C++程序  |  249行  |  5.42 KB

/* Crypto/Sha256.c -- SHA-256 Hash
2017-04-03 : Igor Pavlov : Public domain
This code is based on public domain code from Wei Dai's Crypto++ library. */

#include "Precomp.h"

#include <string.h>

#include "CpuArch.h"
#include "RotateDefs.h"
#include "Sha256.h"

/* define it for speed optimization */
#ifndef _SFX
#define _SHA256_UNROLL
#define _SHA256_UNROLL2
#endif

/* #define _SHA256_UNROLL2 */

void Sha256_Init(CSha256 *p)
{
  p->state[0] = 0x6a09e667;
  p->state[1] = 0xbb67ae85;
  p->state[2] = 0x3c6ef372;
  p->state[3] = 0xa54ff53a;
  p->state[4] = 0x510e527f;
  p->state[5] = 0x9b05688c;
  p->state[6] = 0x1f83d9ab;
  p->state[7] = 0x5be0cd19;
  p->count = 0;
}

#define S0(x) (rotrFixed(x, 2) ^ rotrFixed(x,13) ^ rotrFixed(x, 22))
#define S1(x) (rotrFixed(x, 6) ^ rotrFixed(x,11) ^ rotrFixed(x, 25))
#define s0(x) (rotrFixed(x, 7) ^ rotrFixed(x,18) ^ (x >> 3))
#define s1(x) (rotrFixed(x,17) ^ rotrFixed(x,19) ^ (x >> 10))

#define blk0(i) (W[i])
#define blk2(i) (W[i] += s1(W[((i)-2)&15]) + W[((i)-7)&15] + s0(W[((i)-15)&15]))

#define Ch(x,y,z) (z^(x&(y^z)))
#define Maj(x,y,z) ((x&y)|(z&(x|y)))

#ifdef _SHA256_UNROLL2

#define R(a,b,c,d,e,f,g,h, i) \
    h += S1(e) + Ch(e,f,g) + K[(i)+(size_t)(j)] + (j ? blk2(i) : blk0(i)); \
    d += h; \
    h += S0(a) + Maj(a, b, c)

#define RX_8(i) \
  R(a,b,c,d,e,f,g,h, i); \
  R(h,a,b,c,d,e,f,g, i+1); \
  R(g,h,a,b,c,d,e,f, i+2); \
  R(f,g,h,a,b,c,d,e, i+3); \
  R(e,f,g,h,a,b,c,d, i+4); \
  R(d,e,f,g,h,a,b,c, i+5); \
  R(c,d,e,f,g,h,a,b, i+6); \
  R(b,c,d,e,f,g,h,a, i+7)

#define RX_16  RX_8(0); RX_8(8);

#else

#define a(i) T[(0-(i))&7]
#define b(i) T[(1-(i))&7]
#define c(i) T[(2-(i))&7]
#define d(i) T[(3-(i))&7]
#define e(i) T[(4-(i))&7]
#define f(i) T[(5-(i))&7]
#define g(i) T[(6-(i))&7]
#define h(i) T[(7-(i))&7]

#define R(i) \
    h(i) += S1(e(i)) + Ch(e(i),f(i),g(i)) + K[(i)+(size_t)(j)] + (j ? blk2(i) : blk0(i)); \
    d(i) += h(i); \
    h(i) += S0(a(i)) + Maj(a(i), b(i), c(i)) \

#ifdef _SHA256_UNROLL

#define RX_8(i)  R(i+0); R(i+1); R(i+2); R(i+3); R(i+4); R(i+5); R(i+6); R(i+7);
#define RX_16  RX_8(0); RX_8(8);

#else

#define RX_16  unsigned i; for (i = 0; i < 16; i++) { R(i); }

#endif

#endif

static const UInt32 K[64] = {
  0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

static void Sha256_WriteByteBlock(CSha256 *p)
{
  UInt32 W[16];
  unsigned j;
  UInt32 *state;

  #ifdef _SHA256_UNROLL2
  UInt32 a,b,c,d,e,f,g,h;
  #else
  UInt32 T[8];
  #endif

  for (j = 0; j < 16; j += 4)
  {
    const Byte *ccc = p->buffer + j * 4;
    W[j    ] = GetBe32(ccc);
    W[j + 1] = GetBe32(ccc + 4);
    W[j + 2] = GetBe32(ccc + 8);
    W[j + 3] = GetBe32(ccc + 12);
  }

  state = p->state;

  #ifdef _SHA256_UNROLL2
  a = state[0];
  b = state[1];
  c = state[2];
  d = state[3];
  e = state[4];
  f = state[5];
  g = state[6];
  h = state[7];
  #else
  for (j = 0; j < 8; j++)
    T[j] = state[j];
  #endif

  for (j = 0; j < 64; j += 16)
  {
    RX_16
  }

  #ifdef _SHA256_UNROLL2
  state[0] += a;
  state[1] += b;
  state[2] += c;
  state[3] += d;
  state[4] += e;
  state[5] += f;
  state[6] += g;
  state[7] += h;
  #else
  for (j = 0; j < 8; j++)
    state[j] += T[j];
  #endif
  
  /* Wipe variables */
  /* memset(W, 0, sizeof(W)); */
  /* memset(T, 0, sizeof(T)); */
}

#undef S0
#undef S1
#undef s0
#undef s1

void Sha256_Update(CSha256 *p, const Byte *data, size_t size)
{
  if (size == 0)
    return;

  {
    unsigned pos = (unsigned)p->count & 0x3F;
    unsigned num;
    
    p->count += size;
    
    num = 64 - pos;
    if (num > size)
    {
      memcpy(p->buffer + pos, data, size);
      return;
    }
    
    size -= num;
    memcpy(p->buffer + pos, data, num);
    data += num;
  }

  for (;;)
  {
    Sha256_WriteByteBlock(p);
    if (size < 64)
      break;
    size -= 64;
    memcpy(p->buffer, data, 64);
    data += 64;
  }

  if (size != 0)
    memcpy(p->buffer, data, size);
}

void Sha256_Final(CSha256 *p, Byte *digest)
{
  unsigned pos = (unsigned)p->count & 0x3F;
  unsigned i;
  
  p->buffer[pos++] = 0x80;
  
  while (pos != (64 - 8))
  {
    pos &= 0x3F;
    if (pos == 0)
      Sha256_WriteByteBlock(p);
    p->buffer[pos++] = 0;
  }

  {
    UInt64 numBits = (p->count << 3);
    SetBe32(p->buffer + 64 - 8, (UInt32)(numBits >> 32));
    SetBe32(p->buffer + 64 - 4, (UInt32)(numBits));
  }
  
  Sha256_WriteByteBlock(p);

  for (i = 0; i < 8; i += 2)
  {
    UInt32 v0 = p->state[i];
    UInt32 v1 = p->state[i + 1];
    SetBe32(digest    , v0);
    SetBe32(digest + 4, v1);
    digest += 8;
  }
  
  Sha256_Init(p);
}