errorCode);
return allModes!=NULL ? &allModes->fcd : NULL;
}
const Normalizer2 *Normalizer2Factory::getFCCInstance(UErrorCode &errorCode) {
const Norm2AllModes *allModes=Norm2AllModes::getNFCInstance(errorCode);
return allModes!=NULL ? &allModes->fcc : NULL;
}
const Normalizer2Impl *
Normalizer2Factory::getNFCImpl(UErrorCode &errorCode) {
const Norm2AllModes *allModes=Norm2AllModes::getNFCInstance(errorCode);
return allModes!=NULL ? allModes->impl : NULL;
}
#endif // NORM2_HARDCODE_NFC_DATA
U_CDECL_BEGIN
static UBool U_CALLCONV uprv_normalizer2_cleanup() {
delete noopSingleton;
noopSingleton = NULL;
noopInitOnce.reset();
#if NORM2_HARDCODE_NFC_DATA
delete nfcSingleton;
nfcSingleton = NULL;
nfcInitOnce.reset();
#endif
return TRUE;
}
U_CDECL_END
U_NAMESPACE_END
// C API ------------------------------------------------------------------- ***
U_NAMESPACE_USE
U_CAPI const UNormalizer2 * U_EXPORT2
unorm2_getNFCInstance(UErrorCode *pErrorCode) {
return (const UNormalizer2 *)Normalizer2::getNFCInstance(*pErrorCode);
}
U_CAPI const UNormalizer2 * U_EXPORT2
unorm2_getNFDInstance(UErrorCode *pErrorCode) {
return (const UNormalizer2 *)Normalizer2::getNFDInstance(*pErrorCode);
}
U_CAPI void U_EXPORT2
unorm2_close(UNormalizer2 *norm2) {
delete (Normalizer2 *)norm2;
}
U_CAPI int32_t U_EXPORT2
unorm2_normalize(const UNormalizer2 *norm2,
const UChar *src, int32_t length,
UChar *dest, int32_t capacity,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return 0;
}
if( (src==NULL ? length!=0 : length<-1) ||
(dest==NULL ? capacity!=0 : capacity<0) ||
(src==dest && src!=NULL)
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString destString(dest, 0, capacity);
// length==0: Nothing to do, and n2wi->normalize(NULL, NULL, buffer, ...) would crash.
if(length!=0) {
const Normalizer2 *n2=(const Normalizer2 *)norm2;
const Normalizer2WithImpl *n2wi=dynamic_cast<const Normalizer2WithImpl *>(n2);
if(n2wi!=NULL) {
// Avoid duplicate argument checking and support NUL-terminated src.
ReorderingBuffer buffer(n2wi->impl, destString);
if(buffer.init(length, *pErrorCode)) {
n2wi->normalize(src, length>=0 ? src+length : NULL, buffer, *pErrorCode);
}
} else {
UnicodeString srcString(length<0, src, length);
n2->normalize(srcString, destString, *pErrorCode);
}
}
return destString.extract(dest, capacity, *pErrorCode);
}
static int32_t
normalizeSecondAndAppend(const UNormalizer2 *norm2,
UChar *first, int32_t firstLength, int32_t firstCapacity,
const UChar *second, int32_t secondLength,
UBool doNormalize,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return 0;
}
if( (second==NULL ? secondLength!=0 : secondLength<-1) ||
(first==NULL ? (firstCapacity!=0 || firstLength!=0) :
(firstCapacity<0 || firstLength<-1)) ||
(first==second && first!=NULL)
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString firstString(first, firstLength, firstCapacity);
firstLength=firstString.length(); // In case it was -1.
// secondLength==0: Nothing to do, and n2wi->normalizeAndAppend(NULL, NULL, buffer, ...) would crash.
if(secondLength!=0) {
const Normalizer2 *n2=(const Normalizer2 *)norm2;
const Normalizer2WithImpl *n2wi=dynamic_cast<const Normalizer2WithImpl *>(n2);
if(n2wi!=NULL) {
// Avoid duplicate argument checking and support NUL-terminated src.
UnicodeString safeMiddle;
{
ReorderingBuffer buffer(n2wi->impl, firstString);
if(buffer.init(firstLength+secondLength+1, *pErrorCode)) { // destCapacity>=-1
n2wi->normalizeAndAppend(second, secondLength>=0 ? second+secondLength : NULL,
doNormalize, safeMiddle, buffer, *pErrorCode);
}
} // The ReorderingBuffer destructor finalizes firstString.
if(U_FAILURE(*pErrorCode) || firstString.length()>firstCapacity) {
// Restore the modified suffix of the first string.
// This does not restore first[] array contents between firstLength and firstCapacity.
// (That might be uninitialized memory, as far as we know.)
if(first!=NULL) { /* don't dereference NULL */
safeMiddle.extract(0, 0x7fffffff, first+firstLength-safeMiddle.length());
if(firstLength<firstCapacity) {
first[firstLength]=0; // NUL-terminate in case it was originally.
