/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "annotator/quantization.h"
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using testing::ElementsAreArray;
using testing::FloatEq;
using testing::Matcher;
namespace libtextclassifier3 {
namespace {
Matcher<std::vector<float>> ElementsAreFloat(const std::vector<float>& values) {
std::vector<Matcher<float>> matchers;
for (const float value : values) {
matchers.push_back(FloatEq(value));
}
return ElementsAreArray(matchers);
}
TEST(QuantizationTest, DequantizeAdd8bit) {
std::vector<float> scales{{0.1, 9.0, -7.0}};
std::vector<uint8> embeddings{{/*0: */ 0x00, 0xFF, 0x09, 0x00,
/*1: */ 0xFF, 0x09, 0x00, 0xFF,
/*2: */ 0x09, 0x00, 0xFF, 0x09}};
const int quantization_bits = 8;
const int bytes_per_embedding = 4;
const int num_sparse_features = 7;
{
const int bucket_id = 0;
std::vector<float> dest(4, 0.0);
DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding,
num_sparse_features, quantization_bits, bucket_id,
dest.data(), dest.size());
EXPECT_THAT(dest,
ElementsAreFloat(std::vector<float>{
// clang-format off
{1.0 / 7 * 0.1 * (0x00 - 128),
1.0 / 7 * 0.1 * (0xFF - 128),
1.0 / 7 * 0.1 * (0x09 - 128),
1.0 / 7 * 0.1 * (0x00 - 128)}
// clang-format on
}));
}
{
const int bucket_id = 1;
std::vector<float> dest(4, 0.0);
DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding,
num_sparse_features, quantization_bits, bucket_id,
dest.data(), dest.size());
EXPECT_THAT(dest,
ElementsAreFloat(std::vector<float>{
// clang-format off
{1.0 / 7 * 9.0 * (0xFF - 128),
1.0 / 7 * 9.0 * (0x09 - 128),
1.0 / 7 * 9.0 * (0x00 - 128),
1.0 / 7 * 9.0 * (0xFF - 128)}
// clang-format on
}));
}
}
TEST(QuantizationTest, DequantizeAdd1bitZeros) {
const int bytes_per_embedding = 4;
const int num_buckets = 3;
const int num_sparse_features = 7;
const int quantization_bits = 1;
const int bucket_id = 1;
std::vector<float> scales(num_buckets);
std::vector<uint8> embeddings(bytes_per_embedding * num_buckets);
std::fill(scales.begin(), scales.end(), 1);
std::fill(embeddings.begin(), embeddings.end(), 0);
std::vector<float> dest(32);
DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding,
num_sparse_features, quantization_bits, bucket_id, dest.data(),
dest.size());
std::vector<float> expected(32);
std::fill(expected.begin(), expected.end(),
1.0 / num_sparse_features * (0 - 1));
EXPECT_THAT(dest, ElementsAreFloat(expected));
}
TEST(QuantizationTest, DequantizeAdd1bitOnes) {
const int bytes_per_embedding = 4;
const int num_buckets = 3;
const int num_sparse_features = 7;
const int quantization_bits = 1;
const int bucket_id = 1;
std::vector<float> scales(num_buckets, 1.0);
std::vector<uint8> embeddings(bytes_per_embedding * num_buckets, 0xFF);
std::vector<float> dest(32);
DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding,
num_sparse_features, quantization_bits, bucket_id, dest.data(),
dest.size());
std::vector<float> expected(32);
std::fill(expected.begin(), expected.end(),
1.0 / num_sparse_features * (1 - 1));
EXPECT_THAT(dest, ElementsAreFloat(expected));
}
TEST(QuantizationTest, DequantizeAdd3bit) {
const int bytes_per_embedding = 4;
const int num_buckets = 3;
const int num_sparse_features = 7;
const int quantization_bits = 3;
const int bucket_id = 1;
std::vector<float> scales(num_buckets, 1.0);
scales[1] = 9.0;
std::vector<uint8> embeddings(bytes_per_embedding * num_buckets, 0);
// For bucket_id=1, the embedding has values 0..9 for indices 0..9:
embeddings[4] = (1 << 7) | (1 << 6) | (1 << 4) | 1;
embeddings[5] = (1 << 6) | (1 << 4) | (1 << 3);
embeddings[6] = (1 << 4) | (1 << 3) | (1 << 2) | (1 << 1) | 1;
std::vector<float> dest(10);
DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding,
num_sparse_features, quantization_bits, bucket_id, dest.data(),
dest.size());
std::vector<float> expected;
expected.push_back(1.0 / num_sparse_features * (1 - 4) * scales[bucket_id]);
expected.push_back(1.0 / num_sparse_features * (2 - 4) * scales[bucket_id]);
expected.push_back(1.0 / num_sparse_features * (3 - 4) * scales[bucket_id]);
expected.push_back(1.0 / num_sparse_features * (4 - 4) * scales[bucket_id]);
expected.push_back(1.0 / num_sparse_features * (5 - 4) * scales[bucket_id]);
expected.push_back(1.0 / num_sparse_features * (6 - 4) * scales[bucket_id]);
expected.push_back(1.0 / num_sparse_features * (7 - 4) * scales[bucket_id]);
expected.push_back(1.0 / num_sparse_features * (0 - 4) * scales[bucket_id]);
expected.push_back(1.0 / num_sparse_features * (0 - 4) * scales[bucket_id]);
expected.push_back(1.0 / num_sparse_features * (0 - 4) * scales[bucket_id]);
EXPECT_THAT(dest, ElementsAreFloat(expected));
}
} // namespace
} // namespace libtextclassifier3