/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based on si_state.c
* Copyright © 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/* command buffer handling for SI */
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_cs.h"
#include "sid.h"
#include "gfx9d.h"
#include "radv_util.h"
#include "main/macros.h"
static void
si_write_harvested_raster_configs(struct radv_physical_device *physical_device,
struct radeon_winsys_cs *cs,
unsigned raster_config,
unsigned raster_config_1)
{
unsigned sh_per_se = MAX2(physical_device->rad_info.max_sh_per_se, 1);
unsigned num_se = MAX2(physical_device->rad_info.max_se, 1);
unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
unsigned rb_per_pkr = MIN2(num_rb / num_se / sh_per_se, 2);
unsigned rb_per_se = num_rb / num_se;
unsigned se_mask[4];
unsigned se;
se_mask[0] = ((1 << rb_per_se) - 1) & rb_mask;
se_mask[1] = (se_mask[0] << rb_per_se) & rb_mask;
se_mask[2] = (se_mask[1] << rb_per_se) & rb_mask;
se_mask[3] = (se_mask[2] << rb_per_se) & rb_mask;
assert(num_se == 1 || num_se == 2 || num_se == 4);
assert(sh_per_se == 1 || sh_per_se == 2);
assert(rb_per_pkr == 1 || rb_per_pkr == 2);
/* XXX: I can't figure out what the *_XSEL and *_YSEL
* fields are for, so I'm leaving them as their default
* values. */
if ((num_se > 2) && ((!se_mask[0] && !se_mask[1]) ||
(!se_mask[2] && !se_mask[3]))) {
raster_config_1 &= C_028354_SE_PAIR_MAP;
if (!se_mask[0] && !se_mask[1]) {
raster_config_1 |=
S_028354_SE_PAIR_MAP(V_028354_RASTER_CONFIG_SE_PAIR_MAP_3);
} else {
raster_config_1 |=
S_028354_SE_PAIR_MAP(V_028354_RASTER_CONFIG_SE_PAIR_MAP_0);
}
}
for (se = 0; se < num_se; se++) {
unsigned raster_config_se = raster_config;
unsigned pkr0_mask = ((1 << rb_per_pkr) - 1) << (se * rb_per_se);
unsigned pkr1_mask = pkr0_mask << rb_per_pkr;
int idx = (se / 2) * 2;
if ((num_se > 1) && (!se_mask[idx] || !se_mask[idx + 1])) {
raster_config_se &= C_028350_SE_MAP;
if (!se_mask[idx]) {
raster_config_se |=
S_028350_SE_MAP(V_028350_RASTER_CONFIG_SE_MAP_3);
} else {
raster_config_se |=
S_028350_SE_MAP(V_028350_RASTER_CONFIG_SE_MAP_0);
}
}
pkr0_mask &= rb_mask;
pkr1_mask &= rb_mask;
if (rb_per_se > 2 && (!pkr0_mask || !pkr1_mask)) {
raster_config_se &= C_028350_PKR_MAP;
if (!pkr0_mask) {
raster_config_se |=
S_028350_PKR_MAP(V_028350_RASTER_CONFIG_PKR_MAP_3);
} else {
raster_config_se |=
S_028350_PKR_MAP(V_028350_RASTER_CONFIG_PKR_MAP_0);
}
}
if (rb_per_se >= 2) {
unsigned rb0_mask = 1 << (se * rb_per_se);
unsigned rb1_mask = rb0_mask << 1;
rb0_mask &= rb_mask;
rb1_mask &= rb_mask;
if (!rb0_mask || !rb1_mask) {
raster_config_se &= C_028350_RB_MAP_PKR0;
if (!rb0_mask) {
raster_config_se |=
S_028350_RB_MAP_PKR0(V_028350_RASTER_CONFIG_RB_MAP_3);
} else {
raster_config_se |=
S_028350_RB_MAP_PKR0(V_028350_RASTER_CONFIG_RB_MAP_0);
}
}
if (rb_per_se > 2) {
rb0_mask = 1 << (se * rb_per_se + rb_per_pkr);
rb1_mask = rb0_mask << 1;
rb0_mask &= rb_mask;
rb1_mask &= rb_mask;
if (!rb0_mask || !rb1_mask) {
raster_config_se &= C_028350_RB_MAP_PKR1;
if (!rb0_mask) {
raster_config_se |=
S_028350_RB_MAP_PKR1(V_028350_RASTER_CONFIG_RB_MAP_3);
} else {
raster_config_se |=
S_028350_RB_MAP_PKR1(V_028350_RASTER_CONFIG_RB_MAP_0);
}
}
}
}
/* GRBM_GFX_INDEX has a different offset on SI and CI+ */
if (physical_device->rad_info.chip_class < CIK)
radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
S_00802C_SE_INDEX(se) |
S_00802C_SH_BROADCAST_WRITES(1) |
S_00802C_INSTANCE_BROADCAST_WRITES(1));
else
radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) |
S_030800_INSTANCE_BROADCAST_WRITES(1));
radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se);
if (physical_device->rad_info.chip_class >= CIK)
radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
}
/* GRBM_GFX_INDEX has a different offset on SI and CI+ */
if (physical_device->rad_info.chip_class < CIK)
radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
S_00802C_SE_BROADCAST_WRITES(1) |
S_00802C_SH_BROADCAST_WRITES(1) |
S_00802C_INSTANCE_BROADCAST_WRITES(1));
else
radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) |
S_030800_INSTANCE_BROADCAST_WRITES(1));
}
static void
si_emit_compute(struct radv_physical_device *physical_device,
struct radeon_winsys_cs *cs)
{
radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
radeon_set_sh_reg_seq(cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
S_00B854_WAVES_PER_SH(0x3));
radeon_emit(cs, 0);
/* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1 */
radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
radeon_emit(cs, S_00B85C_SH0_CU_EN(0xffff) | S_00B85C_SH1_CU_EN(0xffff));
if (physical_device->rad_info.chip_class >= CIK) {
/* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
radeon_set_sh_reg_seq(cs,
R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
radeon_emit(cs, S_00B864_SH0_CU_EN(0xffff) |
S_00B864_SH1_CU_EN(0xffff));
radeon_emit(cs, S_00B868_SH0_CU_EN(0xffff) |
S_00B868_SH1_CU_EN(0xffff));
}
/* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
* and is now per pipe, so it should be handled in the
* kernel if we want to use something other than the default value,
* which is now 0x22f.
