/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "radv_meta.h"
#include "nir/nir_builder.h"
/*
* GFX queue: Compute shader implementation of image->buffer copy
* Compute queue: implementation also of buffer->image, image->image, and image clear.
*/
/* GFX9 needs to use a 3D sampler to access 3D resources, so the shader has the options
* for that.
*/
static nir_shader *
build_nir_itob_compute_shader(struct radv_device *dev, bool is_3d)
{
nir_builder b;
enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D : GLSL_SAMPLER_DIM_2D;
const struct glsl_type *sampler_type = glsl_sampler_type(dim,
false,
false,
GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_sampler_type(GLSL_SAMPLER_DIM_BUF,
false,
false,
GLSL_TYPE_FLOAT);
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL);
b.shader->info.name = ralloc_strdup(b.shader, is_3d ? "meta_itob_cs_3d" : "meta_itob_cs");
b.shader->info.cs.local_size[0] = 16;
b.shader->info.cs.local_size[1] = 16;
b.shader->info.cs.local_size[2] = 1;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
sampler_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform,
img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0);
nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0);
nir_ssa_def *block_size = nir_imm_ivec4(&b,
b.shader->info.cs.local_size[0],
b.shader->info.cs.local_size[1],
b.shader->info.cs.local_size[2], 0);
nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id);
nir_intrinsic_instr *offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(offset, 0);
nir_intrinsic_set_range(offset, 16);
offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
offset->num_components = is_3d ? 3 : 2;
nir_ssa_dest_init(&offset->instr, &offset->dest, is_3d ? 3 : 2, 32, "offset");
nir_builder_instr_insert(&b, &offset->instr);
nir_intrinsic_instr *stride = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(stride, 0);
nir_intrinsic_set_range(stride, 16);
stride->src[0] = nir_src_for_ssa(nir_imm_int(&b, 12));
stride->num_components = 1;
nir_ssa_dest_init(&stride->instr, &stride->dest, 1, 32, "stride");
nir_builder_instr_insert(&b, &stride->instr);
nir_ssa_def *img_coord = nir_iadd(&b, global_id, &offset->dest.ssa);
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 2);
tex->sampler_dim = dim;
tex->op = nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(nir_channels(&b, img_coord, is_3d ? 0x7 : 0x3));
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->dest_type = nir_type_float;
tex->is_array = false;
tex->coord_components = is_3d ? 3 : 2;
tex->texture = nir_deref_var_create(tex, input_img);
tex->sampler = NULL;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_ssa_def *pos_x = nir_channel(&b, global_id, 0);
nir_ssa_def *pos_y = nir_channel(&b, global_id, 1);
nir_ssa_def *tmp = nir_imul(&b, pos_y, &stride->dest.ssa);
tmp = nir_iadd(&b, tmp, pos_x);
nir_ssa_def *coord = nir_vec4(&b, tmp, tmp, tmp, tmp);
nir_ssa_def *outval = &tex->dest.ssa;
nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_store);
store->src[0] = nir_src_for_ssa(coord);
store->src[1] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32));
store->src[2] = nir_src_for_ssa(outval);
store->variables[0] = nir_deref_var_create(store, output_img);
nir_builder_instr_insert(&b, &store->instr);
return b.shader;
}
/* Image to buffer - don't write use image accessors */
static VkResult
radv_device_init_meta_itob_state(struct radv_device *device)
{
VkResult result;
struct radv_shader_module cs = { .nir = NULL };
struct radv_shader_module cs_3d = { .nir = NULL };
cs.nir = build_nir_itob_compute_shader(device, false);
if (device->physical_device->rad_info.chip_class >= GFX9)
cs_3d.nir = build_nir_itob_compute_shader(device, true);
/*
* two descriptors one for the image being sampled
* one for the buffer being written.