}
}
}
} else {
UnicodeString secondString(secondLength<0, second, secondLength);
if(doNormalize) {
n2->normalizeSecondAndAppend(firstString, secondString, *pErrorCode);
} else {
n2->append(firstString, secondString, *pErrorCode);
}
}
}
return firstString.extract(first, firstCapacity, *pErrorCode);
}
U_CAPI int32_t U_EXPORT2
unorm2_normalizeSecondAndAppend(const UNormalizer2 *norm2,
UChar *first, int32_t firstLength, int32_t firstCapacity,
const UChar *second, int32_t secondLength,
UErrorCode *pErrorCode) {
return normalizeSecondAndAppend(norm2,
first, firstLength, firstCapacity,
second, secondLength,
TRUE, pErrorCode);
}
U_CAPI int32_t U_EXPORT2
unorm2_append(const UNormalizer2 *norm2,
UChar *first, int32_t firstLength, int32_t firstCapacity,
const UChar *second, int32_t secondLength,
UErrorCode *pErrorCode) {
return normalizeSecondAndAppend(norm2,
first, firstLength, firstCapacity,
second, secondLength,
FALSE, pErrorCode);
}
U_CAPI int32_t U_EXPORT2
unorm2_getDecomposition(const UNormalizer2 *norm2,
UChar32 c, UChar *decomposition, int32_t capacity,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return 0;
}
if(decomposition==NULL ? capacity!=0 : capacity<0) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString destString(decomposition, 0, capacity);
if(reinterpret_cast<const Normalizer2 *>(norm2)->getDecomposition(c, destString)) {
return destString.extract(decomposition, capacity, *pErrorCode);
} else {
return -1;
}
}
U_CAPI int32_t U_EXPORT2
unorm2_getRawDecomposition(const UNormalizer2 *norm2,
UChar32 c, UChar *decomposition, int32_t capacity,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return 0;
}
if(decomposition==NULL ? capacity!=0 : capacity<0) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString destString(decomposition, 0, capacity);
if(reinterpret_cast<const Normalizer2 *>(norm2)->getRawDecomposition(c, destString)) {
return destString.extract(decomposition, capacity, *pErrorCode);
} else {
return -1;
}
}
U_CAPI UChar32 U_EXPORT2
unorm2_composePair(const UNormalizer2 *norm2, UChar32 a, UChar32 b) {
return reinterpret_cast<const Normalizer2 *>(norm2)->composePair(a, b);
}
U_CAPI uint8_t U_EXPORT2
unorm2_getCombiningClass(const UNormalizer2 *norm2, UChar32 c) {
return reinterpret_cast<const Normalizer2 *>(norm2)->getCombiningClass(c);
}
U_CAPI UBool U_EXPORT2
unorm2_isNormalized(const UNormalizer2 *norm2,
const UChar *s, int32_t length,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return 0;
}
if((s==NULL && length!=0) || length<-1) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString sString(length<0, s, length);
return ((const Normalizer2 *)norm2)->isNormalized(sString, *pErrorCode);
}
U_CAPI UNormalizationCheckResult U_EXPORT2
unorm2_quickCheck(const UNormalizer2 *norm2,
const UChar *s, int32_t length,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return UNORM_NO;
}
if((s==NULL && length!=0) || length<-1) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return UNORM_NO;
}
UnicodeString sString(length<0, s, length);
return ((const Normalizer2 *)norm2)->quickCheck(sString, *pErrorCode);
}
U_CAPI int32_t U_EXPORT2
unorm2_spanQuickCheckYes(const UNormalizer2 *norm2,
const UChar *s, int32_t length,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return 0;
}
if((s==NULL && length!=0) || length<-1) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString sString(length<0, s, length);
return ((const Normalizer2 *)norm2)->spanQuickCheckYes(sString, *pErrorCode);
}
U_CAPI UBool U_EXPORT2
unorm2_hasBoundaryBefore(const UNormalizer2 *norm2, UChar32 c) {
return ((const Normalizer2 *)norm2)->hasBoundaryBefore(c);
}
U_CAPI UBool U_EXPORT2
unorm2_hasBoundaryAfter(const UNormalizer2 *norm2, UChar32 c) {
return ((const Normalizer2 *)norm2)->hasBoundaryAfter(c);
}
U_CAPI UBool U_EXPORT2
unorm2_isInert(const UNormalizer2 *norm2, UChar32 c) {
return ((const Normalizer2 *)norm2)->isInert(c);
}
// Some properties APIs ---------------------------------------------------- ***
U_CAPI uint8_t U_EXPORT2
u_getCombiningClass(UChar32 c) {
UErrorCode errorCode=U_ZERO_ERROR;
const Normalizer2 *nfd=Normalizer2::getNFDInstance(errorCode);
if(U_SUCCESS(errorCode)) {
return nfd->getCombiningClass(c);
} else {
return 0;
}
}
U_CFUNC uint16_t
unorm_getFCD16(UChar32 c) {
UErrorCode errorCode=U_ZERO_ERROR;
const Normalizer2Impl *impl=Normalizer2Factory::getNFCImpl(errorCode);
if(U_SUCCESS(errorCode)) {
return impl->getFCD16(c);
} else {
return 0;
}
}
#endif // !UCONFIG_NO_NORMALIZATION