*/
if (physical_device->rad_info.chip_class <= SI) {
/* XXX: This should be:
* (number of compute units) * 4 * (waves per simd) - 1 */
radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
0x190 /* Default value */);
}
}
void
si_init_compute(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_physical_device *physical_device = cmd_buffer->device->physical_device;
si_emit_compute(physical_device, cmd_buffer->cs);
}
/* 12.4 fixed-point */
static unsigned radv_pack_float_12p4(float x)
{
return x <= 0 ? 0 :
x >= 4096 ? 0xffff : x * 16;
}
static void
si_set_raster_config(struct radv_physical_device *physical_device,
struct radeon_winsys_cs *cs)
{
unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
unsigned raster_config, raster_config_1;
switch (physical_device->rad_info.family) {
case CHIP_TAHITI:
case CHIP_PITCAIRN:
raster_config = 0x2a00126a;
raster_config_1 = 0x00000000;
break;
case CHIP_VERDE:
raster_config = 0x0000124a;
raster_config_1 = 0x00000000;
break;
case CHIP_OLAND:
raster_config = 0x00000082;
raster_config_1 = 0x00000000;
break;
case CHIP_HAINAN:
raster_config = 0x00000000;
raster_config_1 = 0x00000000;
break;
case CHIP_BONAIRE:
raster_config = 0x16000012;
raster_config_1 = 0x00000000;
break;
case CHIP_HAWAII:
raster_config = 0x3a00161a;
raster_config_1 = 0x0000002e;
break;
case CHIP_FIJI:
if (physical_device->rad_info.cik_macrotile_mode_array[0] == 0x000000e8) {
/* old kernels with old tiling config */
raster_config = 0x16000012;
raster_config_1 = 0x0000002a;
} else {
raster_config = 0x3a00161a;
raster_config_1 = 0x0000002e;
}
break;
case CHIP_POLARIS10:
raster_config = 0x16000012;
raster_config_1 = 0x0000002a;
break;
case CHIP_POLARIS11:
case CHIP_POLARIS12:
raster_config = 0x16000012;
raster_config_1 = 0x00000000;
break;
case CHIP_TONGA:
raster_config = 0x16000012;
raster_config_1 = 0x0000002a;
break;
case CHIP_ICELAND:
if (num_rb == 1)
raster_config = 0x00000000;
else
raster_config = 0x00000002;
raster_config_1 = 0x00000000;
break;
case CHIP_CARRIZO:
raster_config = 0x00000002;
raster_config_1 = 0x00000000;
break;
case CHIP_KAVERI:
/* KV should be 0x00000002, but that causes problems with radeon */
raster_config = 0x00000000; /* 0x00000002 */
raster_config_1 = 0x00000000;
break;
case CHIP_KABINI:
case CHIP_MULLINS:
case CHIP_STONEY:
raster_config = 0x00000000;
raster_config_1 = 0x00000000;
break;
default:
fprintf(stderr,
"radv: Unknown GPU, using 0 for raster_config\n");
raster_config = 0x00000000;
raster_config_1 = 0x00000000;
break;
}
/* Always use the default config when all backends are enabled
* (or when we failed to determine the enabled backends).
*/
if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG,
raster_config);
if (physical_device->rad_info.chip_class >= CIK)
radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1,
raster_config_1);
} else {
si_write_harvested_raster_configs(physical_device, cs,
raster_config,
raster_config_1);
}
}
static void
si_emit_config(struct radv_physical_device *physical_device,
struct radeon_winsys_cs *cs)
{
int i;
/* Only SI can disable CLEAR_STATE for now. */
assert(physical_device->has_clear_state ||
physical_device->rad_info.chip_class == SI);
radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
radeon_emit(cs, CONTEXT_CONTROL_LOAD_ENABLE(1));
radeon_emit(cs, CONTEXT_CONTROL_SHADOW_ENABLE(1));
if (physical_device->has_clear_state) {
radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0));
radeon_emit(cs, 0);
}
if (physical_device->rad_info.chip_class <= VI)
si_set_raster_config(physical_device, cs);
radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
if (!physical_device->has_clear_state)
radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));
/* FIXME calculate these values somehow ??? */
if (physical_device->rad_info.chip_class <= VI) {
radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40);
}
if (!physical_device->has_clear_state) {
radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2);
radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
}
radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1);
if (!physical_device->has_clear_state)
radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0);
if (physical_device->rad_info.chip_class < CIK)
radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
S_008A14_CLIP_VTX_REORDER_ENA(1));
radeon_set_context_reg(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 0x76543210);
radeon_set_context_reg(cs, R_028BD8_PA_SC_CENTROID_PRIORITY_1, 0xfedcba98);
if (!physical_device->has_clear_state)
radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0);
/* CLEAR_STATE doesn't clear these correctly on certain generations.
* I don't know why. Deduced by trial and error.