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL
},
{
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL
},
}
};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
&ds_create_info,
&device->meta_state.alloc,
&device->meta_state.itob.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.itob.img_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device),
&pl_create_info,
&device->meta_state.alloc,
&device->meta_state.itob.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = radv_shader_module_to_handle(&cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.itob.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
1, &vk_pipeline_info, NULL,
&device->meta_state.itob.pipeline);
if (result != VK_SUCCESS)
goto fail;
if (device->physical_device->rad_info.chip_class >= GFX9) {
VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = radv_shader_module_to_handle(&cs_3d),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info_3d = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage_3d,
.flags = 0,
.layout = device->meta_state.itob.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
1, &vk_pipeline_info_3d, NULL,
&device->meta_state.itob.pipeline_3d);
if (result != VK_SUCCESS)
goto fail;
ralloc_free(cs_3d.nir);
}
ralloc_free(cs.nir);
return VK_SUCCESS;
fail:
ralloc_free(cs.nir);
ralloc_free(cs_3d.nir);
return result;
}
static void
radv_device_finish_meta_itob_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipelineLayout(radv_device_to_handle(device),
state->itob.img_p_layout, &state->alloc);
radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->itob.img_ds_layout,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->itob.pipeline, &state->alloc);
if (device->physical_device->rad_info.chip_class >= GFX9)
radv_DestroyPipeline(radv_device_to_handle(device),
state->itob.pipeline_3d, &state->alloc);
}
static nir_shader *
build_nir_btoi_compute_shader(struct radv_device *dev, bool is_3d)
{
nir_builder b;
enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D : GLSL_SAMPLER_DIM_2D;
const struct glsl_type *buf_type = glsl_sampler_type(GLSL_SAMPLER_DIM_BUF,
false,
false,
GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_sampler_type(dim,
false,
false,
GLSL_TYPE_FLOAT);
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL);
b.shader->info.name = ralloc_strdup(b.shader, is_3d ? "meta_btoi_cs_3d" : "meta_btoi_cs");
b.shader->info.cs.local_size[0] = 16;
b.shader->info.cs.local_size[1] = 16;
b.shader->info.cs.local_size[2] = 1;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
buf_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform,
img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0);
nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0);
nir_ssa_def *block_size = nir_imm_ivec4(&b,
b.shader->info.cs.local_size[0],
b.shader->info.cs.local_size[1],
b.shader->info.cs.local_size[2], 0);
nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id);
nir_intrinsic_instr *offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(offset, 0);
nir_intrinsic_set_range(offset, 16);
offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
offset->num_components = is_3d ? 3 : 2;
nir_ssa_dest_init(&offset->instr, &offset->dest, is_3d ? 3 : 2, 32, "offset");
nir_builder_instr_insert(&b, &offset->instr);
nir_intrinsic_instr *stride = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(stride, 0);
nir_intrinsic_set_range(stride, 16);
stride->src[0] = nir_src_for_ssa(nir_imm_int(&b, 12));
stride->num_components = 1;
nir_ssa_dest_init(&stride->instr, &stride->dest, 1, 32, "stride");
nir_builder_instr_insert(&b, &stride->instr);
nir_ssa_def *pos_x = nir_channel(&b, global_id, 0);
nir_ssa_def *pos_y = nir_channel(&b, global_id, 1);
nir_ssa_def *tmp = nir_imul(&b, pos_y, &stride->dest.ssa);
tmp = nir_iadd(&b, tmp, pos_x);
nir_ssa_def *buf_coord = nir_vec4(&b, tmp, tmp, tmp, tmp);
nir_ssa_def *img_coord = nir_iadd(&b, global_id, &offset->dest.ssa);
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 2);
tex->sampler_dim = GLSL_SAMPLER_DIM_BUF;
tex->op = nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(nir_channels(&b, buf_coord, 1));
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->dest_type = nir_type_float;
tex->is_array = false;
tex->coord_components = 1;
tex->texture = nir_deref_var_create(tex, input_img);
tex->sampler = NULL;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_ssa_def *outval = &tex->dest.ssa;
nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_store);
store->src[0] = nir_src_for_ssa(img_coord);
store->src[1] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32));
store->src[2] = nir_src_for_ssa(outval);
store->variables[0] = nir_deref_var_create(store, output_img);
nir_builder_instr_insert(&b, &store->instr);
return b.shader;
}
/* Buffer to image - don't write use image accessors */
static VkResult
radv_device_init_meta_btoi_state(struct radv_device *device)
{
VkResult result;
struct radv_shader_module cs = { .nir = NULL };
struct radv_shader_module cs_3d = { .nir = NULL };
cs.nir = build_nir_btoi_compute_shader(device, false);
if (device->physical_device->rad_info.chip_class >= GFX9)
cs_3d.nir = build_nir_btoi_compute_shader(device, true);
/*
* two descriptors one for the image being sampled
* one for the buffer being written.
