/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "radv_private.h"
#include "radv_radeon_winsys.h"
#include "radv_shader.h"
#include "radv_cs.h"
#include "sid.h"
#include "gfx9d.h"
#include "vk_format.h"
#include "radv_debug.h"
#include "radv_meta.h"
#include "ac_debug.h"
static void radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
VkImageLayout src_layout,
VkImageLayout dst_layout,
uint32_t src_family,
uint32_t dst_family,
const VkImageSubresourceRange *range,
VkImageAspectFlags pending_clears);
const struct radv_dynamic_state default_dynamic_state = {
.viewport = {
.count = 0,
},
.scissor = {
.count = 0,
},
.line_width = 1.0f,
.depth_bias = {
.bias = 0.0f,
.clamp = 0.0f,
.slope = 0.0f,
},
.blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f },
.depth_bounds = {
.min = 0.0f,
.max = 1.0f,
},
.stencil_compare_mask = {
.front = ~0u,
.back = ~0u,
},
.stencil_write_mask = {
.front = ~0u,
.back = ~0u,
},
.stencil_reference = {
.front = 0u,
.back = 0u,
},
};
static void
radv_bind_dynamic_state(struct radv_cmd_buffer *cmd_buffer,
const struct radv_dynamic_state *src)
{
struct radv_dynamic_state *dest = &cmd_buffer->state.dynamic;
uint32_t copy_mask = src->mask;
uint32_t dest_mask = 0;
/* Make sure to copy the number of viewports/scissors because they can
* only be specified at pipeline creation time.
*/
dest->viewport.count = src->viewport.count;
dest->scissor.count = src->scissor.count;
dest->discard_rectangle.count = src->discard_rectangle.count;
if (copy_mask & RADV_DYNAMIC_VIEWPORT) {
if (memcmp(&dest->viewport.viewports, &src->viewport.viewports,
src->viewport.count * sizeof(VkViewport))) {
typed_memcpy(dest->viewport.viewports,
src->viewport.viewports,
src->viewport.count);
dest_mask |= RADV_DYNAMIC_VIEWPORT;
}
}
if (copy_mask & RADV_DYNAMIC_SCISSOR) {
if (memcmp(&dest->scissor.scissors, &src->scissor.scissors,
src->scissor.count * sizeof(VkRect2D))) {
typed_memcpy(dest->scissor.scissors,
src->scissor.scissors, src->scissor.count);
dest_mask |= RADV_DYNAMIC_SCISSOR;
}
}
if (copy_mask & RADV_DYNAMIC_LINE_WIDTH) {
if (dest->line_width != src->line_width) {
dest->line_width = src->line_width;
dest_mask |= RADV_DYNAMIC_LINE_WIDTH;
}
}
if (copy_mask & RADV_DYNAMIC_DEPTH_BIAS) {
if (memcmp(&dest->depth_bias, &src->depth_bias,
sizeof(src->depth_bias))) {
dest->depth_bias = src->depth_bias;
dest_mask |= RADV_DYNAMIC_DEPTH_BIAS;
}
}
if (copy_mask & RADV_DYNAMIC_BLEND_CONSTANTS) {
if (memcmp(&dest->blend_constants, &src->blend_constants,
sizeof(src->blend_constants))) {
typed_memcpy(dest->blend_constants,
src->blend_constants, 4);
dest_mask |= RADV_DYNAMIC_BLEND_CONSTANTS;
}
}
if (copy_mask & RADV_DYNAMIC_DEPTH_BOUNDS) {
if (memcmp(&dest->depth_bounds, &src->depth_bounds,
sizeof(src->depth_bounds))) {
dest->depth_bounds = src->depth_bounds;
dest_mask |= RADV_DYNAMIC_DEPTH_BOUNDS;
}
}
if (copy_mask & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
if (memcmp(&dest->stencil_compare_mask,
&src->stencil_compare_mask,
sizeof(src->stencil_compare_mask))) {
dest->stencil_compare_mask = src->stencil_compare_mask;
dest_mask |= RADV_DYNAMIC_STENCIL_COMPARE_MASK;
}
}
if (copy_mask & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
if (memcmp(&dest->stencil_write_mask, &src->stencil_write_mask,
sizeof(src->stencil_write_mask))) {
dest->stencil_write_mask = src->stencil_write_mask;
dest_mask |= RADV_DYNAMIC_STENCIL_WRITE_MASK;
}
}
if (copy_mask & RADV_DYNAMIC_STENCIL_REFERENCE) {
if (memcmp(&dest->stencil_reference, &src->stencil_reference,
sizeof(src->stencil_reference))) {
dest->stencil_reference = src->stencil_reference;
dest_mask |= RADV_DYNAMIC_STENCIL_REFERENCE;
}
}
if (copy_mask & RADV_DYNAMIC_DISCARD_RECTANGLE) {
if (memcmp(&dest->discard_rectangle.rectangles, &src->discard_rectangle.rectangles,
src->discard_rectangle.count * sizeof(VkRect2D))) {
typed_memcpy(dest->discard_rectangle.rectangles,
src->discard_rectangle.rectangles,
src->discard_rectangle.count);
dest_mask |= RADV_DYNAMIC_DISCARD_RECTANGLE;
}
}
cmd_buffer->state.dirty |= dest_mask;
}
bool radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer)
{
return cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE &&
cmd_buffer->device->physical_device->rad_info.chip_class >= CIK;
}
enum ring_type radv_queue_family_to_ring(int f) {
switch (f) {
case RADV_QUEUE_GENERAL:
return RING_GFX;
case RADV_QUEUE_COMPUTE:
return RING_COMPUTE;
case RADV_QUEUE_TRANSFER:
return RING_DMA;
default:
unreachable("Unknown queue family");
}
}
static VkResult radv_create_cmd_buffer(
struct radv_device * device,
struct radv_cmd_pool * pool,
VkCommandBufferLevel level,
VkCommandBuffer* pCommandBuffer)
{
struct radv_cmd_buffer *cmd_buffer;
unsigned ring;
cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (cmd_buffer == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
cmd_buffer->device = device;
cmd_buffer->pool = pool;
cmd_buffer->level = level;
if (pool) {
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
cmd_buffer->queue_family_index = pool->queue_family_index;
} else {
/* Init the pool_link so we can safefly call list_del when we destroy
* the command buffer
*/
list_inithead(&cmd_buffer->pool_link);
cmd_buffer->queue_family_index = RADV_QUEUE_GENERAL;
}
ring = radv_queue_family_to_ring(cmd_buffer->queue_family_index);
cmd_buffer->cs = device->ws->cs_create(device->ws, ring);
if (!cmd_buffer->cs) {
vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
*pCommandBuffer = radv_cmd_buffer_to_handle(cmd_buffer);
list_inithead(&cmd_buffer->upload.list);
return VK_SUCCESS;
}
static void
radv_cmd_buffer_destroy(struct radv_cmd_buffer *cmd_buffer)
{
list_del(&cmd_buffer->pool_link);
list_for_each_entry_safe(struct radv_cmd_buffer_upload, up,
&cmd_buffer->upload.list, list) {
cmd_buffer->device->ws->buffer_destroy(up->upload_bo);
list_del(&up->list);
free(up);
}
if (cmd_buffer->upload.upload_bo)
cmd_buffer->device->ws->buffer_destroy(cmd_buffer->upload.upload_bo);
cmd_buffer->device->ws->cs_destroy(cmd_buffer->cs);
free(cmd_buffer->push_descriptors.set.mapped_ptr);
vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
}
static VkResult
radv_reset_cmd_buffer(struct radv_cmd_buffer *cmd_buffer)
{
cmd_buffer->device->ws->cs_reset(cmd_buffer->cs);
list_for_each_entry_safe(struct radv_cmd_buffer_upload, up,
&cmd_buffer->upload.list, list) {
cmd_buffer->device->ws->buffer_destroy(up->upload_bo);
list_del(&up->list);
free(up);
}
cmd_buffer->push_constant_stages = 0;
cmd_buffer->scratch_size_needed = 0;
cmd_buffer->compute_scratch_size_needed = 0;
cmd_buffer->esgs_ring_size_needed = 0;
cmd_buffer->gsvs_ring_size_needed = 0;
cmd_buffer->tess_rings_needed = false;
cmd_buffer->sample_positions_needed = false;
if (cmd_buffer->upload.upload_bo)
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs,
cmd_buffer->upload.upload_bo, 8);
cmd_buffer->upload.offset = 0;
cmd_buffer->record_result = VK_SUCCESS;
cmd_buffer->ring_offsets_idx = -1;
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
void *fence_ptr;
radv_cmd_buffer_upload_alloc(cmd_buffer, 8, 0,
&cmd_buffer->gfx9_fence_offset,
&fence_ptr);
cmd_buffer->gfx9_fence_bo = cmd_buffer->upload.upload_bo;
}
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_INITIAL;
return cmd_buffer->record_result;
}
static bool
radv_cmd_buffer_resize_upload_buf(struct radv_cmd_buffer *cmd_buffer,
uint64_t min_needed)
{
uint64_t new_size;
struct radeon_winsys_bo *bo;
struct radv_cmd_buffer_upload *upload;
struct radv_device *device = cmd_buffer->device;
new_size = MAX2(min_needed, 16 * 1024);
new_size = MAX2(new_size, 2 * cmd_buffer->upload.size);
bo = device->ws->buffer_create(device->ws,
new_size, 4096,
RADEON_DOMAIN_GTT,
RADEON_FLAG_CPU_ACCESS|
RADEON_FLAG_NO_INTERPROCESS_SHARING);
if (!bo) {
cmd_buffer->record_result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
return false;
}
radv_cs_add_buffer(device->ws, cmd_buffer->cs, bo, 8);
if (cmd_buffer->upload.upload_bo) {
upload = malloc(sizeof(*upload));
if (!upload) {
cmd_buffer->record_result = VK_ERROR_OUT_OF_HOST_MEMORY;
device->ws->buffer_destroy(bo);
return false;
}
memcpy(upload, &cmd_buffer->upload, sizeof(*upload));
list_add(&upload->list, &cmd_buffer->upload.list);
}
cmd_buffer->upload.upload_bo = bo;
cmd_buffer->upload.size = new_size;
cmd_buffer->upload.offset = 0;
cmd_buffer->upload.map = device->ws->buffer_map(cmd_buffer->upload.upload_bo);
if (!cmd_buffer->upload.map) {
cmd_buffer->record_result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
return false;
}
return true;
}
bool
radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer,
unsigned size,
unsigned alignment,
unsigned *out_offset,
void **ptr)
{
uint64_t offset = align(cmd_buffer->upload.offset, alignment);
if (offset + size > cmd_buffer->upload.size) {
if (!radv_cmd_buffer_resize_upload_buf(cmd_buffer, size))
return false;
offset = 0;
}
*out_offset = offset;
*ptr = cmd_buffer->upload.map + offset;
cmd_buffer->upload.offset = offset + size;
return true;
}
bool
radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer,
unsigned size, unsigned alignment,
const void *data, unsigned *out_offset)
{
uint8_t *ptr;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, alignment,
out_offset, (void **)&ptr))
return false;
if (ptr)
memcpy(ptr, data, size);
return true;
}
static void
radv_emit_write_data_packet(struct radeon_winsys_cs *cs, uint64_t va,
unsigned count, const uint32_t *data)
{
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + count, 0));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM_ASYNC) |
S_370_WR_CONFIRM(1) |
S_370_ENGINE_SEL(V_370_ME));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit_array(cs, data, count);
}
void radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_device *device = cmd_buffer->device;
struct radeon_winsys_cs *cs = cmd_buffer->cs;
uint64_t va;
va = radv_buffer_get_va(device->trace_bo);
if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY)
va += 4;
MAYBE_UNUSED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 7);
++cmd_buffer->state.trace_id;
radv_cs_add_buffer(device->ws, cs, device->trace_bo, 8);
radv_emit_write_data_packet(cs, va, 1, &cmd_buffer->state.trace_id);
radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
radeon_emit(cs, AC_ENCODE_TRACE_POINT(cmd_buffer->state.trace_id));
}
static void
radv_cmd_buffer_after_draw(struct radv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->device->instance->debug_flags & RADV_DEBUG_SYNC_SHADERS) {
enum radv_cmd_flush_bits flags;
/* Force wait for graphics/compute engines to be idle. */
flags = RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
si_cs_emit_cache_flush(cmd_buffer->cs,
cmd_buffer->device->physical_device->rad_info.chip_class,
NULL, 0,
radv_cmd_buffer_uses_mec(cmd_buffer),
flags);
}
if (unlikely(cmd_buffer->device->trace_bo))
radv_cmd_buffer_trace_emit(cmd_buffer);
}
static void
radv_save_pipeline(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline, enum ring_type ring)
{
struct radv_device *device = cmd_buffer->device;
struct radeon_winsys_cs *cs = cmd_buffer->cs;
uint32_t data[2];
uint64_t va;
va = radv_buffer_get_va(device->trace_bo);
switch (ring) {
case RING_GFX:
va += 8;
break;
case RING_COMPUTE:
va += 16;
break;
default:
assert(!"invalid ring type");
}
MAYBE_UNUSED unsigned cdw_max = radeon_check_space(device->ws,
cmd_buffer->cs, 6);
data[0] = (uintptr_t)pipeline;
data[1] = (uintptr_t)pipeline >> 32;
radv_cs_add_buffer(device->ws, cs, device->trace_bo, 8);
radv_emit_write_data_packet(cs, va, 2, data);
}
void radv_set_descriptor_set(struct radv_cmd_buffer *cmd_buffer,
struct radv_descriptor_set *set,
unsigned idx)
{
cmd_buffer->descriptors[idx] = set;
if (set)
cmd_buffer->state.valid_descriptors |= (1u << idx);
else
cmd_buffer->state.valid_descriptors &= ~(1u << idx);
cmd_buffer->state.descriptors_dirty |= (1u << idx);
}
static void
radv_save_descriptors(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_device *device = cmd_buffer->device;
struct radeon_winsys_cs *cs = cmd_buffer->cs;
uint32_t data[MAX_SETS * 2] = {};
uint64_t va;
unsigned i;
va = radv_buffer_get_va(device->trace_bo) + 24;
MAYBE_UNUSED unsigned cdw_max = radeon_check_space(device->ws,
cmd_buffer->cs, 4 + MAX_SETS * 2);
for_each_bit(i, cmd_buffer->state.valid_descriptors) {
struct radv_descriptor_set *set = cmd_buffer->descriptors[i];
data[i * 2] = (uintptr_t)set;
data[i * 2 + 1] = (uintptr_t)set >> 32;
}
radv_cs_add_buffer(device->ws, cs, device->trace_bo, 8);
radv_emit_write_data_packet(cs, va, MAX_SETS * 2, data);
}
static void
radv_emit_graphics_blend_state(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline)
{
radeon_set_context_reg_seq(cmd_buffer->cs, R_028780_CB_BLEND0_CONTROL, 8);
radeon_emit_array(cmd_buffer->cs, pipeline->graphics.blend.cb_blend_control,
8);
radeon_set_context_reg(cmd_buffer->cs, R_028808_CB_COLOR_CONTROL, pipeline->graphics.blend.cb_color_control);
radeon_set_context_reg(cmd_buffer->cs, R_028B70_DB_ALPHA_TO_MASK, pipeline->graphics.blend.db_alpha_to_mask);
if (cmd_buffer->device->physical_device->has_rbplus) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028760_SX_MRT0_BLEND_OPT, 8);
radeon_emit_array(cmd_buffer->cs, pipeline->graphics.blend.sx_mrt_blend_opt, 8);
radeon_set_context_reg_seq(cmd_buffer->cs, R_028754_SX_PS_DOWNCONVERT, 3);
radeon_emit(cmd_buffer->cs, 0); /* R_028754_SX_PS_DOWNCONVERT */
radeon_emit(cmd_buffer->cs, 0); /* R_028758_SX_BLEND_OPT_EPSILON */
radeon_emit(cmd_buffer->cs, 0); /* R_02875C_SX_BLEND_OPT_CONTROL */
}
}
static void
radv_emit_graphics_depth_stencil_state(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline)
{
struct radv_depth_stencil_state *ds = &pipeline->graphics.ds;
radeon_set_context_reg(cmd_buffer->cs, R_028800_DB_DEPTH_CONTROL, ds->db_depth_control);
radeon_set_context_reg(cmd_buffer->cs, R_02842C_DB_STENCIL_CONTROL, ds->db_stencil_control);
radeon_set_context_reg(cmd_buffer->cs, R_028000_DB_RENDER_CONTROL, ds->db_render_control);
radeon_set_context_reg(cmd_buffer->cs, R_028010_DB_RENDER_OVERRIDE2, ds->db_render_override2);
}
struct ac_userdata_info *
radv_lookup_user_sgpr(struct radv_pipeline *pipeline,
gl_shader_stage stage,
int idx)
{
if (stage == MESA_SHADER_VERTEX) {
if (pipeline->shaders[MESA_SHADER_VERTEX])
return &pipeline->shaders[MESA_SHADER_VERTEX]->info.user_sgprs_locs.shader_data[idx];
if (pipeline->shaders[MESA_SHADER_TESS_CTRL])
return &pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.user_sgprs_locs.shader_data[idx];