*/
if (physical_device->rad_info.chip_class <= CIK) {
radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
S_028204_WINDOW_OFFSET_DISABLE(1));
radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL,
S_028240_WINDOW_OFFSET_DISABLE(1));
radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR,
S_028244_BR_X(16384) | S_028244_BR_Y(16384));
radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
S_028034_BR_X(16384) | S_028034_BR_Y(16384));
}
if (!physical_device->has_clear_state) {
for (i = 0; i < 16; i++) {
radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0);
radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0));
}
}
if (!physical_device->has_clear_state) {
radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF);
radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
/* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on SI */
radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0);
radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
}
radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE,
S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE));
if (physical_device->rad_info.chip_class >= GFX9) {
radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0);
radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0);
radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0);
} else {
/* These registers, when written, also overwrite the
* CLEAR_STATE context, so we can't rely on CLEAR_STATE setting
* them. It would be an issue if there was another UMD
* changing them.
*/
radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0);
radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0);
radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0);
}
if (physical_device->rad_info.chip_class >= CIK) {
if (physical_device->rad_info.chip_class >= GFX9) {
radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F));
} else {
radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS,
S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F));
radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
S_00B41C_WAVE_LIMIT(0x3F));
radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES,
S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F));
/* If this is 0, Bonaire can hang even if GS isn't being used.
* Other chips are unaffected. These are suboptimal values,
* but we don't use on-chip GS.
*/
radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL,
S_028A44_ES_VERTS_PER_SUBGRP(64) |
S_028A44_GS_PRIMS_PER_SUBGRP(4));
}
radeon_set_sh_reg(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F));
if (physical_device->rad_info.num_good_compute_units /
(physical_device->rad_info.max_se * physical_device->rad_info.max_sh_per_se) <= 4) {
/* Too few available compute units per SH. Disallowing
* VS to run on CU0 could hurt us more than late VS
* allocation would help.
*
* LATE_ALLOC_VS = 2 is the highest safe number.
*/
radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
S_00B118_CU_EN(0xffff) | S_00B118_WAVE_LIMIT(0x3F) );
radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(2));
} else {
/* Set LATE_ALLOC_VS == 31. It should be less than
* the number of scratch waves. Limitations:
* - VS can't execute on CU0.
* - If HS writes outputs to LDS, LS can't execute on CU0.
*/
radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
S_00B118_CU_EN(0xfffe) | S_00B118_WAVE_LIMIT(0x3F));
radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(31));
}
radeon_set_sh_reg(cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS,
S_00B01C_CU_EN(0xffff) | S_00B01C_WAVE_LIMIT(0x3F));
}
if (physical_device->rad_info.chip_class >= VI) {
uint32_t vgt_tess_distribution;
radeon_set_context_reg(cs, R_028424_CB_DCC_CONTROL,
S_028424_OVERWRITE_COMBINER_MRT_SHARING_DISABLE(1) |
S_028424_OVERWRITE_COMBINER_WATERMARK(4));
vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) |
S_028B50_ACCUM_TRI(11) |
S_028B50_ACCUM_QUAD(11) |
S_028B50_DONUT_SPLIT(16);
if (physical_device->rad_info.family == CHIP_FIJI ||
physical_device->rad_info.family >= CHIP_POLARIS10)
vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3);
radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
vgt_tess_distribution);
} else if (!physical_device->has_clear_state) {
radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
}
if (physical_device->rad_info.chip_class >= GFX9) {
unsigned num_se = physical_device->rad_info.max_se;
unsigned pc_lines = 0;
switch (physical_device->rad_info.family) {
case CHIP_VEGA10:
pc_lines = 4096;
break;
case CHIP_RAVEN:
pc_lines = 1024;
break;
default:
assert(0);
}
radeon_set_context_reg(cs, R_028C48_PA_SC_BINNER_CNTL_1,
S_028C48_MAX_ALLOC_COUNT(MIN2(128, pc_lines / (4 * num_se))) |
S_028C48_MAX_PRIM_PER_BATCH(1023));
radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1));
radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0);
}
unsigned tmp = (unsigned)(1.0 * 8.0);
radeon_set_context_reg_seq(cs, R_028A00_PA_SU_POINT_SIZE, 1);
radeon_emit(cs, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
radeon_set_context_reg_seq(cs, R_028A04_PA_SU_POINT_MINMAX, 1);
radeon_emit(cs, S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) |
S_028A04_MAX_SIZE(radv_pack_float_12p4(8192/2)));
if (!physical_device->has_clear_state) {
radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL,
S_028004_ZPASS_INCREMENT_DISABLE(1));
}
si_emit_compute(physical_device, cs);
}
void si_init_config(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_physical_device *physical_device = cmd_buffer->device->physical_device;
si_emit_config(physical_device, cmd_buffer->cs);
}
void
cik_create_gfx_config(struct radv_device *device)
{
struct radeon_winsys_cs *cs = device->ws->cs_create(device->ws, RING_GFX);
if (!cs)
return;
si_emit_config(device->physical_device, cs);