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL
},
{
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL
},
}
};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
&ds_create_info,
&device->meta_state.alloc,
&device->meta_state.btoi.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.btoi.img_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device),
&pl_create_info,
&device->meta_state.alloc,
&device->meta_state.btoi.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = radv_shader_module_to_handle(&cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.btoi.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
1, &vk_pipeline_info, NULL,
&device->meta_state.btoi.pipeline);
if (result != VK_SUCCESS)
goto fail;
if (device->physical_device->rad_info.chip_class >= GFX9) {
VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = radv_shader_module_to_handle(&cs_3d),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info_3d = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage_3d,
.flags = 0,
.layout = device->meta_state.btoi.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
1, &vk_pipeline_info_3d, NULL,
&device->meta_state.btoi.pipeline_3d);
ralloc_free(cs_3d.nir);
}
ralloc_free(cs.nir);
return VK_SUCCESS;
fail:
ralloc_free(cs_3d.nir);
ralloc_free(cs.nir);
return result;
}
static void
radv_device_finish_meta_btoi_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipelineLayout(radv_device_to_handle(device),
state->btoi.img_p_layout, &state->alloc);
radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->btoi.img_ds_layout,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->btoi.pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->btoi.pipeline_3d, &state->alloc);
}
static nir_shader *
build_nir_itoi_compute_shader(struct radv_device *dev, bool is_3d)
{
nir_builder b;
enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D : GLSL_SAMPLER_DIM_2D;
const struct glsl_type *buf_type = glsl_sampler_type(dim,
false,
false,
GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_sampler_type(dim,
false,
false,
GLSL_TYPE_FLOAT);
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL);
b.shader->info.name = ralloc_strdup(b.shader, is_3d ? "meta_itoi_cs_3d" : "meta_itoi_cs");
b.shader->info.cs.local_size[0] = 16;
b.shader->info.cs.local_size[1] = 16;
b.shader->info.cs.local_size[2] = 1;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
buf_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform,
img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0);
nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0);
nir_ssa_def *block_size = nir_imm_ivec4(&b,
b.shader->info.cs.local_size[0],
b.shader->info.cs.local_size[1],
b.shader->info.cs.local_size[2], 0);
nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id);
nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(src_offset, 0);
nir_intrinsic_set_range(src_offset, 24);
src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
src_offset->num_components = is_3d ? 3 : 2;
nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, is_3d ? 3 : 2, 32, "src_offset");
nir_builder_instr_insert(&b, &src_offset->instr);
nir_intrinsic_instr *dst_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(dst_offset, 0);
nir_intrinsic_set_range(dst_offset, 24);
dst_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 12));
dst_offset->num_components = is_3d ? 3 : 2;
nir_ssa_dest_init(&dst_offset->instr, &dst_offset->dest, is_3d ? 3 : 2, 32, "dst_offset");
nir_builder_instr_insert(&b, &dst_offset->instr);
nir_ssa_def *src_coord = nir_iadd(&b, global_id, &src_offset->dest.ssa);
nir_ssa_def *dst_coord = nir_iadd(&b, global_id, &dst_offset->dest.ssa);
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 2);
tex->sampler_dim = dim;
tex->op = nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(nir_channels(&b, src_coord, is_3d ? 0x7 : 0x3));