if (pipeline->shaders[MESA_SHADER_GEOMETRY])
return &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.user_sgprs_locs.shader_data[idx];
} else if (stage == MESA_SHADER_TESS_EVAL) {
if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.user_sgprs_locs.shader_data[idx];
if (pipeline->shaders[MESA_SHADER_GEOMETRY])
return &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.user_sgprs_locs.shader_data[idx];
}
return &pipeline->shaders[stage]->info.user_sgprs_locs.shader_data[idx];
}
static void
radv_emit_userdata_address(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline,
gl_shader_stage stage,
int idx, uint64_t va)
{
struct ac_userdata_info *loc = radv_lookup_user_sgpr(pipeline, stage, idx);
uint32_t base_reg = pipeline->user_data_0[stage];
if (loc->sgpr_idx == -1)
return;
assert(loc->num_sgprs == 2);
assert(!loc->indirect);
radeon_set_sh_reg_seq(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, 2);
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
}
static void
radv_update_multisample_state(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline)
{
int num_samples = pipeline->graphics.ms.num_samples;
struct radv_multisample_state *ms = &pipeline->graphics.ms;
struct radv_pipeline *old_pipeline = cmd_buffer->state.emitted_pipeline;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2);
radeon_emit(cmd_buffer->cs, ms->pa_sc_aa_mask[0]);
radeon_emit(cmd_buffer->cs, ms->pa_sc_aa_mask[1]);
radeon_set_context_reg(cmd_buffer->cs, R_028804_DB_EQAA, ms->db_eqaa);
radeon_set_context_reg(cmd_buffer->cs, R_028A4C_PA_SC_MODE_CNTL_1, ms->pa_sc_mode_cntl_1);
if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.needs_sample_positions) {
uint32_t offset;
struct ac_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_FRAGMENT, AC_UD_PS_SAMPLE_POS_OFFSET);
uint32_t base_reg = pipeline->user_data_0[MESA_SHADER_FRAGMENT];
if (loc->sgpr_idx == -1)
return;
assert(loc->num_sgprs == 1);
assert(!loc->indirect);
switch (num_samples) {
default:
offset = 0;
break;
case 2:
offset = 1;
break;
case 4:
offset = 3;
break;
case 8:
offset = 7;
break;
case 16:
offset = 15;
break;
}
radeon_set_sh_reg(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, offset);
cmd_buffer->sample_positions_needed = true;
}
if (old_pipeline && num_samples == old_pipeline->graphics.ms.num_samples)
return;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028BDC_PA_SC_LINE_CNTL, 2);
radeon_emit(cmd_buffer->cs, ms->pa_sc_line_cntl);
radeon_emit(cmd_buffer->cs, ms->pa_sc_aa_config);
radeon_set_context_reg(cmd_buffer->cs, R_028A48_PA_SC_MODE_CNTL_0, ms->pa_sc_mode_cntl_0);
radv_cayman_emit_msaa_sample_locs(cmd_buffer->cs, num_samples);
/* GFX9: Flush DFSM when the AA mode changes. */
if (cmd_buffer->device->dfsm_allowed) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
}
}
static void
radv_emit_graphics_raster_state(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline)
{
struct radv_raster_state *raster = &pipeline->graphics.raster;
radeon_set_context_reg(cmd_buffer->cs, R_028810_PA_CL_CLIP_CNTL,
raster->pa_cl_clip_cntl);
radeon_set_context_reg(cmd_buffer->cs, R_0286D4_SPI_INTERP_CONTROL_0,
raster->spi_interp_control);
radeon_set_context_reg(cmd_buffer->cs, R_028BE4_PA_SU_VTX_CNTL,
raster->pa_su_vtx_cntl);
radeon_set_context_reg(cmd_buffer->cs, R_028814_PA_SU_SC_MODE_CNTL,
raster->pa_su_sc_mode_cntl);
}
static inline void
radv_emit_prefetch_TC_L2_async(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
unsigned size)
{
if (cmd_buffer->device->physical_device->rad_info.chip_class >= CIK)
si_cp_dma_prefetch(cmd_buffer, va, size);
}
static void
radv_emit_VBO_descriptors_prefetch(struct radv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->state.vb_prefetch_dirty) {
radv_emit_prefetch_TC_L2_async(cmd_buffer,
cmd_buffer->state.vb_va,
cmd_buffer->state.vb_size);
cmd_buffer->state.vb_prefetch_dirty = false;
}
}
static void
radv_emit_shader_prefetch(struct radv_cmd_buffer *cmd_buffer,
struct radv_shader_variant *shader)
{
struct radeon_winsys *ws = cmd_buffer->device->ws;
struct radeon_winsys_cs *cs = cmd_buffer->cs;
uint64_t va;
if (!shader)
return;
va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
radv_cs_add_buffer(ws, cs, shader->bo, 8);
radv_emit_prefetch_TC_L2_async(cmd_buffer, va, shader->code_size);
}
static void
radv_emit_prefetch(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline)
{
radv_emit_shader_prefetch(cmd_buffer,
pipeline->shaders[MESA_SHADER_VERTEX]);
radv_emit_VBO_descriptors_prefetch(cmd_buffer);
radv_emit_shader_prefetch(cmd_buffer,
pipeline->shaders[MESA_SHADER_TESS_CTRL]);
radv_emit_shader_prefetch(cmd_buffer,
pipeline->shaders[MESA_SHADER_TESS_EVAL]);
radv_emit_shader_prefetch(cmd_buffer,
pipeline->shaders[MESA_SHADER_GEOMETRY]);
radv_emit_shader_prefetch(cmd_buffer, pipeline->gs_copy_shader);
radv_emit_shader_prefetch(cmd_buffer,
pipeline->shaders[MESA_SHADER_FRAGMENT]);
}
static void
radv_emit_hw_vs(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline,
struct radv_shader_variant *shader)
{
uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
radeon_set_context_reg(cmd_buffer->cs, R_0286C4_SPI_VS_OUT_CONFIG,
pipeline->graphics.vs.spi_vs_out_config);
radeon_set_context_reg(cmd_buffer->cs, R_02870C_SPI_SHADER_POS_FORMAT,
pipeline->graphics.vs.spi_shader_pos_format);
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4);
radeon_emit(cmd_buffer->cs, va >> 8);
radeon_emit(cmd_buffer->cs, va >> 40);
radeon_emit(cmd_buffer->cs, shader->rsrc1);
radeon_emit(cmd_buffer->cs, shader->rsrc2);
radeon_set_context_reg(cmd_buffer->cs, R_028818_PA_CL_VTE_CNTL,
S_028818_VTX_W0_FMT(1) |
S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
radeon_set_context_reg(cmd_buffer->cs, R_02881C_PA_CL_VS_OUT_CNTL,
pipeline->graphics.vs.pa_cl_vs_out_cntl);
if (cmd_buffer->device->physical_device->rad_info.chip_class <= VI)
radeon_set_context_reg(cmd_buffer->cs, R_028AB4_VGT_REUSE_OFF,
pipeline->graphics.vs.vgt_reuse_off);
}
static void
radv_emit_hw_es(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline,
struct radv_shader_variant *shader)
{
uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4);
radeon_emit(cmd_buffer->cs, va >> 8);
radeon_emit(cmd_buffer->cs, va >> 40);
radeon_emit(cmd_buffer->cs, shader->rsrc1);
radeon_emit(cmd_buffer->cs, shader->rsrc2);
}
static void
radv_emit_hw_ls(struct radv_cmd_buffer *cmd_buffer,
struct radv_shader_variant *shader)
{
uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
uint32_t rsrc2 = shader->rsrc2;
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2);
radeon_emit(cmd_buffer->cs, va >> 8);
radeon_emit(cmd_buffer->cs, va >> 40);
rsrc2 |= S_00B52C_LDS_SIZE(cmd_buffer->state.pipeline->graphics.tess.lds_size);
if (cmd_buffer->device->physical_device->rad_info.chip_class == CIK &&
cmd_buffer->device->physical_device->rad_info.family != CHIP_HAWAII)
radeon_set_sh_reg(cmd_buffer->cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, rsrc2);
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
radeon_emit(cmd_buffer->cs, shader->rsrc1);
radeon_emit(cmd_buffer->cs, rsrc2);
}
static void
radv_emit_hw_hs(struct radv_cmd_buffer *cmd_buffer,
struct radv_shader_variant *shader)
{
uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B410_SPI_SHADER_PGM_LO_LS, 2);
radeon_emit(cmd_buffer->cs, va >> 8);
radeon_emit(cmd_buffer->cs, va >> 40);
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, 2);
radeon_emit(cmd_buffer->cs, shader->rsrc1);
radeon_emit(cmd_buffer->cs, shader->rsrc2 |
S_00B42C_LDS_SIZE(cmd_buffer->state.pipeline->graphics.tess.lds_size));
} else {
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4);
radeon_emit(cmd_buffer->cs, va >> 8);
radeon_emit(cmd_buffer->cs, va >> 40);
radeon_emit(cmd_buffer->cs, shader->rsrc1);
radeon_emit(cmd_buffer->cs, shader->rsrc2);
}
}
static void
radv_emit_vertex_shader(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline)
{
struct radv_shader_variant *vs;
radeon_set_context_reg(cmd_buffer->cs, R_028A84_VGT_PRIMITIVEID_EN, pipeline->graphics.vgt_primitiveid_en);
/* Skip shaders merged into HS/GS */
vs = pipeline->shaders[MESA_SHADER_VERTEX];
if (!vs)
return;
if (vs->info.vs.as_ls)
radv_emit_hw_ls(cmd_buffer, vs);
else if (vs->info.vs.as_es)
radv_emit_hw_es(cmd_buffer, pipeline, vs);
else
radv_emit_hw_vs(cmd_buffer, pipeline, vs);
}
static void
radv_emit_tess_shaders(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline)
{
if (!radv_pipeline_has_tess(pipeline))
return;
struct radv_shader_variant *tes, *tcs;
tcs = pipeline->shaders[MESA_SHADER_TESS_CTRL];
tes = pipeline->shaders[MESA_SHADER_TESS_EVAL];
if (tes) {
if (tes->info.tes.as_es)
radv_emit_hw_es(cmd_buffer, pipeline, tes);
else
radv_emit_hw_vs(cmd_buffer, pipeline, tes);
}
radv_emit_hw_hs(cmd_buffer, tcs);
radeon_set_context_reg(cmd_buffer->cs, R_028B6C_VGT_TF_PARAM,
pipeline->graphics.tess.tf_param);
if (cmd_buffer->device->physical_device->rad_info.chip_class >= CIK)
radeon_set_context_reg_idx(cmd_buffer->cs, R_028B58_VGT_LS_HS_CONFIG, 2,
pipeline->graphics.tess.ls_hs_config);
else
radeon_set_context_reg(cmd_buffer->cs, R_028B58_VGT_LS_HS_CONFIG,
pipeline->graphics.tess.ls_hs_config);
struct ac_userdata_info *loc;
loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_TESS_CTRL, AC_UD_TCS_OFFCHIP_LAYOUT);
if (loc->sgpr_idx != -1) {
uint32_t base_reg = pipeline->user_data_0[MESA_SHADER_TESS_CTRL];
assert(loc->num_sgprs == 4);
assert(!loc->indirect);
radeon_set_sh_reg_seq(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, 4);
radeon_emit(cmd_buffer->cs, pipeline->graphics.tess.offchip_layout);
radeon_emit(cmd_buffer->cs, pipeline->graphics.tess.tcs_out_offsets);
radeon_emit(cmd_buffer->cs, pipeline->graphics.tess.tcs_out_layout |
pipeline->graphics.tess.num_tcs_input_cp << 26);
radeon_emit(cmd_buffer->cs, pipeline->graphics.tess.tcs_in_layout);
}
loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_TESS_EVAL, AC_UD_TES_OFFCHIP_LAYOUT);
if (loc->sgpr_idx != -1) {
uint32_t base_reg = pipeline->user_data_0[MESA_SHADER_TESS_EVAL];
assert(loc->num_sgprs == 1);
assert(!loc->indirect);
radeon_set_sh_reg(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4,
pipeline->graphics.tess.offchip_layout);
}
loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX, AC_UD_VS_LS_TCS_IN_LAYOUT);
if (loc->sgpr_idx != -1) {
uint32_t base_reg = pipeline->user_data_0[MESA_SHADER_VERTEX];
assert(loc->num_sgprs == 1);
assert(!loc->indirect);
radeon_set_sh_reg(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4,
pipeline->graphics.tess.tcs_in_layout);
}
}
static void
radv_emit_geometry_shader(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline)
{
struct radv_shader_variant *gs;
uint64_t va;
radeon_set_context_reg(cmd_buffer->cs, R_028A40_VGT_GS_MODE, pipeline->graphics.vgt_gs_mode);
gs = pipeline->shaders[MESA_SHADER_GEOMETRY];
if (!gs)
return;
uint32_t gsvs_itemsize = gs->info.gs.max_gsvs_emit_size >> 2;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3);
radeon_emit(cmd_buffer->cs, gsvs_itemsize);
radeon_emit(cmd_buffer->cs, gsvs_itemsize);
radeon_emit(cmd_buffer->cs, gsvs_itemsize);
radeon_set_context_reg(cmd_buffer->cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, gsvs_itemsize);
radeon_set_context_reg(cmd_buffer->cs, R_028B38_VGT_GS_MAX_VERT_OUT, gs->info.gs.vertices_out);
uint32_t gs_vert_itemsize = gs->info.gs.gsvs_vertex_size;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4);
radeon_emit(cmd_buffer->cs, gs_vert_itemsize >> 2);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, 0);
uint32_t gs_num_invocations = gs->info.gs.invocations;
radeon_set_context_reg(cmd_buffer->cs, R_028B90_VGT_GS_INSTANCE_CNT,
S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
S_028B90_ENABLE(gs_num_invocations > 0));
radeon_set_context_reg(cmd_buffer->cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
pipeline->graphics.gs.vgt_esgs_ring_itemsize);
va = radv_buffer_get_va(gs->bo) + gs->bo_offset;
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B210_SPI_SHADER_PGM_LO_ES, 2);
radeon_emit(cmd_buffer->cs, va >> 8);
radeon_emit(cmd_buffer->cs, va >> 40);
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
radeon_emit(cmd_buffer->cs, gs->rsrc1);
radeon_emit(cmd_buffer->cs, gs->rsrc2 |
S_00B22C_LDS_SIZE(pipeline->graphics.gs.lds_size));
radeon_set_context_reg(cmd_buffer->cs, R_028A44_VGT_GS_ONCHIP_CNTL, pipeline->graphics.gs.vgt_gs_onchip_cntl);
radeon_set_context_reg(cmd_buffer->cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, pipeline->graphics.gs.vgt_gs_max_prims_per_subgroup);
} else {
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4);
radeon_emit(cmd_buffer->cs, va >> 8);
radeon_emit(cmd_buffer->cs, va >> 40);
radeon_emit(cmd_buffer->cs, gs->rsrc1);
radeon_emit(cmd_buffer->cs, gs->rsrc2);
}
radv_emit_hw_vs(cmd_buffer, pipeline, pipeline->gs_copy_shader);
struct ac_userdata_info *loc = radv_lookup_user_sgpr(cmd_buffer->state.pipeline, MESA_SHADER_GEOMETRY,
AC_UD_GS_VS_RING_STRIDE_ENTRIES);
if (loc->sgpr_idx != -1) {
uint32_t stride = gs->info.gs.max_gsvs_emit_size;
uint32_t num_entries = 64;
bool is_vi = cmd_buffer->device->physical_device->rad_info.chip_class >= VI;
if (is_vi)
num_entries *= stride;
stride = S_008F04_STRIDE(stride);
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B230_SPI_SHADER_USER_DATA_GS_0 + loc->sgpr_idx * 4, 2);
radeon_emit(cmd_buffer->cs, stride);
radeon_emit(cmd_buffer->cs, num_entries);
}
}
static void
radv_emit_fragment_shader(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline)
{
struct radv_shader_variant *ps;
uint64_t va;
struct radv_blend_state *blend = &pipeline->graphics.blend;
assert (pipeline->shaders[MESA_SHADER_FRAGMENT]);
ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
va = radv_buffer_get_va(ps->bo) + ps->bo_offset;
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4);
radeon_emit(cmd_buffer->cs, va >> 8);
radeon_emit(cmd_buffer->cs, va >> 40);
radeon_emit(cmd_buffer->cs, ps->rsrc1);
radeon_emit(cmd_buffer->cs, ps->rsrc2);
radeon_set_context_reg(cmd_buffer->cs, R_02880C_DB_SHADER_CONTROL,
pipeline->graphics.db_shader_control);
radeon_set_context_reg(cmd_buffer->cs, R_0286CC_SPI_PS_INPUT_ENA,
ps->config.spi_ps_input_ena);
radeon_set_context_reg(cmd_buffer->cs, R_0286D0_SPI_PS_INPUT_ADDR,
ps->config.spi_ps_input_addr);
radeon_set_context_reg(cmd_buffer->cs, R_0286D8_SPI_PS_IN_CONTROL,
S_0286D8_NUM_INTERP(ps->info.fs.num_interp));
radeon_set_context_reg(cmd_buffer->cs, R_0286E0_SPI_BARYC_CNTL, pipeline->graphics.spi_baryc_cntl);
