/*
* Copyright © 2016-2017 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "broadcom/common/v3d_device_info.h"
#include "v3d_compiler.h"
int
vir_get_non_sideband_nsrc(struct qinst *inst)
{
switch (inst->qpu.type) {
case V3D_QPU_INSTR_TYPE_BRANCH:
return 0;
case V3D_QPU_INSTR_TYPE_ALU:
if (inst->qpu.alu.add.op != V3D_QPU_A_NOP)
return v3d_qpu_add_op_num_src(inst->qpu.alu.add.op);
else
return v3d_qpu_mul_op_num_src(inst->qpu.alu.mul.op);
}
return 0;
}
int
vir_get_nsrc(struct qinst *inst)
{
int nsrc = vir_get_non_sideband_nsrc(inst);
if (vir_has_implicit_uniform(inst))
nsrc++;
return nsrc;
}
bool
vir_has_implicit_uniform(struct qinst *inst)
{
switch (inst->qpu.type) {
case V3D_QPU_INSTR_TYPE_BRANCH:
return true;
case V3D_QPU_INSTR_TYPE_ALU:
switch (inst->dst.file) {
case QFILE_TLBU:
return true;
default:
return inst->has_implicit_uniform;
}
}
return false;
}
/* The sideband uniform for textures gets stored after the normal ALU
* arguments.
*/
int
vir_get_implicit_uniform_src(struct qinst *inst)
{
return vir_get_nsrc(inst) - 1;
}
/**
* Returns whether the instruction has any side effects that must be
* preserved.
*/
bool
vir_has_side_effects(struct v3d_compile *c, struct qinst *inst)
{
switch (inst->qpu.type) {
case V3D_QPU_INSTR_TYPE_BRANCH:
return true;
case V3D_QPU_INSTR_TYPE_ALU:
switch (inst->qpu.alu.add.op) {
case V3D_QPU_A_SETREVF:
case V3D_QPU_A_SETMSF:
case V3D_QPU_A_VPMSETUP:
case V3D_QPU_A_STVPMV:
case V3D_QPU_A_STVPMD:
case V3D_QPU_A_STVPMP:
case V3D_QPU_A_VPMWT:
return true;
default:
break;
}
switch (inst->qpu.alu.mul.op) {
case V3D_QPU_M_MULTOP:
return true;
default:
break;
}
}
if (inst->qpu.sig.ldtmu ||
inst->qpu.sig.ldvary ||
inst->qpu.sig.wrtmuc ||
inst->qpu.sig.thrsw) {
return true;
}
return false;
}
bool
vir_is_float_input(struct qinst *inst)
{
/* XXX: More instrs */
switch (inst->qpu.type) {
case V3D_QPU_INSTR_TYPE_BRANCH:
return false;
case V3D_QPU_INSTR_TYPE_ALU:
switch (inst->qpu.alu.add.op) {
case V3D_QPU_A_FADD:
case V3D_QPU_A_FSUB:
case V3D_QPU_A_FMIN:
case V3D_QPU_A_FMAX:
case V3D_QPU_A_FTOIN:
return true;
default:
break;
}
switch (inst->qpu.alu.mul.op) {
case V3D_QPU_M_FMOV:
case V3D_QPU_M_VFMUL:
case V3D_QPU_M_FMUL:
return true;
default:
break;
}
}
return false;
}
bool
vir_is_raw_mov(struct qinst *inst)
{
if (inst->qpu.type != V3D_QPU_INSTR_TYPE_ALU ||
(inst->qpu.alu.mul.op != V3D_QPU_M_FMOV &&
inst->qpu.alu.mul.op != V3D_QPU_M_MOV)) {
return false;
}
if (inst->qpu.alu.add.output_pack != V3D_QPU_PACK_NONE ||
inst->qpu.alu.mul.output_pack != V3D_QPU_PACK_NONE) {
return false;
}
if (inst->qpu.flags.ac != V3D_QPU_COND_NONE ||
inst->qpu.flags.mc != V3D_QPU_COND_NONE)
return false;
return true;
}
bool
vir_is_add(struct qinst *inst)
{
return (inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU &&
inst->qpu.alu.add.op != V3D_QPU_A_NOP);
}
bool