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->dest_type = nir_type_float;
tex->is_array = false;
tex->coord_components = is_3d ? 3 : 2;
tex->texture = nir_deref_var_create(tex, input_img);
tex->sampler = NULL;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_ssa_def *outval = &tex->dest.ssa;
nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_store);
store->src[0] = nir_src_for_ssa(dst_coord);
store->src[1] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32));
store->src[2] = nir_src_for_ssa(outval);
store->variables[0] = nir_deref_var_create(store, output_img);
nir_builder_instr_insert(&b, &store->instr);
return b.shader;
}
/* image to image - don't write use image accessors */
static VkResult
radv_device_init_meta_itoi_state(struct radv_device *device)
{
VkResult result;
struct radv_shader_module cs = { .nir = NULL };
struct radv_shader_module cs_3d = { .nir = NULL };
cs.nir = build_nir_itoi_compute_shader(device, false);
if (device->physical_device->rad_info.chip_class >= GFX9)
cs_3d.nir = build_nir_itoi_compute_shader(device, true);
/*
* two descriptors one for the image being sampled
* one for the buffer being written.
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL
},
{
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL
},
}
};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
&ds_create_info,
&device->meta_state.alloc,
&device->meta_state.itoi.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.itoi.img_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 24},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device),
&pl_create_info,
&device->meta_state.alloc,
&device->meta_state.itoi.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = radv_shader_module_to_handle(&cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.itoi.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
1, &vk_pipeline_info, NULL,
&device->meta_state.itoi.pipeline);
if (result != VK_SUCCESS)
goto fail;
if (device->physical_device->rad_info.chip_class >= GFX9) {
VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = radv_shader_module_to_handle(&cs_3d),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info_3d = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage_3d,
.flags = 0,
.layout = device->meta_state.itoi.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
1, &vk_pipeline_info_3d, NULL,
&device->meta_state.itoi.pipeline_3d);
ralloc_free(cs_3d.nir);
}
ralloc_free(cs.nir);
return VK_SUCCESS;
fail:
ralloc_free(cs.nir);
ralloc_free(cs_3d.nir);
return result;
}
static void
radv_device_finish_meta_itoi_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipelineLayout(radv_device_to_handle(device),
state->itoi.img_p_layout, &state->alloc);
radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->itoi.img_ds_layout,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->itoi.pipeline, &state->alloc);
if (device->physical_device->rad_info.chip_class >= GFX9)
radv_DestroyPipeline(radv_device_to_handle(device),
state->itoi.pipeline_3d, &state->alloc);
}
static nir_shader *
build_nir_cleari_compute_shader(struct radv_device *dev, bool is_3d)
{
nir_builder b;
enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D : GLSL_SAMPLER_DIM_2D;
const struct glsl_type *img_type = glsl_sampler_type(dim,
false,
false,
GLSL_TYPE_FLOAT);
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL);
b.shader->info.name = ralloc_strdup(b.shader, is_3d ? "meta_cleari_cs_3d" : "meta_cleari_cs");
b.shader->info.cs.local_size[0] = 16;
b.shader->info.cs.local_size[1] = 16;
b.shader->info.cs.local_size[2] = 1;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform,
img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 0;
nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0);
nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0);
nir_ssa_def *block_size = nir_imm_ivec4(&b,
b.shader->info.cs.local_size[0],
b.shader->info.cs.local_size[1],
b.shader->info.cs.local_size[2], 0);
nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id);
nir_intrinsic_instr *clear_val = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(clear_val, 0);
nir_intrinsic_set_range(clear_val, 20);
clear_val->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
clear_val->num_components = 4;
nir_ssa_dest_init(&clear_val->instr, &clear_val->dest, 4, 32, "clear_value");
nir_builder_instr_insert(&b, &clear_val->instr);
nir_intrinsic_instr *layer = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(layer, 0);
nir_intrinsic_set_range(layer, 20);
layer->src[0] = nir_src_for_ssa(nir_imm_int(&b, 16));
layer->num_components = 1;
nir_ssa_dest_init(&layer->instr, &layer->dest, 1, 32, "layer");
nir_builder_instr_insert(&b, &layer->instr);
nir_ssa_def *global_z = nir_iadd(&b, nir_channel(&b, global_id, 2), &layer->dest.ssa);
nir_ssa_def *comps[4];
comps[0] = nir_channel(&b, global_id, 0);
comps[1] = nir_channel(&b, global_id, 1);
comps[2] = global_z;
comps[3] = nir_imm_int(&b, 0);
global_id = nir_vec(&b, comps, 4);
nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_store);
store->src[0] = nir_src_for_ssa(global_id);
store->src[1] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32));
store->src[2] = nir_src_for_ssa(&clear_val->dest.ssa);
store->variables[0] = nir_deref_var_create(store, output_img);
nir_builder_instr_insert(&b, &store->instr);
return b.shader;
}
static VkResult
radv_device_init_meta_cleari_state(struct radv_device *device)
{
VkResult result;
struct radv_shader_module cs = { .nir = NULL };
struct radv_shader_module cs_3d = { .nir = NULL };
cs.nir = build_nir_cleari_compute_shader(device, false);
if (device->physical_device->rad_info.chip_class >= GFX9)
cs_3d.nir = build_nir_cleari_compute_shader(device, true);
/*
* two descriptors one for the image being sampled
* one for the buffer being written.
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL
},
}
};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
&ds_create_info,
&device->meta_state.alloc,
&device->meta_state.cleari.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.cleari.img_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 20},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device),
&pl_create_info,
&device->meta_state.alloc,
&device->meta_state.cleari.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = radv_shader_module_to_handle(&cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.cleari.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
1, &vk_pipeline_info, NULL,
&device->meta_state.cleari.pipeline);
if (result != VK_SUCCESS)
goto fail;
if (device->physical_device->rad_info.chip_class >= GFX9) {
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = radv_shader_module_to_handle(&cs_3d),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info_3d = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage_3d,
.flags = 0,
.layout = device->meta_state.cleari.img_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
1, &vk_pipeline_info_3d, NULL,
&device->meta_state.cleari.pipeline_3d);
if (result != VK_SUCCESS)
goto fail;
ralloc_free(cs_3d.nir);
}
ralloc_free(cs.nir);
return VK_SUCCESS;
fail:
ralloc_free(cs.nir);
ralloc_free(cs_3d.nir);
return result;
}
static void
radv_device_finish_meta_cleari_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipelineLayout(radv_device_to_handle(device),
state->cleari.img_p_layout, &state->alloc);
radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->cleari.img_ds_layout,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->cleari.pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->cleari.pipeline_3d, &state->alloc);
}
void
radv_device_finish_meta_bufimage_state(struct radv_device *device)
{
radv_device_finish_meta_itob_state(device);
radv_device_finish_meta_btoi_state(device);
radv_device_finish_meta_itoi_state(device);
radv_device_finish_meta_cleari_state(device);
}
VkResult
