/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "main/core.h"
#include "ir.h"
#include "linker.h"
#include "ir_uniform.h"
#include "string_to_uint_map.h"
/* These functions are put in a "private" namespace instead of being marked
* static so that the unit tests can access them. See
* http://code.google.com/p/googletest/wiki/AdvancedGuide#Testing_Private_Code
*/
namespace linker {
static gl_uniform_storage *
get_storage(struct gl_shader_program *prog, const char *name)
{
unsigned id;
if (prog->UniformHash->get(id, name))
return &prog->data->UniformStorage[id];
assert(!"No uniform storage found!");
return NULL;
}
void
copy_constant_to_storage(union gl_constant_value *storage,
const ir_constant *val,
const enum glsl_base_type base_type,
const unsigned int elements,
unsigned int boolean_true)
{
for (unsigned int i = 0; i < elements; i++) {
switch (base_type) {
case GLSL_TYPE_UINT:
storage[i].u = val->value.u[i];
break;
case GLSL_TYPE_INT:
case GLSL_TYPE_SAMPLER:
storage[i].i = val->value.i[i];
break;
case GLSL_TYPE_FLOAT:
storage[i].f = val->value.f[i];
break;
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
/* XXX need to check on big-endian */
memcpy(&storage[i * 2].u, &val->value.d[i], sizeof(double));
break;
case GLSL_TYPE_BOOL:
storage[i].b = val->value.b[i] ? boolean_true : 0;
break;
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_VOID:
case GLSL_TYPE_SUBROUTINE:
case GLSL_TYPE_FUNCTION:
case GLSL_TYPE_ERROR:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_FLOAT16:
/* All other types should have already been filtered by other
* paths in the caller.
*/
assert(!"Should not get here.");
break;
}
}
}
/**
* Initialize an opaque uniform from the value of an explicit binding
* qualifier specified in the shader. Atomic counters are different because
* they have no storage and should be handled elsewhere.
*/
static void
set_opaque_binding(void *mem_ctx, gl_shader_program *prog,
const ir_variable *var, const glsl_type *type,
const char *name, int *binding)
{
if (type->is_array() && type->fields.array->is_array()) {
const glsl_type *const element_type = type->fields.array;
for (unsigned int i = 0; i < type->length; i++) {
const char *element_name = ralloc_asprintf(mem_ctx, "%s[%d]", name, i);
set_opaque_binding(mem_ctx, prog, var, element_type,
element_name, binding);
}
} else {
struct gl_uniform_storage *const storage = get_storage(prog, name);
if (!storage)
return;
const unsigned elements = MAX2(storage->array_elements, 1);
/* Section 4.4.6 (Opaque-Uniform Layout Qualifiers) of the GLSL 4.50 spec
* says:
*
* "If the binding identifier is used with an array, the first element
* of the array takes the specified unit and each subsequent element
* takes the next consecutive unit."
*/
for (unsigned int i = 0; i < elements; i++) {
storage->storage[i].i = (*binding)++;
}
for (int sh = 0; sh < MESA_SHADER_STAGES; sh++) {
gl_linked_shader *shader = prog->_LinkedShaders[sh];
if (!shader)
continue;
if (!storage->opaque[sh].active)
continue;
if (storage->type->is_sampler()) {
for (unsigned i = 0; i < elements; i++) {
const unsigned index = storage->opaque[sh].index + i;
if (var->data.bindless) {
if (index >= shader->Program->sh.NumBindlessSamplers)
break;
shader->Program->sh.BindlessSamplers[index].unit =
storage->storage[i].i;
shader->Program->sh.BindlessSamplers[index].bound = true;
shader->Program->sh.HasBoundBindlessSampler = true;
} else {
if (index >= ARRAY_SIZE(shader->Program->SamplerUnits))
break;
shader->Program->SamplerUnits[index] =
storage->storage[i].i;
}
}
} else if (storage->type->is_image()) {
for (unsigned i = 0; i < elements; i++) {
const unsigned index = storage->opaque[sh].index + i;
if (var->data.bindless) {
if (index >= shader->Program->sh.NumBindlessImages)
break;
shader->Program->sh.BindlessImages[index].unit =
storage->storage[i].i;
shader->Program->sh.BindlessImages[index].bound = true;
shader->Program->sh.HasBoundBindlessImage = true;
} else {
if (index >= ARRAY_SIZE(shader->Program->sh.ImageUnits))
break;
shader->Program->sh.ImageUnits[index] =
storage->storage[i].i;
}
}
}
}
}
}
static void
set_block_binding(gl_shader_program *prog, const char *block_name,
unsigned mode, int binding)
{
unsigned num_blocks = mode == ir_var_uniform ?
prog->data->NumUniformBlocks :
prog->data->NumShaderStorageBlocks;
struct gl_uniform_block *blks = mode == ir_var_uniform ?