while (cs->cdw & 7) {
if (device->physical_device->rad_info.gfx_ib_pad_with_type2)
radeon_emit(cs, 0x80000000);
else
radeon_emit(cs, 0xffff1000);
}
device->gfx_init = device->ws->buffer_create(device->ws,
cs->cdw * 4, 4096,
RADEON_DOMAIN_GTT,
RADEON_FLAG_CPU_ACCESS|
RADEON_FLAG_NO_INTERPROCESS_SHARING |
RADEON_FLAG_READ_ONLY);
if (!device->gfx_init)
goto fail;
void *map = device->ws->buffer_map(device->gfx_init);
if (!map) {
device->ws->buffer_destroy(device->gfx_init);
device->gfx_init = NULL;
goto fail;
}
memcpy(map, cs->buf, cs->cdw * 4);
device->ws->buffer_unmap(device->gfx_init);
device->gfx_init_size_dw = cs->cdw;
fail:
device->ws->cs_destroy(cs);
}
static void
get_viewport_xform(const VkViewport *viewport,
float scale[3], float translate[3])
{
float x = viewport->x;
float y = viewport->y;
float half_width = 0.5f * viewport->width;
float half_height = 0.5f * viewport->height;
double n = viewport->minDepth;
double f = viewport->maxDepth;
scale[0] = half_width;
translate[0] = half_width + x;
scale[1] = half_height;
translate[1] = half_height + y;
scale[2] = (f - n);
translate[2] = n;
}
void
si_write_viewport(struct radeon_winsys_cs *cs, int first_vp,
int count, const VkViewport *viewports)
{
int i;
assert(count);
radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE +
first_vp * 4 * 6, count * 6);
for (i = 0; i < count; i++) {
float scale[3], translate[3];
get_viewport_xform(&viewports[i], scale, translate);
radeon_emit(cs, fui(scale[0]));
radeon_emit(cs, fui(translate[0]));
radeon_emit(cs, fui(scale[1]));
radeon_emit(cs, fui(translate[1]));
radeon_emit(cs, fui(scale[2]));
radeon_emit(cs, fui(translate[2]));
}
radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 +
first_vp * 4 * 2, count * 2);
for (i = 0; i < count; i++) {
float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth);
float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth);
radeon_emit(cs, fui(zmin));
radeon_emit(cs, fui(zmax));
}
}
static VkRect2D si_scissor_from_viewport(const VkViewport *viewport)
{
float scale[3], translate[3];
VkRect2D rect;
get_viewport_xform(viewport, scale, translate);
rect.offset.x = translate[0] - fabs(scale[0]);
rect.offset.y = translate[1] - fabs(scale[1]);
rect.extent.width = ceilf(translate[0] + fabs(scale[0])) - rect.offset.x;
rect.extent.height = ceilf(translate[1] + fabs(scale[1])) - rect.offset.y;
return rect;
}
static VkRect2D si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) {
VkRect2D ret;
ret.offset.x = MAX2(a->offset.x, b->offset.x);
ret.offset.y = MAX2(a->offset.y, b->offset.y);
ret.extent.width = MIN2(a->offset.x + a->extent.width,
b->offset.x + b->extent.width) - ret.offset.x;
ret.extent.height = MIN2(a->offset.y + a->extent.height,
b->offset.y + b->extent.height) - ret.offset.y;
return ret;
}
void
si_write_scissors(struct radeon_winsys_cs *cs, int first,
int count, const VkRect2D *scissors,
const VkViewport *viewports, bool can_use_guardband)
{
int i;
float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY;
const float max_range = 32767.0f;
if (!count)
return;
radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2);
for (i = 0; i < count; i++) {
VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i);
VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor);
get_viewport_xform(viewports + i, scale, translate);
scale[0] = abs(scale[0]);
scale[1] = abs(scale[1]);
if (scale[0] < 0.5)
scale[0] = 0.5;
if (scale[1] < 0.5)
scale[1] = 0.5;
guardband_x = MIN2(guardband_x, (max_range - abs(translate[0])) / scale[0]);
guardband_y = MIN2(guardband_y, (max_range - abs(translate[1])) / scale[1]);
radeon_emit(cs, S_028250_TL_X(scissor.offset.x) |
S_028250_TL_Y(scissor.offset.y) |
S_028250_WINDOW_OFFSET_DISABLE(1));
radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) |
S_028254_BR_Y(scissor.offset.y + scissor.extent.height));
}
if (!can_use_guardband) {
guardband_x = 1.0;
guardband_y = 1.0;
}
radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
radeon_emit(cs, fui(guardband_y));
radeon_emit(cs, fui(1.0));
radeon_emit(cs, fui(guardband_x));
radeon_emit(cs, fui(1.0));
}
static inline unsigned
radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
{
if (num == 0)
return 0;
if (info->incr == 0)
return 0;
if (num < info->min)
return 0;
return 1 + ((num - info->min) / info->incr);
}
uint32_t
si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer,
bool instanced_draw, bool indirect_draw,
uint32_t draw_vertex_count)
{
enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
const unsigned max_primgroup_in_wave = 2;
/* SWITCH_ON_EOP(0) is always preferable. */
bool wd_switch_on_eop = false;
bool ia_switch_on_eop = false;
bool ia_switch_on_eoi = false;
bool partial_vs_wave = false;
bool partial_es_wave = cmd_buffer->state.pipeline->graphics.partial_es_wave;
bool multi_instances_smaller_than_primgroup;
multi_instances_smaller_than_primgroup = indirect_draw;
if (!multi_instances_smaller_than_primgroup && instanced_draw) {
uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
if (num_prims < cmd_buffer->state.pipeline->graphics.primgroup_size)
multi_instances_smaller_than_primgroup = true;
}
ia_switch_on_eoi = cmd_buffer->state.pipeline->graphics.ia_switch_on_eoi;
partial_vs_wave = cmd_buffer->state.pipeline->graphics.partial_vs_wave;
if (chip_class >= CIK) {
wd_switch_on_eop = cmd_buffer->state.pipeline->graphics.wd_switch_on_eop;
/* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
* We don't know that for indirect drawing, so treat it as
* always problematic. */
if (family == CHIP_HAWAII &&
(instanced_draw || indirect_draw))
wd_switch_on_eop = true;
/* Performance recommendation for 4 SE Gfx7-8 parts if
* instances are smaller than a primgroup.
* Assume indirect draws always use small instances.
* This is needed for good VS wave utilization.