radv_device_init_meta_bufimage_state(struct radv_device *device)
{
VkResult result;
result = radv_device_init_meta_itob_state(device);
if (result != VK_SUCCESS)
goto fail_itob;
result = radv_device_init_meta_btoi_state(device);
if (result != VK_SUCCESS)
goto fail_btoi;
result = radv_device_init_meta_itoi_state(device);
if (result != VK_SUCCESS)
goto fail_itoi;
result = radv_device_init_meta_cleari_state(device);
if (result != VK_SUCCESS)
goto fail_cleari;
return VK_SUCCESS;
fail_cleari:
radv_device_finish_meta_cleari_state(device);
fail_itoi:
radv_device_finish_meta_itoi_state(device);
fail_btoi:
radv_device_finish_meta_btoi_state(device);
fail_itob:
radv_device_finish_meta_itob_state(device);
return result;
}
static void
create_iview(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *surf,
struct radv_image_view *iview)
{
VkImageViewType view_type = cmd_buffer->device->physical_device->rad_info.chip_class < GFX9 ? VK_IMAGE_VIEW_TYPE_2D :
radv_meta_get_view_type(surf->image);
radv_image_view_init(iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(surf->image),
.viewType = view_type,
.format = surf->format,
.subresourceRange = {
.aspectMask = surf->aspect_mask,
.baseMipLevel = surf->level,
.levelCount = 1,
.baseArrayLayer = surf->layer,
.layerCount = 1
},
});
}
static void
create_bview(struct radv_cmd_buffer *cmd_buffer,
struct radv_buffer *buffer,
unsigned offset,
VkFormat format,
struct radv_buffer_view *bview)
{
radv_buffer_view_init(bview, cmd_buffer->device,
&(VkBufferViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO,
.flags = 0,
.buffer = radv_buffer_to_handle(buffer),
.format = format,
.offset = offset,
.range = VK_WHOLE_SIZE,
});
}
static void
itob_bind_descriptors(struct radv_cmd_buffer *cmd_buffer,
struct radv_image_view *src,
struct radv_buffer_view *dst)
{
struct radv_device *device = cmd_buffer->device;
radv_meta_push_descriptor_set(cmd_buffer,
VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.itob.img_p_layout,
0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(src),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.pTexelBufferView = (VkBufferView[]) { radv_buffer_view_to_handle(dst) },
}
});
}
void
radv_meta_image_to_buffer(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *src,
struct radv_meta_blit2d_buffer *dst,
unsigned num_rects,
struct radv_meta_blit2d_rect *rects)
{
VkPipeline pipeline = cmd_buffer->device->meta_state.itob.pipeline;
struct radv_device *device = cmd_buffer->device;
struct radv_image_view src_view;
struct radv_buffer_view dst_view;
create_iview(cmd_buffer, src, &src_view);
create_bview(cmd_buffer, dst->buffer, dst->offset, dst->format, &dst_view);
itob_bind_descriptors(cmd_buffer, &src_view, &dst_view);
if (device->physical_device->rad_info.chip_class >= GFX9 &&
src->image->type == VK_IMAGE_TYPE_3D)
pipeline = cmd_buffer->device->meta_state.itob.pipeline_3d;
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
for (unsigned r = 0; r < num_rects; ++r) {
unsigned push_constants[4] = {
rects[r].src_x,
rects[r].src_y,
src->layer,
dst->pitch
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.itob.img_p_layout,
VK_SHADER_STAGE_COMPUTE_BIT, 0, 16,
push_constants);
radv_unaligned_dispatch(cmd_buffer, rects[r].width, rects[r].height, 1);
}
}
static void
btoi_bind_descriptors(struct radv_cmd_buffer *cmd_buffer,
struct radv_buffer_view *src,
struct radv_image_view *dst)
{
struct radv_device *device = cmd_buffer->device;
radv_meta_push_descriptor_set(cmd_buffer,
VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.btoi.img_p_layout,
0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
.pTexelBufferView = (VkBufferView[]) { radv_buffer_view_to_handle(src) },
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(dst),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
}
});
}
void
radv_meta_buffer_to_image_cs(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_buffer *src,