radeon_set_context_reg(cmd_buffer->cs, R_028710_SPI_SHADER_Z_FORMAT,
pipeline->graphics.shader_z_format);
radeon_set_context_reg(cmd_buffer->cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format);
radeon_set_context_reg(cmd_buffer->cs, R_028238_CB_TARGET_MASK, blend->cb_target_mask);
radeon_set_context_reg(cmd_buffer->cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask);
if (cmd_buffer->device->dfsm_allowed) {
/* optimise this? */
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
}
if (pipeline->graphics.ps_input_cntl_num) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028644_SPI_PS_INPUT_CNTL_0, pipeline->graphics.ps_input_cntl_num);
for (unsigned i = 0; i < pipeline->graphics.ps_input_cntl_num; i++) {
radeon_emit(cmd_buffer->cs, pipeline->graphics.ps_input_cntl[i]);
}
}
}
static void
radv_emit_vgt_vertex_reuse(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline)
{
struct radeon_winsys_cs *cs = cmd_buffer->cs;
if (cmd_buffer->device->physical_device->rad_info.family < CHIP_POLARIS10)
return;
radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
pipeline->graphics.vtx_reuse_depth);
}
static void
radv_emit_binning_state(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline)
{
struct radeon_winsys_cs *cs = cmd_buffer->cs;
if (cmd_buffer->device->physical_device->rad_info.chip_class < GFX9)
return;
radeon_set_context_reg(cs, R_028C44_PA_SC_BINNER_CNTL_0,
pipeline->graphics.bin.pa_sc_binner_cntl_0);
radeon_set_context_reg(cs, R_028060_DB_DFSM_CONTROL,
pipeline->graphics.bin.db_dfsm_control);
}
static void
radv_emit_graphics_pipeline(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_pipeline *pipeline = cmd_buffer->state.pipeline;
if (!pipeline || cmd_buffer->state.emitted_pipeline == pipeline)
return;
radv_emit_graphics_depth_stencil_state(cmd_buffer, pipeline);
radv_emit_graphics_blend_state(cmd_buffer, pipeline);
radv_emit_graphics_raster_state(cmd_buffer, pipeline);
radv_update_multisample_state(cmd_buffer, pipeline);
radv_emit_vertex_shader(cmd_buffer, pipeline);
radv_emit_tess_shaders(cmd_buffer, pipeline);
radv_emit_geometry_shader(cmd_buffer, pipeline);
radv_emit_fragment_shader(cmd_buffer, pipeline);
radv_emit_vgt_vertex_reuse(cmd_buffer, pipeline);
radv_emit_binning_state(cmd_buffer, pipeline);
cmd_buffer->scratch_size_needed =
MAX2(cmd_buffer->scratch_size_needed,
pipeline->max_waves * pipeline->scratch_bytes_per_wave);
radeon_set_context_reg(cmd_buffer->cs, R_0286E8_SPI_TMPRING_SIZE,
S_0286E8_WAVES(pipeline->max_waves) |
S_0286E8_WAVESIZE(pipeline->scratch_bytes_per_wave >> 10));
if (!cmd_buffer->state.emitted_pipeline ||
cmd_buffer->state.emitted_pipeline->graphics.can_use_guardband !=
pipeline->graphics.can_use_guardband)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_SCISSOR;
radeon_set_context_reg(cmd_buffer->cs, R_028B54_VGT_SHADER_STAGES_EN, pipeline->graphics.vgt_shader_stages_en);
if (cmd_buffer->device->physical_device->rad_info.chip_class >= CIK) {
radeon_set_uconfig_reg_idx(cmd_buffer->cs, R_030908_VGT_PRIMITIVE_TYPE, 1, pipeline->graphics.prim);
} else {
radeon_set_config_reg(cmd_buffer->cs, R_008958_VGT_PRIMITIVE_TYPE, pipeline->graphics.prim);
}
radeon_set_context_reg(cmd_buffer->cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, pipeline->graphics.gs_out);
radeon_set_context_reg(cmd_buffer->cs, R_02820C_PA_SC_CLIPRECT_RULE, pipeline->graphics.pa_sc_cliprect_rule);
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_pipeline(cmd_buffer, pipeline, RING_GFX);
cmd_buffer->state.emitted_pipeline = pipeline;
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_PIPELINE;
}
static void
radv_emit_viewport(struct radv_cmd_buffer *cmd_buffer)
{
si_write_viewport(cmd_buffer->cs, 0, cmd_buffer->state.dynamic.viewport.count,
cmd_buffer->state.dynamic.viewport.viewports);
}
static void
radv_emit_scissor(struct radv_cmd_buffer *cmd_buffer)
{
uint32_t count = cmd_buffer->state.dynamic.scissor.count;
/* Vega10/Raven scissor bug workaround. This must be done before VPORT
* scissor registers are changed. There is also a more efficient but
* more involved alternative workaround.
*/
if (cmd_buffer->device->physical_device->has_scissor_bug) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
si_emit_cache_flush(cmd_buffer);
}
si_write_scissors(cmd_buffer->cs, 0, count,
cmd_buffer->state.dynamic.scissor.scissors,
cmd_buffer->state.dynamic.viewport.viewports,
cmd_buffer->state.emitted_pipeline->graphics.can_use_guardband);
}
static void
radv_emit_discard_rectangle(struct radv_cmd_buffer *cmd_buffer)
{
if (!cmd_buffer->state.dynamic.discard_rectangle.count)
return;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028210_PA_SC_CLIPRECT_0_TL,
cmd_buffer->state.dynamic.discard_rectangle.count * 2);
for (unsigned i = 0; i < cmd_buffer->state.dynamic.discard_rectangle.count; ++i) {
VkRect2D rect = cmd_buffer->state.dynamic.discard_rectangle.rectangles[i];
radeon_emit(cmd_buffer->cs, S_028210_TL_X(rect.offset.x) | S_028210_TL_Y(rect.offset.y));
radeon_emit(cmd_buffer->cs, S_028214_BR_X(rect.offset.x + rect.extent.width) |
S_028214_BR_Y(rect.offset.y + rect.extent.height));
}
}
static void
radv_emit_line_width(struct radv_cmd_buffer *cmd_buffer)
{
unsigned width = cmd_buffer->state.dynamic.line_width * 8;
radeon_set_context_reg(cmd_buffer->cs, R_028A08_PA_SU_LINE_CNTL,
S_028A08_WIDTH(CLAMP(width, 0, 0xFFF)));
}
static void
radv_emit_blend_constants(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028414_CB_BLEND_RED, 4);
radeon_emit_array(cmd_buffer->cs, (uint32_t *)d->blend_constants, 4);
}
static void
radv_emit_stencil(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg_seq(cmd_buffer->cs,
R_028430_DB_STENCILREFMASK, 2);
radeon_emit(cmd_buffer->cs,
S_028430_STENCILTESTVAL(d->stencil_reference.front) |
S_028430_STENCILMASK(d->stencil_compare_mask.front) |
S_028430_STENCILWRITEMASK(d->stencil_write_mask.front) |
S_028430_STENCILOPVAL(1));
radeon_emit(cmd_buffer->cs,
S_028434_STENCILTESTVAL_BF(d->stencil_reference.back) |
S_028434_STENCILMASK_BF(d->stencil_compare_mask.back) |
S_028434_STENCILWRITEMASK_BF(d->stencil_write_mask.back) |
S_028434_STENCILOPVAL_BF(1));
}
static void
radv_emit_depth_bounds(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg(cmd_buffer->cs, R_028020_DB_DEPTH_BOUNDS_MIN,
fui(d->depth_bounds.min));
radeon_set_context_reg(cmd_buffer->cs, R_028024_DB_DEPTH_BOUNDS_MAX,
fui(d->depth_bounds.max));
}
static void
radv_emit_depth_bias(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_raster_state *raster = &cmd_buffer->state.pipeline->graphics.raster;
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
unsigned slope = fui(d->depth_bias.slope * 16.0f);
unsigned bias = fui(d->depth_bias.bias * cmd_buffer->state.offset_scale);
if (G_028814_POLY_OFFSET_FRONT_ENABLE(raster->pa_su_sc_mode_cntl)) {
radeon_set_context_reg_seq(cmd_buffer->cs,
R_028B7C_PA_SU_POLY_OFFSET_CLAMP, 5);
radeon_emit(cmd_buffer->cs, fui(d->depth_bias.clamp)); /* CLAMP */
radeon_emit(cmd_buffer->cs, slope); /* FRONT SCALE */
radeon_emit(cmd_buffer->cs, bias); /* FRONT OFFSET */
radeon_emit(cmd_buffer->cs, slope); /* BACK SCALE */
radeon_emit(cmd_buffer->cs, bias); /* BACK OFFSET */
}
}
static void
radv_emit_fb_color_state(struct radv_cmd_buffer *cmd_buffer,
int index,
struct radv_attachment_info *att,
struct radv_image *image,
VkImageLayout layout)
{
bool is_vi = cmd_buffer->device->physical_device->rad_info.chip_class >= VI;
struct radv_color_buffer_info *cb = &att->cb;
uint32_t cb_color_info = cb->cb_color_info;
if (!radv_layout_dcc_compressed(image, layout,
radv_image_queue_family_mask(image,
cmd_buffer->queue_family_index,
cmd_buffer->queue_family_index))) {
cb_color_info &= C_028C70_DCC_ENABLE;
}
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
radeon_emit(cmd_buffer->cs, cb->cb_color_base);
radeon_emit(cmd_buffer->cs, cb->cb_color_base >> 32);
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib2);
radeon_emit(cmd_buffer->cs, cb->cb_color_view);
radeon_emit(cmd_buffer->cs, cb_color_info);
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_control);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask >> 32);
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask);
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask >> 32);
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, 2);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_base);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_base >> 32);
radeon_set_context_reg(cmd_buffer->cs, R_0287A0_CB_MRT0_EPITCH + index * 4,
S_0287A0_EPITCH(att->attachment->image->surface.u.gfx9.surf.epitch));
} else {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
radeon_emit(cmd_buffer->cs, cb->cb_color_base);
radeon_emit(cmd_buffer->cs, cb->cb_color_pitch);
radeon_emit(cmd_buffer->cs, cb->cb_color_slice);
radeon_emit(cmd_buffer->cs, cb->cb_color_view);
radeon_emit(cmd_buffer->cs, cb_color_info);
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_control);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask_slice);
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask);
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask_slice);
if (is_vi) { /* DCC BASE */
radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->cb_dcc_base);
}
}
}
static void
radv_emit_fb_ds_state(struct radv_cmd_buffer *cmd_buffer,
struct radv_ds_buffer_info *ds,
struct radv_image *image,
VkImageLayout layout)
{
uint32_t db_z_info = ds->db_z_info;
uint32_t db_stencil_info = ds->db_stencil_info;
if (!radv_layout_has_htile(image, layout,
radv_image_queue_family_mask(image,
cmd_buffer->queue_family_index,
cmd_buffer->queue_family_index))) {
db_z_info &= C_028040_TILE_SURFACE_ENABLE;
db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
}
radeon_set_context_reg(cmd_buffer->cs, R_028008_DB_DEPTH_VIEW, ds->db_depth_view);
radeon_set_context_reg(cmd_buffer->cs, R_028ABC_DB_HTILE_SURFACE, ds->db_htile_surface);
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, 3);
radeon_emit(cmd_buffer->cs, ds->db_htile_data_base);
radeon_emit(cmd_buffer->cs, ds->db_htile_data_base >> 32);
radeon_emit(cmd_buffer->cs, ds->db_depth_size);
radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 10);
radeon_emit(cmd_buffer->cs, db_z_info); /* DB_Z_INFO */
radeon_emit(cmd_buffer->cs, db_stencil_info); /* DB_STENCIL_INFO */
radeon_emit(cmd_buffer->cs, ds->db_z_read_base); /* DB_Z_READ_BASE */
radeon_emit(cmd_buffer->cs, ds->db_z_read_base >> 32); /* DB_Z_READ_BASE_HI */
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base); /* DB_STENCIL_READ_BASE */
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base >> 32); /* DB_STENCIL_READ_BASE_HI */
radeon_emit(cmd_buffer->cs, ds->db_z_write_base); /* DB_Z_WRITE_BASE */
radeon_emit(cmd_buffer->cs, ds->db_z_write_base >> 32); /* DB_Z_WRITE_BASE_HI */
radeon_emit(cmd_buffer->cs, ds->db_stencil_write_base); /* DB_STENCIL_WRITE_BASE */
radeon_emit(cmd_buffer->cs, ds->db_stencil_write_base >> 32); /* DB_STENCIL_WRITE_BASE_HI */
radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_INFO2, 2);
radeon_emit(cmd_buffer->cs, ds->db_z_info2);
radeon_emit(cmd_buffer->cs, ds->db_stencil_info2);
} else {
radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, ds->db_htile_data_base);
radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 9);
radeon_emit(cmd_buffer->cs, ds->db_depth_info); /* R_02803C_DB_DEPTH_INFO */
radeon_emit(cmd_buffer->cs, db_z_info); /* R_028040_DB_Z_INFO */
radeon_emit(cmd_buffer->cs, db_stencil_info); /* R_028044_DB_STENCIL_INFO */
radeon_emit(cmd_buffer->cs, ds->db_z_read_base); /* R_028048_DB_Z_READ_BASE */
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base); /* R_02804C_DB_STENCIL_READ_BASE */
radeon_emit(cmd_buffer->cs, ds->db_z_write_base); /* R_028050_DB_Z_WRITE_BASE */
radeon_emit(cmd_buffer->cs, ds->db_stencil_write_base); /* R_028054_DB_STENCIL_WRITE_BASE */
radeon_emit(cmd_buffer->cs, ds->db_depth_size); /* R_028058_DB_DEPTH_SIZE */
radeon_emit(cmd_buffer->cs, ds->db_depth_slice); /* R_02805C_DB_DEPTH_SLICE */
}
radeon_set_context_reg(cmd_buffer->cs, R_028B78_PA_SU_POLY_OFFSET_DB_FMT_CNTL,
ds->pa_su_poly_offset_db_fmt_cntl);
}
void
radv_set_depth_clear_regs(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
VkClearDepthStencilValue ds_clear_value,
VkImageAspectFlags aspects)
{
uint64_t va = radv_buffer_get_va(image->bo);
va += image->offset + image->clear_value_offset;
unsigned reg_offset = 0, reg_count = 0;
assert(image->surface.htile_size);
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
++reg_count;
} else {
++reg_offset;
va += 4;
}
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
++reg_count;
radeon_emit(cmd_buffer->cs, PKT3(PKT3_WRITE_DATA, 2 + reg_count, 0));
radeon_emit(cmd_buffer->cs, S_370_DST_SEL(V_370_MEM_ASYNC) |
S_370_WR_CONFIRM(1) |
S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT)
radeon_emit(cmd_buffer->cs, ds_clear_value.stencil);
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
radeon_emit(cmd_buffer->cs, fui(ds_clear_value.depth));
radeon_set_context_reg_seq(cmd_buffer->cs, R_028028_DB_STENCIL_CLEAR + 4 * reg_offset, reg_count);
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT)
radeon_emit(cmd_buffer->cs, ds_clear_value.stencil); /* R_028028_DB_STENCIL_CLEAR */
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
radeon_emit(cmd_buffer->cs, fui(ds_clear_value.depth)); /* R_02802C_DB_DEPTH_CLEAR */
}
static void
radv_load_depth_clear_regs(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image)
{
VkImageAspectFlags aspects = vk_format_aspects(image->vk_format);
uint64_t va = radv_buffer_get_va(image->bo);
va += image->offset + image->clear_value_offset;
unsigned reg_offset = 0, reg_count = 0;
if (!image->surface.htile_size)
return;
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
++reg_count;
} else {
++reg_offset;
va += 4;
}
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
++reg_count;
radeon_emit(cmd_buffer->cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cmd_buffer->cs, COPY_DATA_SRC_SEL(COPY_DATA_MEM) |
COPY_DATA_DST_SEL(COPY_DATA_REG) |
(reg_count == 2 ? COPY_DATA_COUNT_SEL : 0));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
radeon_emit(cmd_buffer->cs, (R_028028_DB_STENCIL_CLEAR + 4 * reg_offset) >> 2);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cmd_buffer->cs, 0);
}
/*
*with DCC some colors don't require CMASK elimiation before being
* used as a texture. This sets a predicate value to determine if the
* cmask eliminate is required.
