//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11, c++14
// <tuple>
// template <class F, class T> constexpr decltype(auto) apply(F &&, T &&)
// Test with different ref/ptr/cv qualified argument types.
#include <tuple>
#include <array>
#include <utility>
#include <cassert>
#include "test_macros.h"
#include "type_id.h"
// std::array is explicitly allowed to be initialized with A a = { init-list };.
// Disable the missing braces warning for this reason.
#include "disable_missing_braces_warning.h"
constexpr int constexpr_sum_fn() { return 0; }
template <class ...Ints>
constexpr int constexpr_sum_fn(int x1, Ints... rest) { return x1 + constexpr_sum_fn(rest...); }
struct ConstexprSumT {
constexpr ConstexprSumT() = default;
template <class ...Ints>
constexpr int operator()(Ints... values) const {
return constexpr_sum_fn(values...);
}
};
void test_constexpr_evaluation()
{
constexpr ConstexprSumT sum_obj{};
{
using Tup = std::tuple<>;
using Fn = int(&)();
constexpr Tup t;
static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 0, "");
static_assert(std::apply(sum_obj, t) == 0, "");
}
{
using Tup = std::tuple<int>;
using Fn = int(&)(int);
constexpr Tup t(42);
static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 42, "");
static_assert(std::apply(sum_obj, t) == 42, "");
}
{
using Tup = std::tuple<int, long>;
using Fn = int(&)(int, int);
constexpr Tup t(42, 101);
static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 143, "");
static_assert(std::apply(sum_obj, t) == 143, "");
}
{
using Tup = std::pair<int, long>;
using Fn = int(&)(int, int);
constexpr Tup t(42, 101);
static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 143, "");
static_assert(std::apply(sum_obj, t) == 143, "");
}
{
using Tup = std::tuple<int, long, int>;
using Fn = int(&)(int, int, int);
constexpr Tup t(42, 101, -1);
static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 142, "");
static_assert(std::apply(sum_obj, t) == 142, "");
}
{
using Tup = std::array<int, 3>;
using Fn = int(&)(int, int, int);
constexpr Tup t = {42, 101, -1};
static_assert(std::apply(static_cast<Fn>(constexpr_sum_fn), t) == 142, "");
static_assert(std::apply(sum_obj, t) == 142, "");
}
}
enum CallQuals {
CQ_None,
CQ_LValue,
CQ_ConstLValue,
CQ_RValue,
CQ_ConstRValue
};
template <class Tuple>
struct CallInfo {
CallQuals quals;
TypeID const* arg_types;
Tuple args;
template <class ...Args>
CallInfo(CallQuals q, Args&&... xargs)
: quals(q), arg_types(&makeArgumentID<Args&&...>()), args(std::forward<Args>(xargs)...)
{}
};
template <class ...Args>
inline CallInfo<decltype(std::forward_as_tuple(std::declval<Args>()...))>
makeCallInfo(CallQuals quals, Args&&... args) {
return {quals, std::forward<Args>(args)...};
}
struct TrackedCallable {
TrackedCallable() = default;
template <class ...Args> auto operator()(Args&&... xargs) &
{ return makeCallInfo(CQ_LValue, std::forward<Args>(xargs)...); }
template <class ...Args> auto operator()(Args&&... xargs) const&
{ return makeCallInfo(CQ_ConstLValue, std::forward<Args>(xargs)...); }
template <class ...Args> auto operator()(Args&&... xargs) &&
{ return makeCallInfo(CQ_RValue, std::forward<Args>(xargs)...); }
template <class ...Args> auto operator()(Args&&... xargs) const&&
{ return makeCallInfo(CQ_ConstRValue, std::forward<Args>(xargs)...); }
};
template <class ...ExpectArgs, class Tuple>
void check_apply_quals_and_types(Tuple&& t) {
TypeID const* const expect_args = &makeArgumentID<ExpectArgs...>();
TrackedCallable obj;
TrackedCallable const& cobj = obj;
{
auto ret = std::apply(obj, std::forward<Tuple>(t));
assert(ret.quals == CQ_LValue);
assert(ret.arg_types == expect_args);
assert(ret.args == t);
}
{
auto ret = std::apply(cobj, std::forward<Tuple>(t));