struct radv_meta_blit2d_surf *dst,
unsigned num_rects,
struct radv_meta_blit2d_rect *rects)
{
VkPipeline pipeline = cmd_buffer->device->meta_state.btoi.pipeline;
struct radv_device *device = cmd_buffer->device;
struct radv_buffer_view src_view;
struct radv_image_view dst_view;
create_bview(cmd_buffer, src->buffer, src->offset, src->format, &src_view);
create_iview(cmd_buffer, dst, &dst_view);
btoi_bind_descriptors(cmd_buffer, &src_view, &dst_view);
if (device->physical_device->rad_info.chip_class >= GFX9 &&
dst->image->type == VK_IMAGE_TYPE_3D)
pipeline = cmd_buffer->device->meta_state.btoi.pipeline_3d;
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
for (unsigned r = 0; r < num_rects; ++r) {
unsigned push_constants[4] = {
rects[r].dst_x,
rects[r].dst_y,
dst->layer,
src->pitch,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.btoi.img_p_layout,
VK_SHADER_STAGE_COMPUTE_BIT, 0, 16,
push_constants);
radv_unaligned_dispatch(cmd_buffer, rects[r].width, rects[r].height, 1);
}
}
static void
itoi_bind_descriptors(struct radv_cmd_buffer *cmd_buffer,
struct radv_image_view *src,
struct radv_image_view *dst)
{
struct radv_device *device = cmd_buffer->device;
radv_meta_push_descriptor_set(cmd_buffer,
VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.itoi.img_p_layout,
0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(src),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(dst),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
}
});
}
void
radv_meta_image_to_image_cs(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *src,
struct radv_meta_blit2d_surf *dst,
unsigned num_rects,
struct radv_meta_blit2d_rect *rects)
{
VkPipeline pipeline = cmd_buffer->device->meta_state.itoi.pipeline;
struct radv_device *device = cmd_buffer->device;
struct radv_image_view src_view, dst_view;
create_iview(cmd_buffer, src, &src_view);
create_iview(cmd_buffer, dst, &dst_view);
itoi_bind_descriptors(cmd_buffer, &src_view, &dst_view);
if (device->physical_device->rad_info.chip_class >= GFX9 &&
src->image->type == VK_IMAGE_TYPE_3D)
pipeline = cmd_buffer->device->meta_state.itoi.pipeline_3d;
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
for (unsigned r = 0; r < num_rects; ++r) {
unsigned push_constants[6] = {
rects[r].src_x,
rects[r].src_y,
src->layer,
rects[r].dst_x,
rects[r].dst_y,
dst->layer,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.itoi.img_p_layout,
VK_SHADER_STAGE_COMPUTE_BIT, 0, 24,
push_constants);
radv_unaligned_dispatch(cmd_buffer, rects[r].width, rects[r].height, 1);
}
}
static void
cleari_bind_descriptors(struct radv_cmd_buffer *cmd_buffer,
struct radv_image_view *dst_iview)
{
struct radv_device *device = cmd_buffer->device;
radv_meta_push_descriptor_set(cmd_buffer,
VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.cleari.img_p_layout,
0, /* set */
1, /* descriptorWriteCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(dst_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
},
});
}
void
radv_meta_clear_image_cs(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *dst,
const VkClearColorValue *clear_color)
{
VkPipeline pipeline = cmd_buffer->device->meta_state.cleari.pipeline;
struct radv_device *device = cmd_buffer->device;
struct radv_image_view dst_iview;
create_iview(cmd_buffer, dst, &dst_iview);
cleari_bind_descriptors(cmd_buffer, &dst_iview);
if (device->physical_device->rad_info.chip_class >= GFX9 &&
dst->image->type == VK_IMAGE_TYPE_3D)
pipeline = cmd_buffer->device->meta_state.cleari.pipeline_3d;
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
unsigned push_constants[5] = {
clear_color->uint32[0],
clear_color->uint32[1],
clear_color->uint32[2],
clear_color->uint32[3],
dst->layer,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.cleari.img_p_layout,
VK_SHADER_STAGE_COMPUTE_BIT, 0, 20,
push_constants);
radv_unaligned_dispatch(cmd_buffer, dst->image->info.width, dst->image->info.height, 1);
}