*/
void
radv_set_dcc_need_cmask_elim_pred(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
bool value)
{
uint64_t pred_val = value;
uint64_t va = radv_buffer_get_va(image->bo);
va += image->offset + image->dcc_pred_offset;
assert(image->surface.dcc_size);
radeon_emit(cmd_buffer->cs, PKT3(PKT3_WRITE_DATA, 4, 0));
radeon_emit(cmd_buffer->cs, S_370_DST_SEL(V_370_MEM_ASYNC) |
S_370_WR_CONFIRM(1) |
S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
radeon_emit(cmd_buffer->cs, pred_val);
radeon_emit(cmd_buffer->cs, pred_val >> 32);
}
void
radv_set_color_clear_regs(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
int idx,
uint32_t color_values[2])
{
uint64_t va = radv_buffer_get_va(image->bo);
va += image->offset + image->clear_value_offset;
assert(image->cmask.size || image->surface.dcc_size);
radeon_emit(cmd_buffer->cs, PKT3(PKT3_WRITE_DATA, 4, 0));
radeon_emit(cmd_buffer->cs, S_370_DST_SEL(V_370_MEM_ASYNC) |
S_370_WR_CONFIRM(1) |
S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
radeon_emit(cmd_buffer->cs, color_values[0]);
radeon_emit(cmd_buffer->cs, color_values[1]);
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C8C_CB_COLOR0_CLEAR_WORD0 + idx * 0x3c, 2);
radeon_emit(cmd_buffer->cs, color_values[0]);
radeon_emit(cmd_buffer->cs, color_values[1]);
}
static void
radv_load_color_clear_regs(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
int idx)
{
uint64_t va = radv_buffer_get_va(image->bo);
va += image->offset + image->clear_value_offset;
if (!image->cmask.size && !image->surface.dcc_size)
return;
uint32_t reg = R_028C8C_CB_COLOR0_CLEAR_WORD0 + idx * 0x3c;
radeon_emit(cmd_buffer->cs, PKT3(PKT3_COPY_DATA, 4, cmd_buffer->state.predicating));
radeon_emit(cmd_buffer->cs, COPY_DATA_SRC_SEL(COPY_DATA_MEM) |
COPY_DATA_DST_SEL(COPY_DATA_REG) |
COPY_DATA_COUNT_SEL);
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
radeon_emit(cmd_buffer->cs, reg >> 2);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
radeon_emit(cmd_buffer->cs, 0);
}
static void
radv_emit_framebuffer_state(struct radv_cmd_buffer *cmd_buffer)
{
int i;
struct radv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
/* this may happen for inherited secondary recording */
if (!framebuffer)
return;
for (i = 0; i < 8; ++i) {
if (i >= subpass->color_count || subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) {
radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
S_028C70_FORMAT(V_028C70_COLOR_INVALID));
continue;
}
int idx = subpass->color_attachments[i].attachment;
struct radv_attachment_info *att = &framebuffer->attachments[idx];
struct radv_image *image = att->attachment->image;
VkImageLayout layout = subpass->color_attachments[i].layout;
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, att->attachment->bo, 8);
assert(att->attachment->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT);
radv_emit_fb_color_state(cmd_buffer, i, att, image, layout);
radv_load_color_clear_regs(cmd_buffer, image, i);
}
if(subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
int idx = subpass->depth_stencil_attachment.attachment;
VkImageLayout layout = subpass->depth_stencil_attachment.layout;
struct radv_attachment_info *att = &framebuffer->attachments[idx];
struct radv_image *image = att->attachment->image;
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, att->attachment->bo, 8);
MAYBE_UNUSED uint32_t queue_mask = radv_image_queue_family_mask(image,
cmd_buffer->queue_family_index,
cmd_buffer->queue_family_index);
/* We currently don't support writing decompressed HTILE */
assert(radv_layout_has_htile(image, layout, queue_mask) ==
radv_layout_is_htile_compressed(image, layout, queue_mask));
radv_emit_fb_ds_state(cmd_buffer, &att->ds, image, layout);
if (att->ds.offset_scale != cmd_buffer->state.offset_scale) {
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
cmd_buffer->state.offset_scale = att->ds.offset_scale;
}
radv_load_depth_clear_regs(cmd_buffer, image);
} else {
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 2);
else
radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 2);
radeon_emit(cmd_buffer->cs, S_028040_FORMAT(V_028040_Z_INVALID)); /* DB_Z_INFO */
radeon_emit(cmd_buffer->cs, S_028044_FORMAT(V_028044_STENCIL_INVALID)); /* DB_STENCIL_INFO */
}
radeon_set_context_reg(cmd_buffer->cs, R_028208_PA_SC_WINDOW_SCISSOR_BR,
S_028208_BR_X(framebuffer->width) |
S_028208_BR_Y(framebuffer->height));
if (cmd_buffer->device->dfsm_allowed) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
}
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FRAMEBUFFER;
}
static void
radv_emit_index_buffer(struct radv_cmd_buffer *cmd_buffer)
{
struct radeon_winsys_cs *cs = cmd_buffer->cs;
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->index_type != state->last_index_type) {
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
radeon_set_uconfig_reg_idx(cs, R_03090C_VGT_INDEX_TYPE,
2, state->index_type);
} else {
radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
radeon_emit(cs, state->index_type);
}
state->last_index_type = state->index_type;
}
radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
radeon_emit(cs, state->index_va);
radeon_emit(cs, state->index_va >> 32);
radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
radeon_emit(cs, state->max_index_count);
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_INDEX_BUFFER;
}
void radv_set_db_count_control(struct radv_cmd_buffer *cmd_buffer)
{
uint32_t db_count_control;
if(!cmd_buffer->state.active_occlusion_queries) {
if (cmd_buffer->device->physical_device->rad_info.chip_class >= CIK) {
db_count_control = 0;
} else {
db_count_control = S_028004_ZPASS_INCREMENT_DISABLE(1);
}
} else {
if (cmd_buffer->device->physical_device->rad_info.chip_class >= CIK) {
db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1) |
S_028004_SAMPLE_RATE(0) | /* TODO: set this to the number of samples of the current framebuffer */
S_028004_ZPASS_ENABLE(1) |
S_028004_SLICE_EVEN_ENABLE(1) |
S_028004_SLICE_ODD_ENABLE(1);
} else {
db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1) |
S_028004_SAMPLE_RATE(0); /* TODO: set this to the number of samples of the current framebuffer */
}
}
radeon_set_context_reg(cmd_buffer->cs, R_028004_DB_COUNT_CONTROL, db_count_control);
}
static void
radv_cmd_buffer_flush_dynamic_state(struct radv_cmd_buffer *cmd_buffer)
{
if (G_028810_DX_RASTERIZATION_KILL(cmd_buffer->state.pipeline->graphics.raster.pa_cl_clip_cntl))
return;
if (cmd_buffer->state.dirty & (RADV_CMD_DIRTY_DYNAMIC_VIEWPORT))
radv_emit_viewport(cmd_buffer);
if (cmd_buffer->state.dirty & (RADV_CMD_DIRTY_DYNAMIC_SCISSOR | RADV_CMD_DIRTY_DYNAMIC_VIEWPORT))
radv_emit_scissor(cmd_buffer);
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)
radv_emit_line_width(cmd_buffer);
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS)
radv_emit_blend_constants(cmd_buffer);
if (cmd_buffer->state.dirty & (RADV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE |
RADV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
RADV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK))
radv_emit_stencil(cmd_buffer);
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS)
radv_emit_depth_bounds(cmd_buffer);
if (cmd_buffer->state.dirty & (RADV_CMD_DIRTY_PIPELINE |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS))
radv_emit_depth_bias(cmd_buffer);
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_DYNAMIC_DISCARD_RECTANGLE)
radv_emit_discard_rectangle(cmd_buffer);
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_DYNAMIC_ALL;
}
static void
emit_stage_descriptor_set_userdata(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline,
int idx,
uint64_t va,
gl_shader_stage stage)
{
struct ac_userdata_info *desc_set_loc = &pipeline->shaders[stage]->info.user_sgprs_locs.descriptor_sets[idx];
uint32_t base_reg = pipeline->user_data_0[stage];
if (desc_set_loc->sgpr_idx == -1 || desc_set_loc->indirect)
return;
assert(!desc_set_loc->indirect);
assert(desc_set_loc->num_sgprs == 2);
radeon_set_sh_reg_seq(cmd_buffer->cs,
base_reg + desc_set_loc->sgpr_idx * 4, 2);
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
}
static void
radv_emit_descriptor_set_userdata(struct radv_cmd_buffer *cmd_buffer,
VkShaderStageFlags stages,
struct radv_descriptor_set *set,
unsigned idx)
{
if (cmd_buffer->state.pipeline) {
radv_foreach_stage(stage, stages) {
if (cmd_buffer->state.pipeline->shaders[stage])
emit_stage_descriptor_set_userdata(cmd_buffer, cmd_buffer->state.pipeline,
idx, set->va,
stage);
}
}
if (cmd_buffer->state.compute_pipeline && (stages & VK_SHADER_STAGE_COMPUTE_BIT))
emit_stage_descriptor_set_userdata(cmd_buffer, cmd_buffer->state.compute_pipeline,
idx, set->va,
MESA_SHADER_COMPUTE);
}
static void
radv_flush_push_descriptors(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_descriptor_set *set = &cmd_buffer->push_descriptors.set;
unsigned bo_offset;
if (!radv_cmd_buffer_upload_data(cmd_buffer, set->size, 32,
set->mapped_ptr,
&bo_offset))
return;
set->va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
set->va += bo_offset;
}
static void
radv_flush_indirect_descriptor_sets(struct radv_cmd_buffer *cmd_buffer)
{
uint32_t size = MAX_SETS * 2 * 4;
uint32_t offset;
void *ptr;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size,
256, &offset, &ptr))
return;
for (unsigned i = 0; i < MAX_SETS; i++) {
uint32_t *uptr = ((uint32_t *)ptr) + i * 2;
uint64_t set_va = 0;
struct radv_descriptor_set *set = cmd_buffer->descriptors[i];
if (cmd_buffer->state.valid_descriptors & (1u << i))
set_va = set->va;
uptr[0] = set_va & 0xffffffff;
uptr[1] = set_va >> 32;
}
uint64_t va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += offset;
if (cmd_buffer->state.pipeline) {
if (cmd_buffer->state.pipeline->shaders[MESA_SHADER_VERTEX])
radv_emit_userdata_address(cmd_buffer, cmd_buffer->state.pipeline, MESA_SHADER_VERTEX,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (cmd_buffer->state.pipeline->shaders[MESA_SHADER_FRAGMENT])
radv_emit_userdata_address(cmd_buffer, cmd_buffer->state.pipeline, MESA_SHADER_FRAGMENT,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (radv_pipeline_has_gs(cmd_buffer->state.pipeline))
radv_emit_userdata_address(cmd_buffer, cmd_buffer->state.pipeline, MESA_SHADER_GEOMETRY,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (radv_pipeline_has_tess(cmd_buffer->state.pipeline))
radv_emit_userdata_address(cmd_buffer, cmd_buffer->state.pipeline, MESA_SHADER_TESS_CTRL,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (radv_pipeline_has_tess(cmd_buffer->state.pipeline))
radv_emit_userdata_address(cmd_buffer, cmd_buffer->state.pipeline, MESA_SHADER_TESS_EVAL,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
}
if (cmd_buffer->state.compute_pipeline)
radv_emit_userdata_address(cmd_buffer, cmd_buffer->state.compute_pipeline, MESA_SHADER_COMPUTE,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
}
static void
radv_flush_descriptors(struct radv_cmd_buffer *cmd_buffer,
VkShaderStageFlags stages)
{
unsigned i;
if (!cmd_buffer->state.descriptors_dirty)
return;
if (cmd_buffer->state.push_descriptors_dirty)
radv_flush_push_descriptors(cmd_buffer);
if ((cmd_buffer->state.pipeline && cmd_buffer->state.pipeline->need_indirect_descriptor_sets) ||
(cmd_buffer->state.compute_pipeline && cmd_buffer->state.compute_pipeline->need_indirect_descriptor_sets)) {
radv_flush_indirect_descriptor_sets(cmd_buffer);
}
MAYBE_UNUSED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws,
cmd_buffer->cs,
MAX_SETS * MESA_SHADER_STAGES * 4);
for_each_bit(i, cmd_buffer->state.descriptors_dirty) {
struct radv_descriptor_set *set = cmd_buffer->descriptors[i];
if (!(cmd_buffer->state.valid_descriptors & (1u << i)))
continue;
radv_emit_descriptor_set_userdata(cmd_buffer, stages, set, i);
}
cmd_buffer->state.descriptors_dirty = 0;
cmd_buffer->state.push_descriptors_dirty = false;
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_descriptors(cmd_buffer);
assert(cmd_buffer->cs->cdw <= cdw_max);
}
static void
radv_flush_constants(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline,
VkShaderStageFlags stages)
{
struct radv_pipeline_layout *layout = pipeline->layout;
unsigned offset;
void *ptr;
uint64_t va;
stages &= cmd_buffer->push_constant_stages;
if (!stages ||
(!layout->push_constant_size && !layout->dynamic_offset_count))
return;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, layout->push_constant_size +
16 * layout->dynamic_offset_count,
256, &offset, &ptr))
return;
memcpy(ptr, cmd_buffer->push_constants, layout->push_constant_size);
memcpy((char*)ptr + layout->push_constant_size, cmd_buffer->dynamic_buffers,
16 * layout->dynamic_offset_count);
va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += offset;
MAYBE_UNUSED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws,
cmd_buffer->cs, MESA_SHADER_STAGES * 4);
radv_foreach_stage(stage, stages) {