*/
if (chip_class <= VI &&
info->max_se == 4 &&
multi_instances_smaller_than_primgroup)
wd_switch_on_eop = true;
/* Required on CIK and later. */
if (info->max_se > 2 && !wd_switch_on_eop)
ia_switch_on_eoi = true;
/* Required by Hawaii and, for some special cases, by VI. */
if (ia_switch_on_eoi &&
(family == CHIP_HAWAII ||
(chip_class == VI &&
/* max primgroup in wave is always 2 - leave this for documentation */
(radv_pipeline_has_gs(cmd_buffer->state.pipeline) || max_primgroup_in_wave != 2))))
partial_vs_wave = true;
/* Instancing bug on Bonaire. */
if (family == CHIP_BONAIRE && ia_switch_on_eoi &&
(instanced_draw || indirect_draw))
partial_vs_wave = true;
/* If the WD switch is false, the IA switch must be false too. */
assert(wd_switch_on_eop || !ia_switch_on_eop);
}
/* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
if (chip_class <= VI && ia_switch_on_eoi)
partial_es_wave = true;
if (radv_pipeline_has_gs(cmd_buffer->state.pipeline)) {
/* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
* The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
* only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
*/
if (family == CHIP_HAWAII && ia_switch_on_eoi) {
bool set_vgt_flush = indirect_draw;
if (!set_vgt_flush && instanced_draw) {
uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
if (num_prims <= 1)
set_vgt_flush = true;
}
if (set_vgt_flush)
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
}
}
return cmd_buffer->state.pipeline->graphics.base_ia_multi_vgt_param |
S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
S_028AA8_WD_SWITCH_ON_EOP(chip_class >= CIK ? wd_switch_on_eop : 0);
}
void si_cs_emit_write_event_eop(struct radeon_winsys_cs *cs,
bool predicated,
enum chip_class chip_class,
bool is_mec,
unsigned event, unsigned event_flags,
unsigned data_sel,
uint64_t va,
uint32_t old_fence,
uint32_t new_fence)
{
unsigned op = EVENT_TYPE(event) |
EVENT_INDEX(5) |
event_flags;
unsigned is_gfx8_mec = is_mec && chip_class < GFX9;
if (chip_class >= GFX9 || is_gfx8_mec) {
radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, predicated));
radeon_emit(cs, op);
radeon_emit(cs, EOP_DATA_SEL(data_sel));
radeon_emit(cs, va); /* address lo */
radeon_emit(cs, va >> 32); /* address hi */
radeon_emit(cs, new_fence); /* immediate data lo */
radeon_emit(cs, 0); /* immediate data hi */
if (!is_gfx8_mec)
radeon_emit(cs, 0); /* unused */
} else {
if (chip_class == CIK ||
chip_class == VI) {
/* Two EOP events are required to make all engines go idle
* (and optional cache flushes executed) before the timestamp
* is written.
*/
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, predicated));
radeon_emit(cs, op);
radeon_emit(cs, va);
radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
radeon_emit(cs, old_fence); /* immediate data */
radeon_emit(cs, 0); /* unused */
}
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, predicated));
radeon_emit(cs, op);
radeon_emit(cs, va);
radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
radeon_emit(cs, new_fence); /* immediate data */
radeon_emit(cs, 0); /* unused */
}
}
void
si_emit_wait_fence(struct radeon_winsys_cs *cs,
bool predicated,
uint64_t va, uint32_t ref,
uint32_t mask)
{
radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, predicated));
radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, ref); /* reference value */
radeon_emit(cs, mask); /* mask */
radeon_emit(cs, 4); /* poll interval */
}
static void
si_emit_acquire_mem(struct radeon_winsys_cs *cs,
bool is_mec,
bool predicated,
bool is_gfx9,
unsigned cp_coher_cntl)
{
if (is_mec || is_gfx9) {
uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff;
radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, predicated) |
PKT3_SHADER_TYPE_S(is_mec));
radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
radeon_emit(cs, hi_val); /* CP_COHER_SIZE_HI */
radeon_emit(cs, 0); /* CP_COHER_BASE */
radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
} else {
/* ACQUIRE_MEM is only required on a compute ring. */
radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, predicated));
radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
radeon_emit(cs, 0); /* CP_COHER_BASE */
radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
}
}
void
si_cs_emit_cache_flush(struct radeon_winsys_cs *cs,
enum chip_class chip_class,
uint32_t *flush_cnt,
uint64_t flush_va,
bool is_mec,
enum radv_cmd_flush_bits flush_bits)
{
unsigned cp_coher_cntl = 0;
uint32_t flush_cb_db = flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB);
if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
if (flush_bits & RADV_CMD_FLAG_INV_SMEM_L1)
cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
if (chip_class <= VI) {
if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
S_0085F0_CB0_DEST_BASE_ENA(1) |
S_0085F0_CB1_DEST_BASE_ENA(1) |
S_0085F0_CB2_DEST_BASE_ENA(1) |
S_0085F0_CB3_DEST_BASE_ENA(1) |
S_0085F0_CB4_DEST_BASE_ENA(1) |
S_0085F0_CB5_DEST_BASE_ENA(1) |
S_0085F0_CB6_DEST_BASE_ENA(1) |
S_0085F0_CB7_DEST_BASE_ENA(1);
/* Necessary for DCC */
if (chip_class >= VI) {
si_cs_emit_write_event_eop(cs,
false,
chip_class,
is_mec,
V_028A90_FLUSH_AND_INV_CB_DATA_TS,
0, 0, 0, 0, 0);
}
}
if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
S_0085F0_DB_DEST_BASE_ENA(1);
}
}
if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
}
if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
}
if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
} else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
}
if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
}
if (chip_class >= GFX9 && flush_cb_db) {
unsigned cb_db_event, tc_flags;
#if 0
/* This breaks a bunch of:
dEQP-VK.renderpass.dedicated_allocation.formats.d32_sfloat_s8_uint.input*.
use the big hammer always.