vir_is_mul(struct qinst *inst)
{
return (inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU &&
inst->qpu.alu.mul.op != V3D_QPU_M_NOP);
}
bool
vir_is_tex(struct qinst *inst)
{
if (inst->dst.file == QFILE_MAGIC)
return v3d_qpu_magic_waddr_is_tmu(inst->dst.index);
return false;
}
bool
vir_depends_on_flags(struct qinst *inst)
{
if (inst->qpu.type == V3D_QPU_INSTR_TYPE_BRANCH) {
return (inst->qpu.branch.cond != V3D_QPU_BRANCH_COND_ALWAYS);
} else {
return (inst->qpu.flags.ac != V3D_QPU_COND_NONE &&
inst->qpu.flags.mc != V3D_QPU_COND_NONE);
}
}
bool
vir_writes_r3(const struct v3d_device_info *devinfo, struct qinst *inst)
{
for (int i = 0; i < vir_get_nsrc(inst); i++) {
switch (inst->src[i].file) {
case QFILE_VPM:
return true;
default:
break;
}
}
if (devinfo->ver < 41 && (inst->qpu.sig.ldvary ||
inst->qpu.sig.ldtlb ||
inst->qpu.sig.ldtlbu ||
inst->qpu.sig.ldvpm)) {
return true;
}
return false;
}
bool
vir_writes_r4(const struct v3d_device_info *devinfo, struct qinst *inst)
{
switch (inst->dst.file) {
case QFILE_MAGIC:
switch (inst->dst.index) {
case V3D_QPU_WADDR_RECIP:
case V3D_QPU_WADDR_RSQRT:
case V3D_QPU_WADDR_EXP:
case V3D_QPU_WADDR_LOG:
case V3D_QPU_WADDR_SIN:
return true;
}
break;
default:
break;
}
if (devinfo->ver < 41 && inst->qpu.sig.ldtmu)
return true;
return false;
}
void
vir_set_unpack(struct qinst *inst, int src,
enum v3d_qpu_input_unpack unpack)
{
assert(src == 0 || src == 1);
if (vir_is_add(inst)) {
if (src == 0)
inst->qpu.alu.add.a_unpack = unpack;
else
inst->qpu.alu.add.b_unpack = unpack;
} else {
assert(vir_is_mul(inst));
if (src == 0)
inst->qpu.alu.mul.a_unpack = unpack;
else
inst->qpu.alu.mul.b_unpack = unpack;
}
}
void
vir_set_cond(struct qinst *inst, enum v3d_qpu_cond cond)
{
if (vir_is_add(inst)) {
inst->qpu.flags.ac = cond;
} else {
assert(vir_is_mul(inst));
inst->qpu.flags.mc = cond;
}
}
void
vir_set_pf(struct qinst *inst, enum v3d_qpu_pf pf)
{
if (vir_is_add(inst)) {
inst->qpu.flags.apf = pf;
} else {
assert(vir_is_mul(inst));
inst->qpu.flags.mpf = pf;
}
}
#if 0
uint8_t
vir_channels_written(struct qinst *inst)
{
if (vir_is_mul(inst)) {
switch (inst->dst.pack) {
case QPU_PACK_MUL_NOP:
case QPU_PACK_MUL_8888:
return 0xf;
case QPU_PACK_MUL_8A:
return 0x1;
case QPU_PACK_MUL_8B:
return 0x2;
case QPU_PACK_MUL_8C:
return 0x4;
case QPU_PACK_MUL_8D:
return 0x8;
}
} else {
switch (inst->dst.pack) {
case QPU_PACK_A_NOP:
case QPU_PACK_A_8888:
case QPU_PACK_A_8888_SAT:
case QPU_PACK_A_32_SAT:
return 0xf;
case QPU_PACK_A_8A:
case QPU_PACK_A_8A_SAT:
return 0x1;
case QPU_PACK_A_8B:
case QPU_PACK_A_8B_SAT:
return 0x2;
case QPU_PACK_A_8C:
case QPU_PACK_A_8C_SAT:
return 0x4;
case QPU_PACK_A_8D:
case QPU_PACK_A_8D_SAT:
return 0x8;
case QPU_PACK_A_16A:
case QPU_PACK_A_16A_SAT:
return 0x3;
case QPU_PACK_A_16B:
case QPU_PACK_A_16B_SAT:
return 0xc;
}
}
unreachable("Bad pack field");