if (pipeline->shaders[stage]) {
radv_emit_userdata_address(cmd_buffer, pipeline, stage,
AC_UD_PUSH_CONSTANTS, va);
}
}
cmd_buffer->push_constant_stages &= ~stages;
assert(cmd_buffer->cs->cdw <= cdw_max);
}
static bool
radv_cmd_buffer_update_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer, bool pipeline_is_dirty)
{
if ((pipeline_is_dirty ||
(cmd_buffer->state.dirty & RADV_CMD_DIRTY_VERTEX_BUFFER)) &&
cmd_buffer->state.pipeline->vertex_elements.count &&
radv_get_vertex_shader(cmd_buffer->state.pipeline)->info.info.vs.has_vertex_buffers) {
struct radv_vertex_elements_info *velems = &cmd_buffer->state.pipeline->vertex_elements;
unsigned vb_offset;
void *vb_ptr;
uint32_t i = 0;
uint32_t count = velems->count;
uint64_t va;
/* allocate some descriptor state for vertex buffers */
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, count * 16, 256,
&vb_offset, &vb_ptr))
return false;
for (i = 0; i < count; i++) {
uint32_t *desc = &((uint32_t *)vb_ptr)[i * 4];
uint32_t offset;
int vb = velems->binding[i];
struct radv_buffer *buffer = cmd_buffer->vertex_bindings[vb].buffer;
uint32_t stride = cmd_buffer->state.pipeline->binding_stride[vb];
va = radv_buffer_get_va(buffer->bo);
offset = cmd_buffer->vertex_bindings[vb].offset + velems->offset[i];
va += offset + buffer->offset;
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride);
if (cmd_buffer->device->physical_device->rad_info.chip_class <= CIK && stride)
desc[2] = (buffer->size - offset - velems->format_size[i]) / stride + 1;
else
desc[2] = buffer->size - offset;
desc[3] = velems->rsrc_word3[i];
}
va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += vb_offset;
radv_emit_userdata_address(cmd_buffer, cmd_buffer->state.pipeline, MESA_SHADER_VERTEX,
AC_UD_VS_VERTEX_BUFFERS, va);
cmd_buffer->state.vb_va = va;
cmd_buffer->state.vb_size = count * 16;
cmd_buffer->state.vb_prefetch_dirty = true;
}
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_VERTEX_BUFFER;
return true;
}
static bool
radv_upload_graphics_shader_descriptors(struct radv_cmd_buffer *cmd_buffer, bool pipeline_is_dirty)
{
if (!radv_cmd_buffer_update_vertex_descriptors(cmd_buffer, pipeline_is_dirty))
return false;
radv_flush_descriptors(cmd_buffer, VK_SHADER_STAGE_ALL_GRAPHICS);
radv_flush_constants(cmd_buffer, cmd_buffer->state.pipeline,
VK_SHADER_STAGE_ALL_GRAPHICS);
return true;
}
static void
radv_emit_draw_registers(struct radv_cmd_buffer *cmd_buffer, bool indexed_draw,
bool instanced_draw, bool indirect_draw,
uint32_t draw_vertex_count)
{
struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_winsys_cs *cs = cmd_buffer->cs;
uint32_t ia_multi_vgt_param;
int32_t primitive_reset_en;
/* Draw state. */
ia_multi_vgt_param =
si_get_ia_multi_vgt_param(cmd_buffer, instanced_draw,
indirect_draw, draw_vertex_count);
if (state->last_ia_multi_vgt_param != ia_multi_vgt_param) {
if (info->chip_class >= GFX9) {
radeon_set_uconfig_reg_idx(cs,
R_030960_IA_MULTI_VGT_PARAM,
4, ia_multi_vgt_param);
} else if (info->chip_class >= CIK) {
radeon_set_context_reg_idx(cs,
R_028AA8_IA_MULTI_VGT_PARAM,
1, ia_multi_vgt_param);
} else {
radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM,
ia_multi_vgt_param);
}
state->last_ia_multi_vgt_param = ia_multi_vgt_param;
}
/* Primitive restart. */
primitive_reset_en =
indexed_draw && state->pipeline->graphics.prim_restart_enable;
if (primitive_reset_en != state->last_primitive_reset_en) {
state->last_primitive_reset_en = primitive_reset_en;
if (info->chip_class >= GFX9) {
radeon_set_uconfig_reg(cs,
R_03092C_VGT_MULTI_PRIM_IB_RESET_EN,
primitive_reset_en);
} else {
radeon_set_context_reg(cs,
R_028A94_VGT_MULTI_PRIM_IB_RESET_EN,
primitive_reset_en);
}
}
if (primitive_reset_en) {
uint32_t primitive_reset_index =
state->index_type ? 0xffffffffu : 0xffffu;
if (primitive_reset_index != state->last_primitive_reset_index) {
radeon_set_context_reg(cs,
R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX,
primitive_reset_index);
state->last_primitive_reset_index = primitive_reset_index;
}
}
}
static void radv_stage_flush(struct radv_cmd_buffer *cmd_buffer,
VkPipelineStageFlags src_stage_mask)
{
if (src_stage_mask & (VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT |
VK_PIPELINE_STAGE_TRANSFER_BIT |
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT |
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
}
if (src_stage_mask & (VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT |
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT |
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT |
VK_PIPELINE_STAGE_TRANSFER_BIT |
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT |
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT |
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
} else if (src_stage_mask & (VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT |
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT |
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
}
}
static enum radv_cmd_flush_bits
radv_src_access_flush(struct radv_cmd_buffer *cmd_buffer,
VkAccessFlags src_flags)
{
enum radv_cmd_flush_bits flush_bits = 0;
uint32_t b;
for_each_bit(b, src_flags) {
switch ((VkAccessFlagBits)(1 << b)) {
case VK_ACCESS_SHADER_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2;
break;
case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
break;
case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
case VK_ACCESS_TRANSFER_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
RADV_CMD_FLAG_INV_GLOBAL_L2;
break;
default:
break;
}
}
return flush_bits;
}
static enum radv_cmd_flush_bits
radv_dst_access_flush(struct radv_cmd_buffer *cmd_buffer,
VkAccessFlags dst_flags,
struct radv_image *image)
{
enum radv_cmd_flush_bits flush_bits = 0;
uint32_t b;
for_each_bit(b, dst_flags) {
switch ((VkAccessFlagBits)(1 << b)) {
case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
case VK_ACCESS_INDEX_READ_BIT:
break;
case VK_ACCESS_UNIFORM_READ_BIT:
flush_bits |= RADV_CMD_FLAG_INV_VMEM_L1 | RADV_CMD_FLAG_INV_SMEM_L1;
break;
case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
case VK_ACCESS_SHADER_READ_BIT:
case VK_ACCESS_TRANSFER_READ_BIT:
case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
flush_bits |= RADV_CMD_FLAG_INV_VMEM_L1 |
RADV_CMD_FLAG_INV_GLOBAL_L2;
break;
case VK_ACCESS_COLOR_ATTACHMENT_READ_BIT:
/* TODO: change to image && when the image gets passed
* through from the subpass. */
if (!image || (image->usage & VK_IMAGE_USAGE_STORAGE_BIT))
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
break;
case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT:
if (!image || (image->usage & VK_IMAGE_USAGE_STORAGE_BIT))
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
default:
break;
}
}
return flush_bits;
}
static void radv_subpass_barrier(struct radv_cmd_buffer *cmd_buffer, const struct radv_subpass_barrier *barrier)
{
cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, barrier->src_access_mask);
radv_stage_flush(cmd_buffer, barrier->src_stage_mask);
cmd_buffer->state.flush_bits |= radv_dst_access_flush(cmd_buffer, barrier->dst_access_mask,
NULL);
}
static void radv_handle_subpass_image_transition(struct radv_cmd_buffer *cmd_buffer,
VkAttachmentReference att)
{
unsigned idx = att.attachment;
struct radv_image_view *view = cmd_buffer->state.framebuffer->attachments[idx].attachment;
VkImageSubresourceRange range;
range.aspectMask = 0;
range.baseMipLevel = view->base_mip;
range.levelCount = 1;
range.baseArrayLayer = view->base_layer;
range.layerCount = cmd_buffer->state.framebuffer->layers;
radv_handle_image_transition(cmd_buffer,
view->image,
cmd_buffer->state.attachments[idx].current_layout,
att.layout, 0, 0, &range,
cmd_buffer->state.attachments[idx].pending_clear_aspects);
cmd_buffer->state.attachments[idx].current_layout = att.layout;
}
void
radv_cmd_buffer_set_subpass(struct radv_cmd_buffer *cmd_buffer,
const struct radv_subpass *subpass, bool transitions)
{
if (transitions) {
radv_subpass_barrier(cmd_buffer, &subpass->start_barrier);
for (unsigned i = 0; i < subpass->color_count; ++i) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
radv_handle_subpass_image_transition(cmd_buffer,
subpass->color_attachments[i]);
}
for (unsigned i = 0; i < subpass->input_count; ++i) {
radv_handle_subpass_image_transition(cmd_buffer,
subpass->input_attachments[i]);
}
if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
radv_handle_subpass_image_transition(cmd_buffer,
subpass->depth_stencil_attachment);
}
}
cmd_buffer->state.subpass = subpass;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
}
static VkResult
radv_cmd_state_setup_attachments(struct radv_cmd_buffer *cmd_buffer,
struct radv_render_pass *pass,
const VkRenderPassBeginInfo *info)
{
struct radv_cmd_state *state = &cmd_buffer->state;
if (pass->attachment_count == 0) {
state->attachments = NULL;
return VK_SUCCESS;
}
state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
pass->attachment_count *
sizeof(state->attachments[0]),
8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (state->attachments == NULL) {
cmd_buffer->record_result = VK_ERROR_OUT_OF_HOST_MEMORY;
return cmd_buffer->record_result;
}
for (uint32_t i = 0; i < pass->attachment_count; ++i) {
struct radv_render_pass_attachment *att = &pass->attachments[i];
VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
VkImageAspectFlags clear_aspects = 0;
if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
/* color attachment */
if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
}
} else {
/* depthstencil attachment */
if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_DONT_CARE)
clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
}
state->attachments[i].pending_clear_aspects = clear_aspects;
state->attachments[i].cleared_views = 0;
if (clear_aspects && info) {
assert(info->clearValueCount > i);
state->attachments[i].clear_value = info->pClearValues[i];
}
state->attachments[i].current_layout = att->initial_layout;
}
return VK_SUCCESS;
}
VkResult radv_AllocateCommandBuffers(
VkDevice _device,
const VkCommandBufferAllocateInfo *pAllocateInfo,
VkCommandBuffer *pCommandBuffers)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_cmd_pool, pool, pAllocateInfo->commandPool);
VkResult result = VK_SUCCESS;
uint32_t i;
for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
if (!list_empty(&pool->free_cmd_buffers)) {
struct radv_cmd_buffer *cmd_buffer = list_first_entry(&pool->free_cmd_buffers, struct radv_cmd_buffer, pool_link);
list_del(&cmd_buffer->pool_link);
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
result = radv_reset_cmd_buffer(cmd_buffer);
cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
cmd_buffer->level = pAllocateInfo->level;
pCommandBuffers[i] = radv_cmd_buffer_to_handle(cmd_buffer);
} else {
result = radv_create_cmd_buffer(device, pool, pAllocateInfo->level,
&pCommandBuffers[i]);
}
if (result != VK_SUCCESS)
break;
}
if (result != VK_SUCCESS) {
radv_FreeCommandBuffers(_device, pAllocateInfo->commandPool,
i, pCommandBuffers);
/* From the Vulkan 1.0.66 spec:
*
* "vkAllocateCommandBuffers can be used to create multiple
* command buffers. If the creation of any of those command
* buffers fails, the implementation must destroy all
* successfully created command buffer objects from this
* command, set all entries of the pCommandBuffers array to
* NULL and return the error."
*/
memset(pCommandBuffers, 0,
sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
}
return result;
}
void radv_FreeCommandBuffers(
VkDevice device,
VkCommandPool commandPool,
uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers)
{
for (uint32_t i = 0; i < commandBufferCount; i++) {
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
if (cmd_buffer) {
if (cmd_buffer->pool) {
list_del(&cmd_buffer->pool_link);
list_addtail(&cmd_buffer->pool_link, &cmd_buffer->pool->free_cmd_buffers);
} else
radv_cmd_buffer_destroy(cmd_buffer);
}
}
}
VkResult radv_ResetCommandBuffer(
VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
return radv_reset_cmd_buffer(cmd_buffer);
}
static void emit_gfx_buffer_state(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_device *device = cmd_buffer->device;
if (device->gfx_init) {
uint64_t va = radv_buffer_get_va(device->gfx_init);
radv_cs_add_buffer(device->ws, cmd_buffer->cs, device->gfx_init, 8);
radeon_emit(cmd_buffer->cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
radeon_emit(cmd_buffer->cs, device->gfx_init_size_dw & 0xffff);
} else
si_init_config(cmd_buffer);
}
VkResult radv_BeginCommandBuffer(
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo *pBeginInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
VkResult result = VK_SUCCESS;
if (cmd_buffer->status != RADV_CMD_BUFFER_STATUS_INITIAL) {
/* If the command buffer has already been resetted with
* vkResetCommandBuffer, no need to do it again.