*/
/* Set the CB/DB flush event. */
switch (flush_cb_db) {
case RADV_CMD_FLAG_FLUSH_AND_INV_CB:
cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
break;
case RADV_CMD_FLAG_FLUSH_AND_INV_DB:
cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
break;
default:
/* both CB & DB */
cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
}
#else
cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
#endif
/* These are the only allowed combinations. If you need to
* do multiple operations at once, do them separately.
* All operations that invalidate L2 also seem to invalidate
* metadata. Volatile (VOL) and WC flushes are not listed here.
*
* TC | TC_WB = writeback & invalidate L2 & L1
* TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
* TC_WB | TC_NC = writeback L2 for MTYPE == NC
* TC | TC_NC = invalidate L2 for MTYPE == NC
* TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
* TCL1 = invalidate L1
*/
tc_flags = EVENT_TC_ACTION_ENA |
EVENT_TC_MD_ACTION_ENA;
/* Ideally flush TC together with CB/DB. */
if (flush_bits & RADV_CMD_FLAG_INV_GLOBAL_L2) {
/* Writeback and invalidate everything in L2 & L1. */
tc_flags = EVENT_TC_ACTION_ENA |
EVENT_TC_WB_ACTION_ENA;
/* Clear the flags. */
flush_bits &= ~(RADV_CMD_FLAG_INV_GLOBAL_L2 |
RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2 |
RADV_CMD_FLAG_INV_VMEM_L1);
}
assert(flush_cnt);
uint32_t old_fence = (*flush_cnt)++;
si_cs_emit_write_event_eop(cs, false, chip_class, false, cb_db_event, tc_flags, 1,
flush_va, old_fence, *flush_cnt);
si_emit_wait_fence(cs, false, flush_va, *flush_cnt, 0xffffffff);
}
/* VGT state sync */
if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
}
/* Make sure ME is idle (it executes most packets) before continuing.
* This prevents read-after-write hazards between PFP and ME.
*/
if ((cp_coher_cntl ||
(flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
RADV_CMD_FLAG_INV_VMEM_L1 |
RADV_CMD_FLAG_INV_GLOBAL_L2 |
RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2))) &&
!is_mec) {
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
}
if ((flush_bits & RADV_CMD_FLAG_INV_GLOBAL_L2) ||
(chip_class <= CIK && (flush_bits & RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2))) {
si_emit_acquire_mem(cs, is_mec, false, chip_class >= GFX9,
cp_coher_cntl |
S_0085F0_TC_ACTION_ENA(1) |
S_0085F0_TCL1_ACTION_ENA(1) |
S_0301F0_TC_WB_ACTION_ENA(chip_class >= VI));
cp_coher_cntl = 0;
} else {
if(flush_bits & RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2) {
/* WB = write-back
* NC = apply to non-coherent MTYPEs
* (i.e. MTYPE <= 1, which is what we use everywhere)
*
* WB doesn't work without NC.
*/
si_emit_acquire_mem(cs, is_mec, false,
chip_class >= GFX9,
cp_coher_cntl |
S_0301F0_TC_WB_ACTION_ENA(1) |
S_0301F0_TC_NC_ACTION_ENA(1));
cp_coher_cntl = 0;
}
if (flush_bits & RADV_CMD_FLAG_INV_VMEM_L1) {
si_emit_acquire_mem(cs, is_mec,
false, chip_class >= GFX9,
cp_coher_cntl |
S_0085F0_TCL1_ACTION_ENA(1));
cp_coher_cntl = 0;
}
}
/* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle.
* Therefore, it should be last. Done in PFP.
*/
if (cp_coher_cntl)
si_emit_acquire_mem(cs, is_mec, false, chip_class >= GFX9, cp_coher_cntl);
}
void
si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
{
bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE;
if (is_compute)
cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
RADV_CMD_FLAG_VGT_FLUSH);
if (!cmd_buffer->state.flush_bits)
return;
enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128);
uint32_t *ptr = NULL;
uint64_t va = 0;
if (chip_class == GFX9) {
va = radv_buffer_get_va(cmd_buffer->gfx9_fence_bo) + cmd_buffer->gfx9_fence_offset;
ptr = &cmd_buffer->gfx9_fence_idx;
}
si_cs_emit_cache_flush(cmd_buffer->cs,
cmd_buffer->device->physical_device->rad_info.chip_class,
ptr, va,
radv_cmd_buffer_uses_mec(cmd_buffer),
cmd_buffer->state.flush_bits);
if (unlikely(cmd_buffer->device->trace_bo))
radv_cmd_buffer_trace_emit(cmd_buffer);
cmd_buffer->state.flush_bits = 0;
}
/* sets the CP predication state using a boolean stored at va */
void
si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, uint64_t va)
{
uint32_t op = 0;
if (va)
op = PRED_OP(PREDICATION_OP_BOOL64) | PREDICATION_DRAW_VISIBLE;
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
radeon_emit(cmd_buffer->cs, op);
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
} else {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
}
}
/* Set this if you want the 3D engine to wait until CP DMA is done.
* It should be set on the last CP DMA packet. */
#define CP_DMA_SYNC (1 << 0)
/* Set this if the source data was used as a destination in a previous CP DMA
* packet. It's for preventing a read-after-write (RAW) hazard between two
* CP DMA packets. */
#define CP_DMA_RAW_WAIT (1 << 1)
#define CP_DMA_USE_L2 (1 << 2)
#define CP_DMA_CLEAR (1 << 3)
/* Alignment for optimal performance. */
#define SI_CPDMA_ALIGNMENT 32
/* The max number of bytes that can be copied per packet. */
static inline unsigned cp_dma_max_byte_count(struct radv_cmd_buffer *cmd_buffer)
{
unsigned max = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 ?