prog->data->UniformBlocks : prog->data->ShaderStorageBlocks;
for (unsigned i = 0; i < num_blocks; i++) {
if (!strcmp(blks[i].Name, block_name)) {
blks[i].Binding = binding;
return;
}
}
unreachable("Failed to initialize block binding");
}
void
set_uniform_initializer(void *mem_ctx, gl_shader_program *prog,
const char *name, const glsl_type *type,
ir_constant *val, unsigned int boolean_true)
{
const glsl_type *t_without_array = type->without_array();
if (type->is_record()) {
for (unsigned int i = 0; i < type->length; i++) {
const glsl_type *field_type = type->fields.structure[i].type;
const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
type->fields.structure[i].name);
set_uniform_initializer(mem_ctx, prog, field_name,
field_type, val->get_record_field(i),
boolean_true);
}
return;
} else if (t_without_array->is_record() ||
(type->is_array() && type->fields.array->is_array())) {
const glsl_type *const element_type = type->fields.array;
for (unsigned int i = 0; i < type->length; i++) {
const char *element_name = ralloc_asprintf(mem_ctx, "%s[%d]", name, i);
set_uniform_initializer(mem_ctx, prog, element_name,
element_type, val->const_elements[i],
boolean_true);
}
return;
}
struct gl_uniform_storage *const storage = get_storage(prog, name);
if (!storage)
return;
if (val->type->is_array()) {
const enum glsl_base_type base_type =
val->const_elements[0]->type->base_type;
const unsigned int elements = val->const_elements[0]->type->components();
unsigned int idx = 0;
unsigned dmul = glsl_base_type_is_64bit(base_type) ? 2 : 1;
assert(val->type->length >= storage->array_elements);
for (unsigned int i = 0; i < storage->array_elements; i++) {
copy_constant_to_storage(& storage->storage[idx],
val->const_elements[i],
base_type,
elements,
boolean_true);
idx += elements * dmul;
}
} else {
copy_constant_to_storage(storage->storage,
val,
val->type->base_type,
val->type->components(),
boolean_true);
if (storage->type->is_sampler()) {
for (int sh = 0; sh < MESA_SHADER_STAGES; sh++) {
gl_linked_shader *shader = prog->_LinkedShaders[sh];
if (shader && storage->opaque[sh].active) {
unsigned index = storage->opaque[sh].index;
shader->Program->SamplerUnits[index] = storage->storage[0].i;
}
}
}
}
}
}
void
link_set_uniform_initializers(struct gl_shader_program *prog,
unsigned int boolean_true)
{
void *mem_ctx = NULL;
for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *shader = prog->_LinkedShaders[i];
if (shader == NULL)
continue;
foreach_in_list(ir_instruction, node, shader->ir) {
ir_variable *const var = node->as_variable();
if (!var || (var->data.mode != ir_var_uniform &&
var->data.mode != ir_var_shader_storage))
continue;
if (!mem_ctx)
mem_ctx = ralloc_context(NULL);
if (var->data.explicit_binding) {
const glsl_type *const type = var->type;
if (type->without_array()->is_sampler() ||
type->without_array()->is_image()) {
int binding = var->data.binding;
linker::set_opaque_binding(mem_ctx, prog, var, var->type,
var->name, &binding);
} else if (var->is_in_buffer_block()) {
const glsl_type *const iface_type = var->get_interface_type();
/* If the variable is an array and it is an interface instance,
* we need to set the binding for each array element. Just
* checking that the variable is an array is not sufficient.
* The variable could be an array element of a uniform block
* that lacks an instance name. For example:
*
* uniform U {
* float f[4];
* };
*
* In this case "f" would pass is_in_buffer_block (above) and
* type->is_array(), but it will fail is_interface_instance().
*/
if (var->is_interface_instance() && var->type->is_array()) {
for (unsigned i = 0; i < var->type->length; i++) {
const char *name =
ralloc_asprintf(mem_ctx, "%s[%u]", iface_type->name, i);
/* Section 4.4.3 (Uniform Block Layout Qualifiers) of the
* GLSL 4.20 spec says:
*
* "If the binding identifier is used with a uniform
* block instanced as an array then the first element
* of the array takes the specified block binding and
* each subsequent element takes the next consecutive
* uniform block binding point."
*/
linker::set_block_binding(prog, name, var->data.mode,
var->data.binding + i);
}
} else {
linker::set_block_binding(prog, iface_type->name,
var->data.mode,
var->data.binding);
}
} else if (type->contains_atomic()) {
/* we don't actually need to do anything. */
} else {
assert(!"Explicit binding not on a sampler, UBO or atomic.");
}
} else if (var->constant_initializer) {
linker::set_uniform_initializer(mem_ctx, prog, var->name,
var->type, var->constant_initializer,
boolean_true);
}
}
}
memcpy(prog->data->UniformDataDefaults, prog->data->UniformDataSlots,
sizeof(union gl_constant_value) * prog->data->NumUniformDataSlots);
ralloc_free(mem_ctx);
}