}
#endif
struct qreg
vir_get_temp(struct v3d_compile *c)
{
struct qreg reg;
reg.file = QFILE_TEMP;
reg.index = c->num_temps++;
if (c->num_temps > c->defs_array_size) {
uint32_t old_size = c->defs_array_size;
c->defs_array_size = MAX2(old_size * 2, 16);
c->defs = reralloc(c, c->defs, struct qinst *,
c->defs_array_size);
memset(&c->defs[old_size], 0,
sizeof(c->defs[0]) * (c->defs_array_size - old_size));
}
return reg;
}
struct qinst *
vir_add_inst(enum v3d_qpu_add_op op, struct qreg dst, struct qreg src0, struct qreg src1)
{
struct qinst *inst = calloc(1, sizeof(*inst));
inst->qpu = v3d_qpu_nop();
inst->qpu.alu.add.op = op;
inst->dst = dst;
inst->src[0] = src0;
inst->src[1] = src1;
inst->uniform = ~0;
return inst;
}
struct qinst *
vir_mul_inst(enum v3d_qpu_mul_op op, struct qreg dst, struct qreg src0, struct qreg src1)
{
struct qinst *inst = calloc(1, sizeof(*inst));
inst->qpu = v3d_qpu_nop();
inst->qpu.alu.mul.op = op;
inst->dst = dst;
inst->src[0] = src0;
inst->src[1] = src1;
inst->uniform = ~0;
return inst;
}
struct qinst *
vir_branch_inst(enum v3d_qpu_branch_cond cond, struct qreg src)
{
struct qinst *inst = calloc(1, sizeof(*inst));
inst->qpu = v3d_qpu_nop();
inst->qpu.type = V3D_QPU_INSTR_TYPE_BRANCH;
inst->qpu.branch.cond = cond;
inst->qpu.branch.msfign = V3D_QPU_MSFIGN_NONE;
inst->qpu.branch.bdi = V3D_QPU_BRANCH_DEST_REL;
inst->qpu.branch.ub = true;
inst->qpu.branch.bdu = V3D_QPU_BRANCH_DEST_REL;
inst->dst = vir_reg(QFILE_NULL, 0);
inst->src[0] = src;
inst->uniform = ~0;
return inst;
}
static void
vir_emit(struct v3d_compile *c, struct qinst *inst)
{
list_addtail(&inst->link, &c->cur_block->instructions);
}
/* Updates inst to write to a new temporary, emits it, and notes the def. */
struct qreg
vir_emit_def(struct v3d_compile *c, struct qinst *inst)
{
assert(inst->dst.file == QFILE_NULL);
inst->dst = vir_get_temp(c);
if (inst->dst.file == QFILE_TEMP)
c->defs[inst->dst.index] = inst;
vir_emit(c, inst);
return inst->dst;
}
struct qinst *
vir_emit_nondef(struct v3d_compile *c, struct qinst *inst)
{
if (inst->dst.file == QFILE_TEMP)
c->defs[inst->dst.index] = NULL;
vir_emit(c, inst);
return inst;
}
struct qblock *
vir_new_block(struct v3d_compile *c)
{
struct qblock *block = rzalloc(c, struct qblock);
list_inithead(&block->instructions);
block->predecessors = _mesa_set_create(block,
_mesa_hash_pointer,
_mesa_key_pointer_equal);
block->index = c->next_block_index++;
return block;
}
void
vir_set_emit_block(struct v3d_compile *c, struct qblock *block)
{
c->cur_block = block;
list_addtail(&block->link, &c->blocks);
}
struct qblock *
vir_entry_block(struct v3d_compile *c)
{
return list_first_entry(&c->blocks, struct qblock, link);
}
struct qblock *
vir_exit_block(struct v3d_compile *c)
{
return list_last_entry(&c->blocks, struct qblock, link);
}
void