S_414_BYTE_COUNT_GFX9(~0u) :
S_414_BYTE_COUNT_GFX6(~0u);
/* make it aligned for optimal performance */
return max & ~(SI_CPDMA_ALIGNMENT - 1);
}
/* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
* a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
* clear value.
*/
static void si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer,
uint64_t dst_va, uint64_t src_va,
unsigned size, unsigned flags)
{
struct radeon_winsys_cs *cs = cmd_buffer->cs;
uint32_t header = 0, command = 0;
assert(size);
assert(size <= cp_dma_max_byte_count(cmd_buffer));
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
command |= S_414_BYTE_COUNT_GFX9(size);
else
command |= S_414_BYTE_COUNT_GFX6(size);
/* Sync flags. */
if (flags & CP_DMA_SYNC)
header |= S_411_CP_SYNC(1);
else {
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
else
command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
}
if (flags & CP_DMA_RAW_WAIT)
command |= S_414_RAW_WAIT(1);
/* Src and dst flags. */
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
!(flags & CP_DMA_CLEAR) &&
src_va == dst_va)
header |= S_411_DSL_SEL(V_411_NOWHERE); /* prefetch only */
else if (flags & CP_DMA_USE_L2)
header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2);
if (flags & CP_DMA_CLEAR)
header |= S_411_SRC_SEL(V_411_DATA);
else if (flags & CP_DMA_USE_L2)
header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
if (cmd_buffer->device->physical_device->rad_info.chip_class >= CIK) {
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, cmd_buffer->state.predicating));
radeon_emit(cs, header);
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
radeon_emit(cs, command);
} else {
assert(!(flags & CP_DMA_USE_L2));
header |= S_411_SRC_ADDR_HI(src_va >> 32);
radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, cmd_buffer->state.predicating));
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
radeon_emit(cs, command);
}
/* CP DMA is executed in ME, but index buffers are read by PFP.
* This ensures that ME (CP DMA) is idle before PFP starts fetching
* indices. If we wanted to execute CP DMA in PFP, this packet
* should precede it.
*/
if ((flags & CP_DMA_SYNC) && cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
radeon_emit(cs, 0);
}
if (unlikely(cmd_buffer->device->trace_bo))
radv_cmd_buffer_trace_emit(cmd_buffer);
}
void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
unsigned size)
{
uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT -1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;
si_emit_cp_dma(cmd_buffer, aligned_va, aligned_va,
aligned_size, CP_DMA_USE_L2);
}
static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count,
uint64_t remaining_size, unsigned *flags)
{
/* Flush the caches for the first copy only.
* Also wait for the previous CP DMA operations.
*/
if (cmd_buffer->state.flush_bits) {
si_emit_cache_flush(cmd_buffer);
*flags |= CP_DMA_RAW_WAIT;
}
/* Do the synchronization after the last dma, so that all data
* is written to memory.
*/
if (byte_count == remaining_size)
*flags |= CP_DMA_SYNC;
}
static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
{
uint64_t va;
uint32_t offset;
unsigned dma_flags = 0;
unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
void *ptr;
assert(size < SI_CPDMA_ALIGNMENT);
radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, SI_CPDMA_ALIGNMENT, &offset, &ptr);
va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += offset;
si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size,
dma_flags);
}
void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
uint64_t src_va, uint64_t dest_va,
uint64_t size)
{
uint64_t main_src_va, main_dest_va;
uint64_t skipped_size = 0, realign_size = 0;
if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO ||
cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) {
/* If the size is not aligned, we must add a dummy copy at the end
* just to align the internal counter. Otherwise, the DMA engine
* would slow down by an order of magnitude for following copies.
*/
if (size % SI_CPDMA_ALIGNMENT)
realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
/* If the copy begins unaligned, we must start copying from the next
* aligned block and the skipped part should be copied after everything
* else has been copied. Only the src alignment matters, not dst.
*/
if (src_va % SI_CPDMA_ALIGNMENT) {
skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
/* The main part will be skipped if the size is too small. */
skipped_size = MIN2(skipped_size, size);
size -= skipped_size;
}
}
main_src_va = src_va + skipped_size;
main_dest_va = dest_va + skipped_size;
while (size) {
unsigned dma_flags = 0;
unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
si_cp_dma_prepare(cmd_buffer, byte_count,
size + skipped_size + realign_size,
&dma_flags);
si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va,
byte_count, dma_flags);
size -= byte_count;
main_src_va += byte_count;
main_dest_va += byte_count;
}
if (skipped_size) {
unsigned dma_flags = 0;
si_cp_dma_prepare(cmd_buffer, skipped_size,
size + skipped_size + realign_size,
&dma_flags);
si_emit_cp_dma(cmd_buffer, dest_va, src_va,
skipped_size, dma_flags);
}
if (realign_size)
si_cp_dma_realign_engine(cmd_buffer, realign_size);
}
void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
uint64_t size, unsigned value)
{
if (!size)
return;
assert(va % 4 == 0 && size % 4 == 0);
while (size) {
unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
unsigned dma_flags = CP_DMA_CLEAR;
si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
/* Emit the clear packet. */