*/
result = radv_reset_cmd_buffer(cmd_buffer);
if (result != VK_SUCCESS)
return result;
}
memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
cmd_buffer->state.last_primitive_reset_en = -1;
cmd_buffer->state.last_index_type = -1;
cmd_buffer->state.last_num_instances = -1;
cmd_buffer->state.last_vertex_offset = -1;
cmd_buffer->state.last_first_instance = -1;
cmd_buffer->usage_flags = pBeginInfo->flags;
/* setup initial configuration into command buffer */
if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
switch (cmd_buffer->queue_family_index) {
case RADV_QUEUE_GENERAL:
emit_gfx_buffer_state(cmd_buffer);
break;
case RADV_QUEUE_COMPUTE:
si_init_compute(cmd_buffer);
break;
case RADV_QUEUE_TRANSFER:
default:
break;
}
}
if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
assert(pBeginInfo->pInheritanceInfo);
cmd_buffer->state.framebuffer = radv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
cmd_buffer->state.pass = radv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
struct radv_subpass *subpass =
&cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
result = radv_cmd_state_setup_attachments(cmd_buffer, cmd_buffer->state.pass, NULL);
if (result != VK_SUCCESS)
return result;
radv_cmd_buffer_set_subpass(cmd_buffer, subpass, false);
}
if (unlikely(cmd_buffer->device->trace_bo))
radv_cmd_buffer_trace_emit(cmd_buffer);
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_RECORDING;
return result;
}
void radv_CmdBindVertexBuffers(
VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer* pBuffers,
const VkDeviceSize* pOffsets)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_vertex_binding *vb = cmd_buffer->vertex_bindings;
bool changed = false;
/* We have to defer setting up vertex buffer since we need the buffer
* stride from the pipeline. */
assert(firstBinding + bindingCount <= MAX_VBS);
for (uint32_t i = 0; i < bindingCount; i++) {
uint32_t idx = firstBinding + i;
if (!changed &&
(vb[idx].buffer != radv_buffer_from_handle(pBuffers[i]) ||
vb[idx].offset != pOffsets[i])) {
changed = true;
}
vb[idx].buffer = radv_buffer_from_handle(pBuffers[i]);
vb[idx].offset = pOffsets[i];
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs,
vb[idx].buffer->bo, 8);
}
if (!changed) {
/* No state changes. */
return;
}
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
}
void radv_CmdBindIndexBuffer(
VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, index_buffer, buffer);
if (cmd_buffer->state.index_buffer == index_buffer &&
cmd_buffer->state.index_offset == offset &&
cmd_buffer->state.index_type == indexType) {
/* No state changes. */
return;
}
cmd_buffer->state.index_buffer = index_buffer;
cmd_buffer->state.index_offset = offset;
cmd_buffer->state.index_type = indexType; /* vk matches hw */
cmd_buffer->state.index_va = radv_buffer_get_va(index_buffer->bo);
cmd_buffer->state.index_va += index_buffer->offset + offset;
int index_size_shift = cmd_buffer->state.index_type ? 2 : 1;
cmd_buffer->state.max_index_count = (index_buffer->size - offset) >> index_size_shift;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, index_buffer->bo, 8);
}
static void
radv_bind_descriptor_set(struct radv_cmd_buffer *cmd_buffer,
struct radv_descriptor_set *set, unsigned idx)
{
struct radeon_winsys *ws = cmd_buffer->device->ws;
radv_set_descriptor_set(cmd_buffer, set, idx);
if (!set)
return;
assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
for (unsigned j = 0; j < set->layout->buffer_count; ++j)
if (set->descriptors[j])
radv_cs_add_buffer(ws, cmd_buffer->cs, set->descriptors[j], 7);
if(set->bo)
radv_cs_add_buffer(ws, cmd_buffer->cs, set->bo, 8);
}
void radv_CmdBindDescriptorSets(
VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t firstSet,
uint32_t descriptorSetCount,
const VkDescriptorSet* pDescriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t* pDynamicOffsets)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
unsigned dyn_idx = 0;
for (unsigned i = 0; i < descriptorSetCount; ++i) {
unsigned idx = i + firstSet;
RADV_FROM_HANDLE(radv_descriptor_set, set, pDescriptorSets[i]);
radv_bind_descriptor_set(cmd_buffer, set, idx);
for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
unsigned idx = j + layout->set[i + firstSet].dynamic_offset_start;
uint32_t *dst = cmd_buffer->dynamic_buffers + idx * 4;
assert(dyn_idx < dynamicOffsetCount);
struct radv_descriptor_range *range = set->dynamic_descriptors + j;
uint64_t va = range->va + pDynamicOffsets[dyn_idx];
dst[0] = va;
dst[1] = S_008F04_BASE_ADDRESS_HI(va >> 32);
dst[2] = range->size;
dst[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
cmd_buffer->push_constant_stages |=
set->layout->dynamic_shader_stages;
}
}
}
static bool radv_init_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer,
struct radv_descriptor_set *set,
struct radv_descriptor_set_layout *layout)
{
set->size = layout->size;
set->layout = layout;
if (cmd_buffer->push_descriptors.capacity < set->size) {
size_t new_size = MAX2(set->size, 1024);
new_size = MAX2(new_size, 2 * cmd_buffer->push_descriptors.capacity);
new_size = MIN2(new_size, 96 * MAX_PUSH_DESCRIPTORS);
free(set->mapped_ptr);
set->mapped_ptr = malloc(new_size);
if (!set->mapped_ptr) {
cmd_buffer->push_descriptors.capacity = 0;
cmd_buffer->record_result = VK_ERROR_OUT_OF_HOST_MEMORY;
return false;
}
cmd_buffer->push_descriptors.capacity = new_size;
}
return true;
}
void radv_meta_push_descriptor_set(
struct radv_cmd_buffer* cmd_buffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t set,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet* pDescriptorWrites)
{
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
struct radv_descriptor_set *push_set = &cmd_buffer->meta_push_descriptors;
unsigned bo_offset;
assert(set == 0);
assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR);
push_set->size = layout->set[set].layout->size;
push_set->layout = layout->set[set].layout;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, push_set->size, 32,
&bo_offset,
(void**) &push_set->mapped_ptr))
return;
push_set->va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
push_set->va += bo_offset;
radv_update_descriptor_sets(cmd_buffer->device, cmd_buffer,
radv_descriptor_set_to_handle(push_set),
descriptorWriteCount, pDescriptorWrites, 0, NULL);
radv_set_descriptor_set(cmd_buffer, push_set, set);
}
void radv_CmdPushDescriptorSetKHR(
VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t set,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet* pDescriptorWrites)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
struct radv_descriptor_set *push_set = &cmd_buffer->push_descriptors.set;
assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR);
if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[set].layout))
return;
radv_update_descriptor_sets(cmd_buffer->device, cmd_buffer,
radv_descriptor_set_to_handle(push_set),
descriptorWriteCount, pDescriptorWrites, 0, NULL);
radv_set_descriptor_set(cmd_buffer, push_set, set);
cmd_buffer->state.push_descriptors_dirty = true;
}
void radv_CmdPushDescriptorSetWithTemplateKHR(
VkCommandBuffer commandBuffer,
VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
VkPipelineLayout _layout,
uint32_t set,
const void* pData)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
struct radv_descriptor_set *push_set = &cmd_buffer->push_descriptors.set;
assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR);
if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[set].layout))
return;
radv_update_descriptor_set_with_template(cmd_buffer->device, cmd_buffer, push_set,
descriptorUpdateTemplate, pData);
radv_set_descriptor_set(cmd_buffer, push_set, set);
cmd_buffer->state.push_descriptors_dirty = true;
}
void radv_CmdPushConstants(VkCommandBuffer commandBuffer,
VkPipelineLayout layout,
VkShaderStageFlags stageFlags,
uint32_t offset,
uint32_t size,
const void* pValues)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
memcpy(cmd_buffer->push_constants + offset, pValues, size);
cmd_buffer->push_constant_stages |= stageFlags;
}
VkResult radv_EndCommandBuffer(
VkCommandBuffer commandBuffer)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
if (cmd_buffer->queue_family_index != RADV_QUEUE_TRANSFER) {
if (cmd_buffer->device->physical_device->rad_info.chip_class == SI)
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2;
si_emit_cache_flush(cmd_buffer);
}
vk_free(&cmd_buffer->pool->alloc, cmd_buffer->state.attachments);
if (!cmd_buffer->device->ws->cs_finalize(cmd_buffer->cs))
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_EXECUTABLE;
return cmd_buffer->record_result;
}
static void
radv_emit_compute_pipeline(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_shader_variant *compute_shader;
struct radv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct radv_device *device = cmd_buffer->device;
unsigned compute_resource_limits;
unsigned waves_per_threadgroup;
uint64_t va;
if (!pipeline || pipeline == cmd_buffer->state.emitted_compute_pipeline)
return;
cmd_buffer->state.emitted_compute_pipeline = pipeline;
compute_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
va = radv_buffer_get_va(compute_shader->bo) + compute_shader->bo_offset;
MAYBE_UNUSED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws,
cmd_buffer->cs, 19);
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B830_COMPUTE_PGM_LO, 2);
radeon_emit(cmd_buffer->cs, va >> 8);
radeon_emit(cmd_buffer->cs, va >> 40);
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
radeon_emit(cmd_buffer->cs, compute_shader->rsrc1);
radeon_emit(cmd_buffer->cs, compute_shader->rsrc2);
cmd_buffer->compute_scratch_size_needed =
MAX2(cmd_buffer->compute_scratch_size_needed,
pipeline->max_waves * pipeline->scratch_bytes_per_wave);
/* change these once we have scratch support */
radeon_set_sh_reg(cmd_buffer->cs, R_00B860_COMPUTE_TMPRING_SIZE,
S_00B860_WAVES(pipeline->max_waves) |
S_00B860_WAVESIZE(pipeline->scratch_bytes_per_wave >> 10));
/* Calculate best compute resource limits. */
waves_per_threadgroup =
DIV_ROUND_UP(compute_shader->info.cs.block_size[0] *
compute_shader->info.cs.block_size[1] *
compute_shader->info.cs.block_size[2], 64);
compute_resource_limits =
S_00B854_SIMD_DEST_CNTL(waves_per_threadgroup % 4 == 0);
if (device->physical_device->rad_info.chip_class >= CIK) {
unsigned num_cu_per_se =
device->physical_device->rad_info.num_good_compute_units /
device->physical_device->rad_info.max_se;
/* Force even distribution on all SIMDs in CU if the workgroup
* size is 64. This has shown some good improvements if # of
* CUs per SE is not a multiple of 4.
*/
if (num_cu_per_se % 4 && waves_per_threadgroup == 1)
compute_resource_limits |= S_00B854_FORCE_SIMD_DIST(1);
}
radeon_set_sh_reg(cmd_buffer->cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
compute_resource_limits);
radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
radeon_emit(cmd_buffer->cs,
S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[0]));
radeon_emit(cmd_buffer->cs,
S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[1]));
radeon_emit(cmd_buffer->cs,
S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2]));
assert(cmd_buffer->cs->cdw <= cdw_max);
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_pipeline(cmd_buffer, pipeline, RING_COMPUTE);
}
static void radv_mark_descriptor_sets_dirty(struct radv_cmd_buffer *cmd_buffer)
{
cmd_buffer->state.descriptors_dirty |= cmd_buffer->state.valid_descriptors;
}
void radv_CmdBindPipeline(
VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
switch (pipelineBindPoint) {
case VK_PIPELINE_BIND_POINT_COMPUTE:
if (cmd_buffer->state.compute_pipeline == pipeline)
return;
radv_mark_descriptor_sets_dirty(cmd_buffer);
cmd_buffer->state.compute_pipeline = pipeline;
cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
break;
case VK_PIPELINE_BIND_POINT_GRAPHICS:
if (cmd_buffer->state.pipeline == pipeline)
return;
radv_mark_descriptor_sets_dirty(cmd_buffer);
cmd_buffer->state.pipeline = pipeline;
if (!pipeline)
break;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_PIPELINE;
cmd_buffer->push_constant_stages |= pipeline->active_stages;
/* the new vertex shader might not have the same user regs */
cmd_buffer->state.last_first_instance = -1;
cmd_buffer->state.last_vertex_offset = -1;
radv_bind_dynamic_state(cmd_buffer, &pipeline->dynamic_state);
if (pipeline->graphics.esgs_ring_size > cmd_buffer->esgs_ring_size_needed)
cmd_buffer->esgs_ring_size_needed = pipeline->graphics.esgs_ring_size;
if (pipeline->graphics.gsvs_ring_size > cmd_buffer->gsvs_ring_size_needed)
cmd_buffer->gsvs_ring_size_needed = pipeline->graphics.gsvs_ring_size;
if (radv_pipeline_has_tess(pipeline))
cmd_buffer->tess_rings_needed = true;
if (radv_pipeline_has_gs(pipeline)) {
struct ac_userdata_info *loc = radv_lookup_user_sgpr(cmd_buffer->state.pipeline, MESA_SHADER_GEOMETRY,
AC_UD_SCRATCH_RING_OFFSETS);
if (cmd_buffer->ring_offsets_idx == -1)
cmd_buffer->ring_offsets_idx = loc->sgpr_idx;
else if (loc->sgpr_idx != -1)
assert(loc->sgpr_idx == cmd_buffer->ring_offsets_idx);
}
break;
default:
assert(!"invalid bind point");
break;
}
}
void radv_CmdSetViewport(
VkCommandBuffer commandBuffer,
uint32_t firstViewport,
uint32_t viewportCount,
const VkViewport* pViewports)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
MAYBE_UNUSED const uint32_t total_count = firstViewport + viewportCount;
assert(firstViewport < MAX_VIEWPORTS);
assert(total_count >= 1 && total_count <= MAX_VIEWPORTS);
if (cmd_buffer->device->physical_device->has_scissor_bug) {
/* Try to skip unnecessary PS partial flushes when the viewports
* don't change.
*/
if (!(state->dirty & (RADV_CMD_DIRTY_DYNAMIC_VIEWPORT |
RADV_CMD_DIRTY_DYNAMIC_SCISSOR)) &&
!memcmp(state->dynamic.viewport.viewports + firstViewport,
pViewports, viewportCount * sizeof(*pViewports))) {
return;
}
}
memcpy(state->dynamic.viewport.viewports + firstViewport, pViewports,
viewportCount * sizeof(*pViewports));
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_VIEWPORT;
}
void radv_CmdSetScissor(
VkCommandBuffer commandBuffer,
uint32_t firstScissor,
uint32_t scissorCount,
const VkRect2D* pScissors)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
MAYBE_UNUSED const uint32_t total_count = firstScissor + scissorCount;
assert(firstScissor < MAX_SCISSORS);
assert(total_count >= 1 && total_count <= MAX_SCISSORS);
if (cmd_buffer->device->physical_device->has_scissor_bug) {
/* Try to skip unnecessary PS partial flushes when the scissors
* don't change.
*/
if (!(state->dirty & (RADV_CMD_DIRTY_DYNAMIC_VIEWPORT |
RADV_CMD_DIRTY_DYNAMIC_SCISSOR)) &&
!memcmp(state->dynamic.scissor.scissors + firstScissor,
pScissors, scissorCount * sizeof(*pScissors))) {
return;
}
}
memcpy(state->dynamic.scissor.scissors + firstScissor, pScissors,
scissorCount * sizeof(*pScissors));
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_SCISSOR;
}
void radv_CmdSetLineWidth(
VkCommandBuffer commandBuffer,
float lineWidth)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer->state.dynamic.line_width = lineWidth;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
}
void radv_CmdSetDepthBias(
VkCommandBuffer commandBuffer,
float depthBiasConstantFactor,
float depthBiasClamp,
float depthBiasSlopeFactor)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer->state.dynamic.depth_bias.bias = depthBiasConstantFactor;
cmd_buffer->state.dynamic.depth_bias.clamp = depthBiasClamp;
cmd_buffer->state.dynamic.depth_bias.slope = depthBiasSlopeFactor;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
}
void radv_CmdSetBlendConstants(
VkCommandBuffer commandBuffer,
const float blendConstants[4])
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
memcpy(cmd_buffer->state.dynamic.blend_constants,
blendConstants, sizeof(float) * 4);
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
}
void radv_CmdSetDepthBounds(
VkCommandBuffer commandBuffer,
float minDepthBounds,
float maxDepthBounds)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer->state.dynamic.depth_bounds.min = minDepthBounds;
cmd_buffer->state.dynamic.depth_bounds.max = maxDepthBounds;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
}
void radv_CmdSetStencilCompareMask(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t compareMask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd_buffer->state.dynamic.stencil_compare_mask.front = compareMask;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd_buffer->state.dynamic.stencil_compare_mask.back = compareMask;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
}
void radv_CmdSetStencilWriteMask(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t writeMask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd_buffer->state.dynamic.stencil_write_mask.front = writeMask;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd_buffer->state.dynamic.stencil_write_mask.back = writeMask;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
}
void radv_CmdSetStencilReference(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t reference)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd_buffer->state.dynamic.stencil_reference.front = reference;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd_buffer->state.dynamic.stencil_reference.back = reference;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
}
void radv_CmdSetDiscardRectangleEXT(
VkCommandBuffer commandBuffer,
uint32_t firstDiscardRectangle,
uint32_t discardRectangleCount,
const VkRect2D* pDiscardRectangles)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
MAYBE_UNUSED const uint32_t total_count = firstDiscardRectangle + discardRectangleCount;
assert(firstDiscardRectangle < MAX_DISCARD_RECTANGLES);
assert(total_count >= 1 && total_count <= MAX_DISCARD_RECTANGLES);
typed_memcpy(&state->dynamic.discard_rectangle.rectangles[firstDiscardRectangle],
pDiscardRectangles, discardRectangleCount);
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DISCARD_RECTANGLE;
}
void radv_CmdExecuteCommands(
VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer* pCmdBuffers)
{
RADV_FROM_HANDLE(radv_cmd_buffer, primary, commandBuffer);
assert(commandBufferCount > 0);
/* Emit pending flushes on primary prior to executing secondary */
si_emit_cache_flush(primary);
for (uint32_t i = 0; i < commandBufferCount; i++) {
RADV_FROM_HANDLE(radv_cmd_buffer, secondary, pCmdBuffers[i]);
primary->scratch_size_needed = MAX2(primary->scratch_size_needed,
secondary->scratch_size_needed);
primary->compute_scratch_size_needed = MAX2(primary->compute_scratch_size_needed,
secondary->compute_scratch_size_needed);
if (secondary->esgs_ring_size_needed > primary->esgs_ring_size_needed)
primary->esgs_ring_size_needed = secondary->esgs_ring_size_needed;
if (secondary->gsvs_ring_size_needed > primary->gsvs_ring_size_needed)
primary->gsvs_ring_size_needed = secondary->gsvs_ring_size_needed;
if (secondary->tess_rings_needed)
primary->tess_rings_needed = true;
if (secondary->sample_positions_needed)
primary->sample_positions_needed = true;
if (secondary->ring_offsets_idx != -1) {
if (primary->ring_offsets_idx == -1)
primary->ring_offsets_idx = secondary->ring_offsets_idx;
else
assert(secondary->ring_offsets_idx == primary->ring_offsets_idx);
}
primary->device->ws->cs_execute_secondary(primary->cs, secondary->cs);
/* When the secondary command buffer is compute only we don't
* need to re-emit the current graphics pipeline.
*/
if (secondary->state.emitted_pipeline) {
primary->state.emitted_pipeline =
secondary->state.emitted_pipeline;
}
/* When the secondary command buffer is graphics only we don't
* need to re-emit the current compute pipeline.
*/
if (secondary->state.emitted_compute_pipeline) {
primary->state.emitted_compute_pipeline =
secondary->state.emitted_compute_pipeline;
}
/* Only re-emit the draw packets when needed. */
if (secondary->state.last_primitive_reset_en != -1) {
primary->state.last_primitive_reset_en =
secondary->state.last_primitive_reset_en;
}
if (secondary->state.last_primitive_reset_index) {
primary->state.last_primitive_reset_index =
secondary->state.last_primitive_reset_index;
}
if (secondary->state.last_ia_multi_vgt_param) {
primary->state.last_ia_multi_vgt_param =
secondary->state.last_ia_multi_vgt_param;
}
primary->state.last_first_instance = secondary->state.last_first_instance;
primary->state.last_num_instances = secondary->state.last_num_instances;
primary->state.last_vertex_offset = secondary->state.last_vertex_offset;
if (secondary->state.last_index_type != -1) {
primary->state.last_index_type =
secondary->state.last_index_type;
}
}
/* After executing commands from secondary buffers we have to dirty
* some states.