vir_link_blocks(struct qblock *predecessor, struct qblock *successor)
{
_mesa_set_add(successor->predecessors, predecessor);
if (predecessor->successors[0]) {
assert(!predecessor->successors[1]);
predecessor->successors[1] = successor;
} else {
predecessor->successors[0] = successor;
}
}
const struct v3d_compiler *
v3d_compiler_init(const struct v3d_device_info *devinfo)
{
struct v3d_compiler *compiler = rzalloc(NULL, struct v3d_compiler);
if (!compiler)
return NULL;
compiler->devinfo = devinfo;
if (!vir_init_reg_sets(compiler)) {
ralloc_free(compiler);
return NULL;
}
return compiler;
}
void
v3d_compiler_free(const struct v3d_compiler *compiler)
{
ralloc_free((void *)compiler);
}
static struct v3d_compile *
vir_compile_init(const struct v3d_compiler *compiler,
struct v3d_key *key,
nir_shader *s,
int program_id, int variant_id)
{
struct v3d_compile *c = rzalloc(NULL, struct v3d_compile);
c->compiler = compiler;
c->devinfo = compiler->devinfo;
c->key = key;
c->program_id = program_id;
c->variant_id = variant_id;
c->threads = 4;
s = nir_shader_clone(c, s);
c->s = s;
list_inithead(&c->blocks);
vir_set_emit_block(c, vir_new_block(c));
c->output_position_index = -1;
c->output_point_size_index = -1;
c->output_sample_mask_index = -1;
c->def_ht = _mesa_hash_table_create(c, _mesa_hash_pointer,
_mesa_key_pointer_equal);
return c;
}
static void
v3d_lower_nir(struct v3d_compile *c)
{
struct nir_lower_tex_options tex_options = {
.lower_txd = true,
.lower_rect = false, /* XXX */
.lower_txp = ~0,
/* Apply swizzles to all samplers. */
.swizzle_result = ~0,
};
/* Lower the format swizzle and (for 32-bit returns)
* ARB_texture_swizzle-style swizzle.
*/
for (int i = 0; i < ARRAY_SIZE(c->key->tex); i++) {
for (int j = 0; j < 4; j++)
tex_options.swizzles[i][j] = c->key->tex[i].swizzle[j];
if (c->key->tex[i].clamp_s)
tex_options.saturate_s |= 1 << i;
if (c->key->tex[i].clamp_t)
tex_options.saturate_t |= 1 << i;
if (c->key->tex[i].clamp_r)
tex_options.saturate_r |= 1 << i;
}
NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
}
static void
v3d_lower_nir_late(struct v3d_compile *c)
{
NIR_PASS_V(c->s, v3d_nir_lower_io, c);
NIR_PASS_V(c->s, v3d_nir_lower_txf_ms, c);
NIR_PASS_V(c->s, nir_lower_idiv);
}
static void
v3d_set_prog_data_uniforms(struct v3d_compile *c,
struct v3d_prog_data *prog_data)
{
int count = c->num_uniforms;
struct v3d_uniform_list *ulist = &prog_data->uniforms;
ulist->count = count;
ulist->data = ralloc_array(prog_data, uint32_t, count);
memcpy(ulist->data, c->uniform_data,
count * sizeof(*ulist->data));
ulist->contents = ralloc_array(prog_data, enum quniform_contents, count);
memcpy(ulist->contents, c->uniform_contents,
count * sizeof(*ulist->contents));
}
/* Copy the compiler UBO range state to the compiled shader, dropping out
* arrays that were never referenced by an indirect load.