si_emit_cp_dma(cmd_buffer, va, value, byte_count,
dma_flags);
size -= byte_count;
va += byte_count;
}
}
/* For MSAA sample positions. */
#define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y) \
(((s0x) & 0xf) | (((unsigned)(s0y) & 0xf) << 4) | \
(((unsigned)(s1x) & 0xf) << 8) | (((unsigned)(s1y) & 0xf) << 12) | \
(((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \
(((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28))
/* 2xMSAA
* There are two locations (4, 4), (-4, -4). */
const uint32_t eg_sample_locs_2x[4] = {
FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
};
const unsigned eg_max_dist_2x = 4;
/* 4xMSAA
* There are 4 locations: (-2, 6), (6, -2), (-6, 2), (2, 6). */
const uint32_t eg_sample_locs_4x[4] = {
FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
};
const unsigned eg_max_dist_4x = 6;
/* Cayman 8xMSAA */
static const uint32_t cm_sample_locs_8x[] = {
FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
};
static const unsigned cm_max_dist_8x = 8;
/* Cayman 16xMSAA */
static const uint32_t cm_sample_locs_16x[] = {
FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
};
static const unsigned cm_max_dist_16x = 8;
unsigned radv_cayman_get_maxdist(int log_samples)
{
unsigned max_dist[] = {
0,
eg_max_dist_2x,
eg_max_dist_4x,
cm_max_dist_8x,
cm_max_dist_16x
};
return max_dist[log_samples];
}
void radv_cayman_emit_msaa_sample_locs(struct radeon_winsys_cs *cs, int nr_samples)
{
switch (nr_samples) {
default:
case 1:
radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 0);
radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, 0);
radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, 0);
radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, 0);
break;
case 2:
radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, eg_sample_locs_2x[0]);
radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, eg_sample_locs_2x[1]);
radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, eg_sample_locs_2x[2]);
radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, eg_sample_locs_2x[3]);
break;
case 4:
radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, eg_sample_locs_4x[0]);
radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, eg_sample_locs_4x[1]);
radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, eg_sample_locs_4x[2]);
radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, eg_sample_locs_4x[3]);
break;
case 8:
radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14);
radeon_emit(cs, cm_sample_locs_8x[0]);
radeon_emit(cs, cm_sample_locs_8x[4]);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
radeon_emit(cs, cm_sample_locs_8x[1]);
radeon_emit(cs, cm_sample_locs_8x[5]);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
radeon_emit(cs, cm_sample_locs_8x[2]);
radeon_emit(cs, cm_sample_locs_8x[6]);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
radeon_emit(cs, cm_sample_locs_8x[3]);
radeon_emit(cs, cm_sample_locs_8x[7]);
break;
case 16:
radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 16);
radeon_emit(cs, cm_sample_locs_16x[0]);
radeon_emit(cs, cm_sample_locs_16x[4]);
radeon_emit(cs, cm_sample_locs_16x[8]);
radeon_emit(cs, cm_sample_locs_16x[12]);
radeon_emit(cs, cm_sample_locs_16x[1]);
radeon_emit(cs, cm_sample_locs_16x[5]);
radeon_emit(cs, cm_sample_locs_16x[9]);
radeon_emit(cs, cm_sample_locs_16x[13]);
radeon_emit(cs, cm_sample_locs_16x[2]);
radeon_emit(cs, cm_sample_locs_16x[6]);
radeon_emit(cs, cm_sample_locs_16x[10]);
radeon_emit(cs, cm_sample_locs_16x[14]);
radeon_emit(cs, cm_sample_locs_16x[3]);
radeon_emit(cs, cm_sample_locs_16x[7]);
radeon_emit(cs, cm_sample_locs_16x[11]);
radeon_emit(cs, cm_sample_locs_16x[15]);
break;
}
}
static void radv_cayman_get_sample_position(struct radv_device *device,
unsigned sample_count,
unsigned sample_index, float *out_value)
{
int offset, index;
struct {
int idx:4;
} val;
switch (sample_count) {
case 1:
default:
out_value[0] = out_value[1] = 0.5;
break;
case 2:
offset = 4 * (sample_index * 2);
val.idx = (eg_sample_locs_2x[0] >> offset) & 0xf;
out_value[0] = (float)(val.idx + 8) / 16.0f;
val.idx = (eg_sample_locs_2x[0] >> (offset + 4)) & 0xf;
out_value[1] = (float)(val.idx + 8) / 16.0f;
break;
case 4:
offset = 4 * (sample_index * 2);
val.idx = (eg_sample_locs_4x[0] >> offset) & 0xf;
out_value[0] = (float)(val.idx + 8) / 16.0f;
val.idx = (eg_sample_locs_4x[0] >> (offset + 4)) & 0xf;
out_value[1] = (float)(val.idx + 8) / 16.0f;
break;
case 8:
offset = 4 * (sample_index % 4 * 2);
index = (sample_index / 4) * 4;
val.idx = (cm_sample_locs_8x[index] >> offset) & 0xf;
out_value[0] = (float)(val.idx + 8) / 16.0f;
val.idx = (cm_sample_locs_8x[index] >> (offset + 4)) & 0xf;
out_value[1] = (float)(val.idx + 8) / 16.0f;
break;
case 16:
offset = 4 * (sample_index % 4 * 2);
index = (sample_index / 4) * 4;
val.idx = (cm_sample_locs_16x[index] >> offset) & 0xf;
out_value[0] = (float)(val.idx + 8) / 16.0f;
val.idx = (cm_sample_locs_16x[index] >> (offset + 4)) & 0xf;
out_value[1] = (float)(val.idx + 8) / 16.0f;
break;
}
}
void radv_device_init_msaa(struct radv_device *device)
{
int i;
radv_cayman_get_sample_position(device, 1, 0, device->sample_locations_1x[0]);
for (i = 0; i < 2; i++)
radv_cayman_get_sample_position(device, 2, i, device->sample_locations_2x[i]);
for (i = 0; i < 4; i++)
radv_cayman_get_sample_position(device, 4, i, device->sample_locations_4x[i]);
for (i = 0; i < 8; i++)
radv_cayman_get_sample_position(device, 8, i, device->sample_locations_8x[i]);
for (i = 0; i < 16; i++)
radv_cayman_get_sample_position(device, 16, i, device->sample_locations_16x[i]);
}