*/
primary->state.dirty |= RADV_CMD_DIRTY_PIPELINE |
RADV_CMD_DIRTY_INDEX_BUFFER |
RADV_CMD_DIRTY_DYNAMIC_ALL;
radv_mark_descriptor_sets_dirty(primary);
}
VkResult radv_CreateCommandPool(
VkDevice _device,
const VkCommandPoolCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkCommandPool* pCmdPool)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_cmd_pool *pool;
pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pool == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
if (pAllocator)
pool->alloc = *pAllocator;
else
pool->alloc = device->alloc;
list_inithead(&pool->cmd_buffers);
list_inithead(&pool->free_cmd_buffers);
pool->queue_family_index = pCreateInfo->queueFamilyIndex;
*pCmdPool = radv_cmd_pool_to_handle(pool);
return VK_SUCCESS;
}
void radv_DestroyCommandPool(
VkDevice _device,
VkCommandPool commandPool,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_cmd_pool, pool, commandPool);
if (!pool)
return;
list_for_each_entry_safe(struct radv_cmd_buffer, cmd_buffer,
&pool->cmd_buffers, pool_link) {
radv_cmd_buffer_destroy(cmd_buffer);
}
list_for_each_entry_safe(struct radv_cmd_buffer, cmd_buffer,
&pool->free_cmd_buffers, pool_link) {
radv_cmd_buffer_destroy(cmd_buffer);
}
vk_free2(&device->alloc, pAllocator, pool);
}
VkResult radv_ResetCommandPool(
VkDevice device,
VkCommandPool commandPool,
VkCommandPoolResetFlags flags)
{
RADV_FROM_HANDLE(radv_cmd_pool, pool, commandPool);
VkResult result;
list_for_each_entry(struct radv_cmd_buffer, cmd_buffer,
&pool->cmd_buffers, pool_link) {
result = radv_reset_cmd_buffer(cmd_buffer);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
void radv_TrimCommandPoolKHR(
VkDevice device,
VkCommandPool commandPool,
VkCommandPoolTrimFlagsKHR flags)
{
RADV_FROM_HANDLE(radv_cmd_pool, pool, commandPool);
if (!pool)
return;
list_for_each_entry_safe(struct radv_cmd_buffer, cmd_buffer,
&pool->free_cmd_buffers, pool_link) {
radv_cmd_buffer_destroy(cmd_buffer);
}
}
void radv_CmdBeginRenderPass(
VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
VkSubpassContents contents)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_render_pass, pass, pRenderPassBegin->renderPass);
RADV_FROM_HANDLE(radv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
MAYBE_UNUSED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws,
cmd_buffer->cs, 2048);
MAYBE_UNUSED VkResult result;
cmd_buffer->state.framebuffer = framebuffer;
cmd_buffer->state.pass = pass;
cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
result = radv_cmd_state_setup_attachments(cmd_buffer, pass, pRenderPassBegin);
if (result != VK_SUCCESS)
return;
radv_cmd_buffer_set_subpass(cmd_buffer, pass->subpasses, true);
assert(cmd_buffer->cs->cdw <= cdw_max);
radv_cmd_buffer_clear_subpass(cmd_buffer);
}
void radv_CmdNextSubpass(
VkCommandBuffer commandBuffer,
VkSubpassContents contents)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
radv_cmd_buffer_resolve_subpass(cmd_buffer);
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs,
2048);
radv_cmd_buffer_set_subpass(cmd_buffer, cmd_buffer->state.subpass + 1, true);
radv_cmd_buffer_clear_subpass(cmd_buffer);
}
static void radv_emit_view_index(struct radv_cmd_buffer *cmd_buffer, unsigned index)
{
struct radv_pipeline *pipeline = cmd_buffer->state.pipeline;
for (unsigned stage = 0; stage < MESA_SHADER_STAGES; ++stage) {
if (!pipeline->shaders[stage])
continue;
struct ac_userdata_info *loc = radv_lookup_user_sgpr(pipeline, stage, AC_UD_VIEW_INDEX);
if (loc->sgpr_idx == -1)
continue;
uint32_t base_reg = pipeline->user_data_0[stage];
radeon_set_sh_reg(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, index);
}
if (pipeline->gs_copy_shader) {
struct ac_userdata_info *loc = &pipeline->gs_copy_shader->info.user_sgprs_locs.shader_data[AC_UD_VIEW_INDEX];
if (loc->sgpr_idx != -1) {
uint32_t base_reg = R_00B130_SPI_SHADER_USER_DATA_VS_0;
radeon_set_sh_reg(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, index);
}
}
}
static void
radv_cs_emit_draw_packet(struct radv_cmd_buffer *cmd_buffer,
uint32_t vertex_count)
{
radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, cmd_buffer->state.predicating));
radeon_emit(cmd_buffer->cs, vertex_count);
radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX |
S_0287F0_USE_OPAQUE(0));
}
static void
radv_cs_emit_draw_indexed_packet(struct radv_cmd_buffer *cmd_buffer,
uint64_t index_va,
uint32_t index_count)
{
radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_2, 4, false));
radeon_emit(cmd_buffer->cs, cmd_buffer->state.max_index_count);
radeon_emit(cmd_buffer->cs, index_va);
radeon_emit(cmd_buffer->cs, index_va >> 32);
radeon_emit(cmd_buffer->cs, index_count);
radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_DMA);
}
static void
radv_cs_emit_indirect_draw_packet(struct radv_cmd_buffer *cmd_buffer,
bool indexed,
uint32_t draw_count,
uint64_t count_va,
uint32_t stride)
{
struct radeon_winsys_cs *cs = cmd_buffer->cs;
unsigned di_src_sel = indexed ? V_0287F0_DI_SRC_SEL_DMA
: V_0287F0_DI_SRC_SEL_AUTO_INDEX;
bool draw_id_enable = radv_get_vertex_shader(cmd_buffer->state.pipeline)->info.info.vs.needs_draw_id;
uint32_t base_reg = cmd_buffer->state.pipeline->graphics.vtx_base_sgpr;
assert(base_reg);
/* just reset draw state for vertex data */
cmd_buffer->state.last_first_instance = -1;
cmd_buffer->state.last_num_instances = -1;
cmd_buffer->state.last_vertex_offset = -1;
if (draw_count == 1 && !count_va && !draw_id_enable) {
radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT :
PKT3_DRAW_INDIRECT, 3, false));
radeon_emit(cs, 0);
radeon_emit(cs, (base_reg - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, ((base_reg + 4) - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, di_src_sel);
} else {
radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT_MULTI :
PKT3_DRAW_INDIRECT_MULTI,
8, false));
radeon_emit(cs, 0);
radeon_emit(cs, (base_reg - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, ((base_reg + 4) - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, (((base_reg + 8) - SI_SH_REG_OFFSET) >> 2) |
S_2C3_DRAW_INDEX_ENABLE(draw_id_enable) |
S_2C3_COUNT_INDIRECT_ENABLE(!!count_va));
radeon_emit(cs, draw_count); /* count */
radeon_emit(cs, count_va); /* count_addr */
radeon_emit(cs, count_va >> 32);
radeon_emit(cs, stride); /* stride */
radeon_emit(cs, di_src_sel);
}
}
struct radv_draw_info {
/**
* Number of vertices.
*/
uint32_t count;
/**
* Index of the first vertex.
*/
int32_t vertex_offset;
/**
* First instance id.
*/
uint32_t first_instance;
/**
* Number of instances.
*/
uint32_t instance_count;
/**
* First index (indexed draws only).
*/
uint32_t first_index;
/**
* Whether it's an indexed draw.
*/
bool indexed;
/**
* Indirect draw parameters resource.
*/
struct radv_buffer *indirect;
uint64_t indirect_offset;
uint32_t stride;
/**
* Draw count parameters resource.
*/
struct radv_buffer *count_buffer;
uint64_t count_buffer_offset;
};
static void
radv_emit_draw_packets(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info)
{
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_winsys *ws = cmd_buffer->device->ws;
struct radeon_winsys_cs *cs = cmd_buffer->cs;
if (info->indirect) {
uint64_t va = radv_buffer_get_va(info->indirect->bo);
uint64_t count_va = 0;
va += info->indirect->offset + info->indirect_offset;
radv_cs_add_buffer(ws, cs, info->indirect->bo, 8);
radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
radeon_emit(cs, 1);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
if (info->count_buffer) {
count_va = radv_buffer_get_va(info->count_buffer->bo);
count_va += info->count_buffer->offset +
info->count_buffer_offset;
radv_cs_add_buffer(ws, cs, info->count_buffer->bo, 8);
}
if (!state->subpass->view_mask) {
radv_cs_emit_indirect_draw_packet(cmd_buffer,
info->indexed,
info->count,
count_va,
info->stride);
} else {
unsigned i;
for_each_bit(i, state->subpass->view_mask) {
radv_emit_view_index(cmd_buffer, i);
radv_cs_emit_indirect_draw_packet(cmd_buffer,
info->indexed,
info->count,
count_va,
info->stride);
}
}
} else {
assert(state->pipeline->graphics.vtx_base_sgpr);
if (info->vertex_offset != state->last_vertex_offset ||
info->first_instance != state->last_first_instance) {
radeon_set_sh_reg_seq(cs, state->pipeline->graphics.vtx_base_sgpr,
state->pipeline->graphics.vtx_emit_num);
radeon_emit(cs, info->vertex_offset);
radeon_emit(cs, info->first_instance);
if (state->pipeline->graphics.vtx_emit_num == 3)
radeon_emit(cs, 0);
state->last_first_instance = info->first_instance;
state->last_vertex_offset = info->vertex_offset;
}
if (state->last_num_instances != info->instance_count) {
radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, false));
radeon_emit(cs, info->instance_count);
state->last_num_instances = info->instance_count;
}
if (info->indexed) {
int index_size = state->index_type ? 4 : 2;
uint64_t index_va;
index_va = state->index_va;
index_va += info->first_index * index_size;
if (!state->subpass->view_mask) {
radv_cs_emit_draw_indexed_packet(cmd_buffer,
index_va,
info->count);
} else {
unsigned i;
for_each_bit(i, state->subpass->view_mask) {
radv_emit_view_index(cmd_buffer, i);
radv_cs_emit_draw_indexed_packet(cmd_buffer,
index_va,
info->count);
}
}
} else {
if (!state->subpass->view_mask) {
radv_cs_emit_draw_packet(cmd_buffer, info->count);
} else {
unsigned i;
for_each_bit(i, state->subpass->view_mask) {
radv_emit_view_index(cmd_buffer, i);
radv_cs_emit_draw_packet(cmd_buffer,
info->count);
}
}
}
}
}
static void
radv_emit_all_graphics_states(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info)
{
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE)
radv_emit_graphics_pipeline(cmd_buffer);
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)
radv_emit_framebuffer_state(cmd_buffer);
if (info->indexed) {
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_INDEX_BUFFER)
radv_emit_index_buffer(cmd_buffer);
} else {
/* On CI and later, non-indexed draws overwrite VGT_INDEX_TYPE,
* so the state must be re-emitted before the next indexed
* draw.
*/
if (cmd_buffer->device->physical_device->rad_info.chip_class >= CIK) {
cmd_buffer->state.last_index_type = -1;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
}
}
radv_cmd_buffer_flush_dynamic_state(cmd_buffer);
radv_emit_draw_registers(cmd_buffer, info->indexed,
info->instance_count > 1, info->indirect,
info->indirect ? 0 : info->count);
}
static void
radv_draw(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info)
{
bool pipeline_is_dirty =
(cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) &&
cmd_buffer->state.pipeline &&
cmd_buffer->state.pipeline != cmd_buffer->state.emitted_pipeline;
MAYBE_UNUSED unsigned cdw_max =
radeon_check_space(cmd_buffer->device->ws,
cmd_buffer->cs, 4096);
/* Use optimal packet order based on whether we need to sync the
* pipeline.
*/
if (cmd_buffer->state.flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
/* If we have to wait for idle, set all states first, so that
* all SET packets are processed in parallel with previous draw
* calls. Then upload descriptors, set shader pointers, and
* draw, and prefetch at the end. This ensures that the time
* the CUs are idle is very short. (there are only SET_SH
* packets between the wait and the draw)
*/
radv_emit_all_graphics_states(cmd_buffer, info);
si_emit_cache_flush(cmd_buffer);
/* <-- CUs are idle here --> */
if (!radv_upload_graphics_shader_descriptors(cmd_buffer, pipeline_is_dirty))
return;
radv_emit_draw_packets(cmd_buffer, info);
/* <-- CUs are busy here --> */
/* Start prefetches after the draw has been started. Both will
* run in parallel, but starting the draw first is more
* important.
*/
if (pipeline_is_dirty) {
radv_emit_prefetch(cmd_buffer,
cmd_buffer->state.pipeline);
}
} else {
/* If we don't wait for idle, start prefetches first, then set
* states, and draw at the end.
*/
si_emit_cache_flush(cmd_buffer);
if (pipeline_is_dirty) {
radv_emit_prefetch(cmd_buffer,
cmd_buffer->state.pipeline);
}
if (!radv_upload_graphics_shader_descriptors(cmd_buffer, pipeline_is_dirty))
return;
radv_emit_all_graphics_states(cmd_buffer, info);
radv_emit_draw_packets(cmd_buffer, info);
}
assert(cmd_buffer->cs->cdw <= cdw_max);
radv_cmd_buffer_after_draw(cmd_buffer);
}
void radv_CmdDraw(
VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_draw_info info = {};
info.count = vertexCount;
info.instance_count = instanceCount;
info.first_instance = firstInstance;
info.vertex_offset = firstVertex;
radv_draw(cmd_buffer, &info);
}
void radv_CmdDrawIndexed(
VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_draw_info info = {};
info.indexed = true;
info.count = indexCount;
info.instance_count = instanceCount;
info.first_index = firstIndex;
info.vertex_offset = vertexOffset;
info.first_instance = firstInstance;
radv_draw(cmd_buffer, &info);
}
void radv_CmdDrawIndirect(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
struct radv_draw_info info = {};
info.count = drawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
radv_draw(cmd_buffer, &info);
}
void radv_CmdDrawIndexedIndirect(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
struct radv_draw_info info = {};
info.indexed = true;
info.count = drawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
radv_draw(cmd_buffer, &info);
}
void radv_CmdDrawIndirectCountAMD(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkBuffer _countBuffer,
VkDeviceSize countBufferOffset,
uint32_t maxDrawCount,
uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
RADV_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
struct radv_draw_info info = {};
info.count = maxDrawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.count_buffer = count_buffer;
info.count_buffer_offset = countBufferOffset;
info.stride = stride;
radv_draw(cmd_buffer, &info);
}
void radv_CmdDrawIndexedIndirectCountAMD(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkBuffer _countBuffer,
VkDeviceSize countBufferOffset,
uint32_t maxDrawCount,
uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
RADV_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
struct radv_draw_info info = {};
info.indexed = true;
info.count = maxDrawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.count_buffer = count_buffer;
info.count_buffer_offset = countBufferOffset;
info.stride = stride;
radv_draw(cmd_buffer, &info);
}
struct radv_dispatch_info {
/**
* Determine the layout of the grid (in block units) to be used.
*/
uint32_t blocks[3];
/**
* Whether it's an unaligned compute dispatch.
*/
bool unaligned;
/**
* Indirect compute parameters resource.
*/
struct radv_buffer *indirect;
uint64_t indirect_offset;
};
static void
radv_emit_dispatch_packets(struct radv_cmd_buffer *cmd_buffer,
const struct radv_dispatch_info *info)
{
struct radv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct radv_shader_variant *compute_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
unsigned dispatch_initiator = cmd_buffer->device->dispatch_initiator;
struct radeon_winsys *ws = cmd_buffer->device->ws;
struct radeon_winsys_cs *cs = cmd_buffer->cs;
struct ac_userdata_info *loc;
loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_COMPUTE,
AC_UD_CS_GRID_SIZE);
MAYBE_UNUSED unsigned cdw_max = radeon_check_space(ws, cs, 25);
if (info->indirect) {
uint64_t va = radv_buffer_get_va(info->indirect->bo);
va += info->indirect->offset + info->indirect_offset;
radv_cs_add_buffer(ws, cs, info->indirect->bo, 8);
if (loc->sgpr_idx != -1) {
for (unsigned i = 0; i < 3; ++i) {
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_MEM) |
COPY_DATA_DST_SEL(COPY_DATA_REG));
radeon_emit(cs, (va + 4 * i));
radeon_emit(cs, (va + 4 * i) >> 32);
radeon_emit(cs, ((R_00B900_COMPUTE_USER_DATA_0
+ loc->sgpr_idx * 4) >> 2) + i);
radeon_emit(cs, 0);
}
}
if (radv_cmd_buffer_uses_mec(cmd_buffer)) {
radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 2, 0) |
PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, dispatch_initiator);
} else {
radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0) |
PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, 1);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 1, 0) |
PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, 0);
radeon_emit(cs, dispatch_initiator);
}
} else {
unsigned blocks[3] = { info->blocks[0], info->blocks[1], info->blocks[2] };
if (info->unaligned) {
unsigned *cs_block_size = compute_shader->info.cs.block_size;
unsigned remainder[3];
/* If aligned, these should be an entire block size,
* not 0.