*
* (Note that QIR dead code elimination of an array access still leaves that
* array alive, though)
*/
static void
v3d_set_prog_data_ubo(struct v3d_compile *c,
struct v3d_prog_data *prog_data)
{
if (!c->num_ubo_ranges)
return;
prog_data->num_ubo_ranges = 0;
prog_data->ubo_ranges = ralloc_array(prog_data, struct v3d_ubo_range,
c->num_ubo_ranges);
for (int i = 0; i < c->num_ubo_ranges; i++) {
if (!c->ubo_range_used[i])
continue;
struct v3d_ubo_range *range = &c->ubo_ranges[i];
prog_data->ubo_ranges[prog_data->num_ubo_ranges++] = *range;
prog_data->ubo_size += range->size;
}
if (prog_data->ubo_size) {
if (V3D_DEBUG & V3D_DEBUG_SHADERDB) {
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n",
vir_get_stage_name(c),
c->program_id, c->variant_id,
prog_data->ubo_size / 4);
}
}
}
static void
v3d_set_prog_data(struct v3d_compile *c,
struct v3d_prog_data *prog_data)
{
prog_data->threads = c->threads;
prog_data->single_seg = !c->last_thrsw;
v3d_set_prog_data_uniforms(c, prog_data);
v3d_set_prog_data_ubo(c, prog_data);
}
static uint64_t *
v3d_return_qpu_insts(struct v3d_compile *c, uint32_t *final_assembly_size)
{
*final_assembly_size = c->qpu_inst_count * sizeof(uint64_t);
uint64_t *qpu_insts = malloc(*final_assembly_size);
if (!qpu_insts)
return NULL;
memcpy(qpu_insts, c->qpu_insts, *final_assembly_size);
vir_compile_destroy(c);
return qpu_insts;
}
uint64_t *v3d_compile_vs(const struct v3d_compiler *compiler,
struct v3d_vs_key *key,
struct v3d_vs_prog_data *prog_data,
nir_shader *s,
int program_id, int variant_id,
uint32_t *final_assembly_size)
{
struct v3d_compile *c = vir_compile_init(compiler, &key->base, s,
program_id, variant_id);
c->vs_key = key;
v3d_lower_nir(c);
if (key->clamp_color)
NIR_PASS_V(c->s, nir_lower_clamp_color_outputs);
if (key->base.ucp_enables) {
NIR_PASS_V(c->s, nir_lower_clip_vs, key->base.ucp_enables);
NIR_PASS_V(c->s, nir_lower_io_to_scalar,
nir_var_shader_out);
}
/* Note: VS output scalarizing must happen after nir_lower_clip_vs. */
NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out);
v3d_lower_nir_late(c);
v3d_optimize_nir(c->s);
NIR_PASS_V(c->s, nir_convert_from_ssa, true);
v3d_nir_to_vir(c);
v3d_set_prog_data(c, &prog_data->base);
prog_data->base.num_inputs = c->num_inputs;
/* The vertex data gets format converted by the VPM so that
* each attribute channel takes up a VPM column. Precompute
* the sizes for the shader record.
*/
for (int i = 0; i < ARRAY_SIZE(prog_data->vattr_sizes); i++) {
prog_data->vattr_sizes[i] = c->vattr_sizes[i];
prog_data->vpm_input_size += c->vattr_sizes[i];
}
/* Input/output segment size are in 8x32-bit multiples. */
prog_data->vpm_input_size = align(prog_data->vpm_input_size, 8) / 8;
prog_data->vpm_output_size = align(c->num_vpm_writes, 8) / 8;
prog_data->uses_vid = (s->info.system_values_read &
(1ull << SYSTEM_VALUE_VERTEX_ID));
prog_data->uses_iid = (s->info.system_values_read &
(1ull << SYSTEM_VALUE_INSTANCE_ID));
return v3d_return_qpu_insts(c, final_assembly_size);
}
static void
v3d_set_fs_prog_data_inputs(struct v3d_compile *c,
struct v3d_fs_prog_data *prog_data)
{
prog_data->base.num_inputs = c->num_inputs;
memcpy(prog_data->input_slots, c->input_slots,
c->num_inputs * sizeof(*c->input_slots));
STATIC_ASSERT(ARRAY_SIZE(prog_data->flat_shade_flags) >
(V3D_MAX_FS_INPUTS - 1) / 24);
for (int i = 0; i < V3D_MAX_FS_INPUTS; i++) {
if (BITSET_TEST(c->flat_shade_flags, i))
prog_data->flat_shade_flags[i / 24] |= 1 << (i % 24);
}
}
uint64_t *v3d_compile_fs(const struct v3d_compiler *compiler,
struct v3d_fs_key *key,
struct v3d_fs_prog_data *prog_data,
nir_shader *s,
int program_id, int variant_id,
uint32_t *final_assembly_size)
{
struct v3d_compile *c = vir_compile_init(compiler, &key->base, s,
program_id, variant_id);
c->fs_key = key;
v3d_lower_nir(c);
if (key->light_twoside)
NIR_PASS_V(c->s, nir_lower_two_sided_color);
if (key->clamp_color)
NIR_PASS_V(c->s, nir_lower_clamp_color_outputs);
if (key->alpha_test) {
NIR_PASS_V(c->s, nir_lower_alpha_test, key->alpha_test_func,
false);
}
if (key->base.ucp_enables)
NIR_PASS_V(c->s, nir_lower_clip_fs, key->base.ucp_enables);
/* Note: FS input scalarizing must happen after
* nir_lower_two_sided_color, which only handles a vec4 at a time.