assert(ret.quals == CQ_ConstLValue);
assert(ret.arg_types == expect_args);
assert(ret.args == t);
}
{
auto ret = std::apply(std::move(obj), std::forward<Tuple>(t));
assert(ret.quals == CQ_RValue);
assert(ret.arg_types == expect_args);
assert(ret.args == t);
}
{
auto ret = std::apply(std::move(cobj), std::forward<Tuple>(t));
assert(ret.quals == CQ_ConstRValue);
assert(ret.arg_types == expect_args);
assert(ret.args == t);
}
}
void test_call_quals_and_arg_types()
{
using Tup = std::tuple<int, int const&, unsigned&&>;
const int x = 42;
unsigned y = 101;
Tup t(-1, x, std::move(y));
Tup const& ct = t;
check_apply_quals_and_types<int&, int const&, unsigned&>(t);
check_apply_quals_and_types<int const&, int const&, unsigned&>(ct);
check_apply_quals_and_types<int&&, int const&, unsigned&&>(std::move(t));
check_apply_quals_and_types<int const&&, int const&, unsigned&&>(std::move(ct));
}
struct NothrowMoveable {
NothrowMoveable() noexcept = default;
NothrowMoveable(NothrowMoveable const&) noexcept(false) {}
NothrowMoveable(NothrowMoveable&&) noexcept {}
};
template <bool IsNoexcept>
struct TestNoexceptCallable {
template <class ...Args>
NothrowMoveable operator()(Args...) const noexcept(IsNoexcept) { return {}; }
};
void test_noexcept()
{
TestNoexceptCallable<true> nec;
TestNoexceptCallable<false> tc;
{
// test that the functions noexcept-ness is propagated
using Tup = std::tuple<int, const char*, long>;
Tup t;
LIBCPP_ASSERT_NOEXCEPT(std::apply(nec, t));
ASSERT_NOT_NOEXCEPT(std::apply(tc, t));
}
{
// test that the noexcept-ness of the argument conversions is checked.
using Tup = std::tuple<NothrowMoveable, int>;
Tup t;
ASSERT_NOT_NOEXCEPT(std::apply(nec, t));
LIBCPP_ASSERT_NOEXCEPT(std::apply(nec, std::move(t)));
}
}
namespace ReturnTypeTest {
static int my_int = 42;
template <int N> struct index {};
void f(index<0>) {}
int f(index<1>) { return 0; }
int & f(index<2>) { return static_cast<int &>(my_int); }
int const & f(index<3>) { return static_cast<int const &>(my_int); }
int volatile & f(index<4>) { return static_cast<int volatile &>(my_int); }
int const volatile & f(index<5>) { return static_cast<int const volatile &>(my_int); }
int && f(index<6>) { return static_cast<int &&>(my_int); }
int const && f(index<7>) { return static_cast<int const &&>(my_int); }
int volatile && f(index<8>) { return static_cast<int volatile &&>(my_int); }
int const volatile && f(index<9>) { return static_cast<int const volatile &&>(my_int); }
int * f(index<10>) { return static_cast<int *>(&my_int); }
int const * f(index<11>) { return static_cast<int const *>(&my_int); }
int volatile * f(index<12>) { return static_cast<int volatile *>(&my_int); }
int const volatile * f(index<13>) { return static_cast<int const volatile *>(&my_int); }
template <int Func, class Expect>
void test()
{
using RawInvokeResult = decltype(f(index<Func>{}));
static_assert(std::is_same<RawInvokeResult, Expect>::value, "");
using FnType = RawInvokeResult (*) (index<Func>);
FnType fn = f;
std::tuple<index<Func>> t; ((void)t);
using InvokeResult = decltype(std::apply(fn, t));
static_assert(std::is_same<InvokeResult, Expect>::value, "");
}
} // end namespace ReturnTypeTest
void test_return_type()
{
using ReturnTypeTest::test;
test<0, void>();
test<1, int>();
test<2, int &>();
test<3, int const &>();
test<4, int volatile &>();
test<5, int const volatile &>();
test<6, int &&>();
test<7, int const &&>();
test<8, int volatile &&>();
test<9, int const volatile &&>();
test<10, int *>();
test<11, int const *>();
test<12, int volatile *>();
test<13, int const volatile *>();
}
int main() {
test_constexpr_evaluation();
test_call_quals_and_arg_types();
test_return_type();
test_noexcept();
}