*/
remainder[0] = blocks[0] + cs_block_size[0] -
align_u32_npot(blocks[0], cs_block_size[0]);
remainder[1] = blocks[1] + cs_block_size[1] -
align_u32_npot(blocks[1], cs_block_size[1]);
remainder[2] = blocks[2] + cs_block_size[2] -
align_u32_npot(blocks[2], cs_block_size[2]);
blocks[0] = round_up_u32(blocks[0], cs_block_size[0]);
blocks[1] = round_up_u32(blocks[1], cs_block_size[1]);
blocks[2] = round_up_u32(blocks[2], cs_block_size[2]);
radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
radeon_emit(cs,
S_00B81C_NUM_THREAD_FULL(cs_block_size[0]) |
S_00B81C_NUM_THREAD_PARTIAL(remainder[0]));
radeon_emit(cs,
S_00B81C_NUM_THREAD_FULL(cs_block_size[1]) |
S_00B81C_NUM_THREAD_PARTIAL(remainder[1]));
radeon_emit(cs,
S_00B81C_NUM_THREAD_FULL(cs_block_size[2]) |
S_00B81C_NUM_THREAD_PARTIAL(remainder[2]));
dispatch_initiator |= S_00B800_PARTIAL_TG_EN(1);
}
if (loc->sgpr_idx != -1) {
assert(!loc->indirect);
assert(loc->num_sgprs == 3);
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 +
loc->sgpr_idx * 4, 3);
radeon_emit(cs, blocks[0]);
radeon_emit(cs, blocks[1]);
radeon_emit(cs, blocks[2]);
}
radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, 0) |
PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, blocks[0]);
radeon_emit(cs, blocks[1]);
radeon_emit(cs, blocks[2]);
radeon_emit(cs, dispatch_initiator);
}
assert(cmd_buffer->cs->cdw <= cdw_max);
}
static void
radv_upload_compute_shader_descriptors(struct radv_cmd_buffer *cmd_buffer)
{
radv_flush_descriptors(cmd_buffer, VK_SHADER_STAGE_COMPUTE_BIT);
radv_flush_constants(cmd_buffer, cmd_buffer->state.compute_pipeline,
VK_SHADER_STAGE_COMPUTE_BIT);
}
static void
radv_dispatch(struct radv_cmd_buffer *cmd_buffer,
const struct radv_dispatch_info *info)
{
struct radv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
bool pipeline_is_dirty = pipeline &&
pipeline != cmd_buffer->state.emitted_compute_pipeline;
if (cmd_buffer->state.flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
/* If we have to wait for idle, set all states first, so that
* all SET packets are processed in parallel with previous draw
* calls. Then upload descriptors, set shader pointers, and
* dispatch, and prefetch at the end. This ensures that the
* time the CUs are idle is very short. (there are only SET_SH
* packets between the wait and the draw)
*/
radv_emit_compute_pipeline(cmd_buffer);
si_emit_cache_flush(cmd_buffer);
/* <-- CUs are idle here --> */
radv_upload_compute_shader_descriptors(cmd_buffer);
radv_emit_dispatch_packets(cmd_buffer, info);
/* <-- CUs are busy here --> */
/* Start prefetches after the dispatch has been started. Both
* will run in parallel, but starting the dispatch first is
* more important.
*/
if (pipeline_is_dirty) {
radv_emit_shader_prefetch(cmd_buffer,
pipeline->shaders[MESA_SHADER_COMPUTE]);
}
} else {
/* If we don't wait for idle, start prefetches first, then set
* states, and dispatch at the end.
*/
si_emit_cache_flush(cmd_buffer);
if (pipeline_is_dirty) {
radv_emit_shader_prefetch(cmd_buffer,
pipeline->shaders[MESA_SHADER_COMPUTE]);
}
radv_upload_compute_shader_descriptors(cmd_buffer);
radv_emit_compute_pipeline(cmd_buffer);
radv_emit_dispatch_packets(cmd_buffer, info);
}
radv_cmd_buffer_after_draw(cmd_buffer);
}
void radv_CmdDispatch(
VkCommandBuffer commandBuffer,
uint32_t x,
uint32_t y,
uint32_t z)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_dispatch_info info = {};
info.blocks[0] = x;
info.blocks[1] = y;
info.blocks[2] = z;
radv_dispatch(cmd_buffer, &info);
}
void radv_CmdDispatchIndirect(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
struct radv_dispatch_info info = {};
info.indirect = buffer;
info.indirect_offset = offset;
radv_dispatch(cmd_buffer, &info);
}
void radv_unaligned_dispatch(
struct radv_cmd_buffer *cmd_buffer,
uint32_t x,
uint32_t y,
uint32_t z)
{
struct radv_dispatch_info info = {};
info.blocks[0] = x;
info.blocks[1] = y;
info.blocks[2] = z;
info.unaligned = 1;
radv_dispatch(cmd_buffer, &info);
}
void radv_CmdEndRenderPass(
VkCommandBuffer commandBuffer)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
radv_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier);
radv_cmd_buffer_resolve_subpass(cmd_buffer);
for (unsigned i = 0; i < cmd_buffer->state.framebuffer->attachment_count; ++i) {
VkImageLayout layout = cmd_buffer->state.pass->attachments[i].final_layout;
radv_handle_subpass_image_transition(cmd_buffer,
(VkAttachmentReference){i, layout});
}
vk_free(&cmd_buffer->pool->alloc, cmd_buffer->state.attachments);
cmd_buffer->state.pass = NULL;
cmd_buffer->state.subpass = NULL;
cmd_buffer->state.attachments = NULL;
cmd_buffer->state.framebuffer = NULL;
}
/*
* For HTILE we have the following interesting clear words:
* 0xfffff30f: Uncompressed, full depth range, for depth+stencil HTILE
* 0xfffc000f: Uncompressed, full depth range, for depth only HTILE.
* 0xfffffff0: Clear depth to 1.0
* 0x00000000: Clear depth to 0.0
*/
static void radv_initialize_htile(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
const VkImageSubresourceRange *range,
uint32_t clear_word)
{
assert(range->baseMipLevel == 0);
assert(range->levelCount == 1 || range->levelCount == VK_REMAINING_ARRAY_LAYERS);
unsigned layer_count = radv_get_layerCount(image, range);
uint64_t size = image->surface.htile_slice_size * layer_count;
uint64_t offset = image->offset + image->htile_offset +
image->surface.htile_slice_size * range->baseArrayLayer;
struct radv_cmd_state *state = &cmd_buffer->state;
state->flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
state->flush_bits |= radv_fill_buffer(cmd_buffer, image->bo, offset,
size, clear_word);
state->flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
}
static void radv_handle_depth_image_transition(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
VkImageLayout src_layout,
VkImageLayout dst_layout,
unsigned src_queue_mask,
unsigned dst_queue_mask,
const VkImageSubresourceRange *range,
VkImageAspectFlags pending_clears)
{
if (dst_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL &&
(pending_clears & vk_format_aspects(image->vk_format)) == vk_format_aspects(image->vk_format) &&
cmd_buffer->state.render_area.offset.x == 0 && cmd_buffer->state.render_area.offset.y == 0 &&
cmd_buffer->state.render_area.extent.width == image->info.width &&
cmd_buffer->state.render_area.extent.height == image->info.height) {
/* The clear will initialize htile. */
return;
} else if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED &&
radv_layout_has_htile(image, dst_layout, dst_queue_mask)) {
/* TODO: merge with the clear if applicable */
radv_initialize_htile(cmd_buffer, image, range, 0);
} else if (!radv_layout_is_htile_compressed(image, src_layout, src_queue_mask) &&
radv_layout_is_htile_compressed(image, dst_layout, dst_queue_mask)) {
uint32_t clear_value = vk_format_is_stencil(image->vk_format) ? 0xfffff30f : 0xfffc000f;
radv_initialize_htile(cmd_buffer, image, range, clear_value);
} else if (radv_layout_is_htile_compressed(image, src_layout, src_queue_mask) &&
!radv_layout_is_htile_compressed(image, dst_layout, dst_queue_mask)) {
VkImageSubresourceRange local_range = *range;
local_range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
local_range.baseMipLevel = 0;
local_range.levelCount = 1;
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
radv_decompress_depth_image_inplace(cmd_buffer, image, &local_range);
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
}
}
void radv_initialise_cmask(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image, uint32_t value)
{
struct radv_cmd_state *state = &cmd_buffer->state;
state->flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
state->flush_bits |= radv_fill_buffer(cmd_buffer, image->bo,
image->offset + image->cmask.offset,
image->cmask.size, value);
state->flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
}
static void radv_handle_cmask_image_transition(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
VkImageLayout src_layout,
VkImageLayout dst_layout,
unsigned src_queue_mask,
unsigned dst_queue_mask,
const VkImageSubresourceRange *range)
{
if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
if (image->fmask.size)
radv_initialise_cmask(cmd_buffer, image, 0xccccccccu);
else
radv_initialise_cmask(cmd_buffer, image, 0xffffffffu);
} else if (radv_layout_can_fast_clear(image, src_layout, src_queue_mask) &&
!radv_layout_can_fast_clear(image, dst_layout, dst_queue_mask)) {
radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
}
}
void radv_initialize_dcc(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image, uint32_t value)
{
struct radv_cmd_state *state = &cmd_buffer->state;
state->flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
state->flush_bits |= radv_fill_buffer(cmd_buffer, image->bo,
image->offset + image->dcc_offset,
image->surface.dcc_size, value);
state->flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
}
static void radv_handle_dcc_image_transition(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
VkImageLayout src_layout,
VkImageLayout dst_layout,
unsigned src_queue_mask,
unsigned dst_queue_mask,
const VkImageSubresourceRange *range)
{
if (src_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
radv_initialize_dcc(cmd_buffer, image, 0xffffffffu);
} else if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
radv_initialize_dcc(cmd_buffer, image,
radv_layout_dcc_compressed(image, dst_layout, dst_queue_mask) ?
0x20202020u : 0xffffffffu);
} else if (radv_layout_dcc_compressed(image, src_layout, src_queue_mask) &&
!radv_layout_dcc_compressed(image, dst_layout, dst_queue_mask)) {
radv_decompress_dcc(cmd_buffer, image, range);
} else if (radv_layout_can_fast_clear(image, src_layout, src_queue_mask) &&
!radv_layout_can_fast_clear(image, dst_layout, dst_queue_mask)) {
radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
}
}
static void radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
VkImageLayout src_layout,
VkImageLayout dst_layout,
uint32_t src_family,
uint32_t dst_family,
const VkImageSubresourceRange *range,
VkImageAspectFlags pending_clears)
{
if (image->exclusive && src_family != dst_family) {
/* This is an acquire or a release operation and there will be
* a corresponding release/acquire. Do the transition in the
* most flexible queue. */
assert(src_family == cmd_buffer->queue_family_index ||
dst_family == cmd_buffer->queue_family_index);
if (cmd_buffer->queue_family_index == RADV_QUEUE_TRANSFER)
return;
if (cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE &&
(src_family == RADV_QUEUE_GENERAL ||
dst_family == RADV_QUEUE_GENERAL))
return;
}
unsigned src_queue_mask = radv_image_queue_family_mask(image, src_family, cmd_buffer->queue_family_index);
unsigned dst_queue_mask = radv_image_queue_family_mask(image, dst_family, cmd_buffer->queue_family_index);
if (image->surface.htile_size)
radv_handle_depth_image_transition(cmd_buffer, image, src_layout,
dst_layout, src_queue_mask,
dst_queue_mask, range,
pending_clears);
if (image->cmask.size || image->fmask.size)
radv_handle_cmask_image_transition(cmd_buffer, image, src_layout,
dst_layout, src_queue_mask,
dst_queue_mask, range);
if (image->surface.dcc_size)
radv_handle_dcc_image_transition(cmd_buffer, image, src_layout,
dst_layout, src_queue_mask,
dst_queue_mask, range);
}
void radv_CmdPipelineBarrier(
VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags destStageMask,
VkBool32 byRegion,
uint32_t memoryBarrierCount,
const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
enum radv_cmd_flush_bits src_flush_bits = 0;
enum radv_cmd_flush_bits dst_flush_bits = 0;
for (uint32_t i = 0; i < memoryBarrierCount; i++) {
src_flush_bits |= radv_src_access_flush(cmd_buffer, pMemoryBarriers[i].srcAccessMask);
dst_flush_bits |= radv_dst_access_flush(cmd_buffer, pMemoryBarriers[i].dstAccessMask,
NULL);
}
for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
src_flush_bits |= radv_src_access_flush(cmd_buffer, pBufferMemoryBarriers[i].srcAccessMask);
dst_flush_bits |= radv_dst_access_flush(cmd_buffer, pBufferMemoryBarriers[i].dstAccessMask,
NULL);
}
for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
RADV_FROM_HANDLE(radv_image, image, pImageMemoryBarriers[i].image);
src_flush_bits |= radv_src_access_flush(cmd_buffer, pImageMemoryBarriers[i].srcAccessMask);
dst_flush_bits |= radv_dst_access_flush(cmd_buffer, pImageMemoryBarriers[i].dstAccessMask,
image);
}
radv_stage_flush(cmd_buffer, srcStageMask);
cmd_buffer->state.flush_bits |= src_flush_bits;
for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
RADV_FROM_HANDLE(radv_image, image, pImageMemoryBarriers[i].image);
radv_handle_image_transition(cmd_buffer, image,
pImageMemoryBarriers[i].oldLayout,
pImageMemoryBarriers[i].newLayout,
pImageMemoryBarriers[i].srcQueueFamilyIndex,
pImageMemoryBarriers[i].dstQueueFamilyIndex,
&pImageMemoryBarriers[i].subresourceRange,
0);
}
cmd_buffer->state.flush_bits |= dst_flush_bits;
}
static void write_event(struct radv_cmd_buffer *cmd_buffer,
struct radv_event *event,
VkPipelineStageFlags stageMask,
unsigned value)
{
struct radeon_winsys_cs *cs = cmd_buffer->cs;
uint64_t va = radv_buffer_get_va(event->bo);
radv_cs_add_buffer(cmd_buffer->device->ws, cs, event->bo, 8);
MAYBE_UNUSED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cs, 18);
/* TODO: this is overkill. Probably should figure something out from
* the stage mask. */
si_cs_emit_write_event_eop(cs,
cmd_buffer->state.predicating,
cmd_buffer->device->physical_device->rad_info.chip_class,
radv_cmd_buffer_uses_mec(cmd_buffer),
V_028A90_BOTTOM_OF_PIPE_TS, 0,
1, va, 2, value);
assert(cmd_buffer->cs->cdw <= cdw_max);
}
void radv_CmdSetEvent(VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_event, event, _event);
write_event(cmd_buffer, event, stageMask, 1);
}
void radv_CmdResetEvent(VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_event, event, _event);
write_event(cmd_buffer, event, stageMask, 0);
}
void radv_CmdWaitEvents(VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent* pEvents,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount,
const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radeon_winsys_cs *cs = cmd_buffer->cs;
for (unsigned i = 0; i < eventCount; ++i) {
RADV_FROM_HANDLE(radv_event, event, pEvents[i]);
uint64_t va = radv_buffer_get_va(event->bo);
radv_cs_add_buffer(cmd_buffer->device->ws, cs, event->bo, 8);
MAYBE_UNUSED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cs, 7);
si_emit_wait_fence(cs, false, va, 1, 0xffffffff);
assert(cmd_buffer->cs->cdw <= cdw_max);
}
for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
RADV_FROM_HANDLE(radv_image, image, pImageMemoryBarriers[i].image);
radv_handle_image_transition(cmd_buffer, image,
pImageMemoryBarriers[i].oldLayout,
pImageMemoryBarriers[i].newLayout,
pImageMemoryBarriers[i].srcQueueFamilyIndex,
pImageMemoryBarriers[i].dstQueueFamilyIndex,
&pImageMemoryBarriers[i].subresourceRange,
0);
}
/* TODO: figure out how to do memory barriers without waiting */
cmd_buffer->state.flush_bits |= RADV_CMD_FLUSH_AND_INV_FRAMEBUFFER |
RADV_CMD_FLAG_INV_GLOBAL_L2 |
RADV_CMD_FLAG_INV_VMEM_L1 |
RADV_CMD_FLAG_INV_SMEM_L1;
}