*/
NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in);
v3d_lower_nir_late(c);
v3d_optimize_nir(c->s);
NIR_PASS_V(c->s, nir_convert_from_ssa, true);
v3d_nir_to_vir(c);
v3d_set_prog_data(c, &prog_data->base);
v3d_set_fs_prog_data_inputs(c, prog_data);
prog_data->writes_z = (c->s->info.outputs_written &
(1 << FRAG_RESULT_DEPTH));
prog_data->discard = c->s->info.fs.uses_discard;
return v3d_return_qpu_insts(c, final_assembly_size);
}
void
vir_remove_instruction(struct v3d_compile *c, struct qinst *qinst)
{
if (qinst->dst.file == QFILE_TEMP)
c->defs[qinst->dst.index] = NULL;
list_del(&qinst->link);
free(qinst);
}
struct qreg
vir_follow_movs(struct v3d_compile *c, struct qreg reg)
{
/* XXX
int pack = reg.pack;
while (reg.file == QFILE_TEMP &&
c->defs[reg.index] &&
(c->defs[reg.index]->op == QOP_MOV ||
c->defs[reg.index]->op == QOP_FMOV) &&
!c->defs[reg.index]->dst.pack &&
!c->defs[reg.index]->src[0].pack) {
reg = c->defs[reg.index]->src[0];
}
reg.pack = pack;
*/
return reg;
}
void
vir_compile_destroy(struct v3d_compile *c)
{
vir_for_each_block(block, c) {
while (!list_empty(&block->instructions)) {
struct qinst *qinst =
list_first_entry(&block->instructions,
struct qinst, link);
vir_remove_instruction(c, qinst);
}
}
ralloc_free(c);
}
struct qreg
vir_uniform(struct v3d_compile *c,
enum quniform_contents contents,
uint32_t data)
{
for (int i = 0; i < c->num_uniforms; i++) {
if (c->uniform_contents[i] == contents &&
c->uniform_data[i] == data) {
return vir_reg(QFILE_UNIF, i);
}
}
uint32_t uniform = c->num_uniforms++;
if (uniform >= c->uniform_array_size) {
c->uniform_array_size = MAX2(MAX2(16, uniform + 1),
c->uniform_array_size * 2);
c->uniform_data = reralloc(c, c->uniform_data,
uint32_t,
c->uniform_array_size);
c->uniform_contents = reralloc(c, c->uniform_contents,
enum quniform_contents,
c->uniform_array_size);
}
c->uniform_contents[uniform] = contents;
c->uniform_data[uniform] = data;
return vir_reg(QFILE_UNIF, uniform);
}
void
vir_PF(struct v3d_compile *c, struct qreg src, enum v3d_qpu_pf pf)
{
struct qinst *last_inst = NULL;
if (!list_empty(&c->cur_block->instructions))
last_inst = (struct qinst *)c->cur_block->instructions.prev;
if (src.file != QFILE_TEMP ||
!c->defs[src.index] ||
last_inst != c->defs[src.index]) {
/* XXX: Make the MOV be the appropriate type */
last_inst = vir_MOV_dest(c, vir_reg(QFILE_NULL, 0), src);
last_inst = (struct qinst *)c->cur_block->instructions.prev;
}
vir_set_pf(last_inst, pf);
}
#define OPTPASS(func) \
do { \
bool stage_progress = func(c); \
if (stage_progress) { \
progress = true; \
if (print_opt_debug) { \
fprintf(stderr, \
"VIR opt pass %2d: %s progress\n", \
pass, #func); \
} \
/*XXX vir_validate(c);*/ \
} \
} while (0)
void
vir_optimize(struct v3d_compile *c)
{
bool print_opt_debug = false;
int pass = 1;
while (true) {
bool progress = false;
OPTPASS(vir_opt_copy_propagate);
OPTPASS(vir_opt_dead_code);
if (!progress)
break;
pass++;
}
}
const char *
vir_get_stage_name(struct v3d_compile *c)
{
if (c->vs_key && c->vs_key->is_coord)
return "MESA_SHADER_COORD";
else
return gl_shader_stage_name(c->s->info.stage);
}