/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file linker.cpp
* GLSL linker implementation
*
* Given a set of shaders that are to be linked to generate a final program,
* there are three distinct stages.
*
* In the first stage shaders are partitioned into groups based on the shader
* type. All shaders of a particular type (e.g., vertex shaders) are linked
* together.
*
* - Undefined references in each shader are resolve to definitions in
* another shader.
* - Types and qualifiers of uniforms, outputs, and global variables defined
* in multiple shaders with the same name are verified to be the same.
* - Initializers for uniforms and global variables defined
* in multiple shaders with the same name are verified to be the same.
*
* The result, in the terminology of the GLSL spec, is a set of shader
* executables for each processing unit.
*
* After the first stage is complete, a series of semantic checks are performed
* on each of the shader executables.
*
* - Each shader executable must define a \c main function.
* - Each vertex shader executable must write to \c gl_Position.
* - Each fragment shader executable must write to either \c gl_FragData or
* \c gl_FragColor.
*
* In the final stage individual shader executables are linked to create a
* complete exectuable.
*
* - Types of uniforms defined in multiple shader stages with the same name
* are verified to be the same.
* - Initializers for uniforms defined in multiple shader stages with the
* same name are verified to be the same.
* - Types and qualifiers of outputs defined in one stage are verified to
* be the same as the types and qualifiers of inputs defined with the same
* name in a later stage.
*
* \author Ian Romanick <ian.d.romanick@intel.com>
*/
#include <ctype.h>
#include "util/strndup.h"
#include "main/core.h"
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "ir.h"
#include "program.h"
#include "program/prog_instruction.h"
#include "program/program.h"
#include "util/mesa-sha1.h"
#include "util/set.h"
#include "string_to_uint_map.h"
#include "linker.h"
#include "link_varyings.h"
#include "ir_optimization.h"
#include "ir_rvalue_visitor.h"
#include "ir_uniform.h"
#include "builtin_functions.h"
#include "shader_cache.h"
#include "main/shaderobj.h"
#include "main/enums.h"
namespace {
struct find_variable {
const char *name;
bool found;
find_variable(const char *name) : name(name), found(false) {}
};
/**
* Visitor that determines whether or not a variable is ever written.
*
* Use \ref find_assignments for convenience.
*/
class find_assignment_visitor : public ir_hierarchical_visitor {
public:
find_assignment_visitor(unsigned num_vars,
find_variable * const *vars)
: num_variables(num_vars), num_found(0), variables(vars)
{
}
virtual ir_visitor_status visit_enter(ir_assignment *ir)
{
ir_variable *const var = ir->lhs->variable_referenced();
return check_variable_name(var->name);
}
virtual ir_visitor_status visit_enter(ir_call *ir)
{
foreach_two_lists(formal_node, &ir->callee->parameters,
actual_node, &ir->actual_parameters) {
ir_rvalue *param_rval = (ir_rvalue *) actual_node;
ir_variable *sig_param = (ir_variable *) formal_node;
if (sig_param->data.mode == ir_var_function_out ||
sig_param->data.mode == ir_var_function_inout) {
ir_variable *var = param_rval->variable_referenced();
if (var && check_variable_name(var->name) == visit_stop)
return visit_stop;
}
}
if (ir->return_deref != NULL) {
ir_variable *const var = ir->return_deref->variable_referenced();
if (check_variable_name(var->name) == visit_stop)
return visit_stop;
}
return visit_continue_with_parent;
}
private:
ir_visitor_status check_variable_name(const char *name)
{
for (unsigned i = 0; i < num_variables; ++i) {
if (strcmp(variables[i]->name, name) == 0) {
if (!variables[i]->found) {
variables[i]->found = true;
assert(num_found < num_variables);
if (++num_found == num_variables)
return visit_stop;
}
break;
}
}
return visit_continue_with_parent;
}
private:
unsigned num_variables; /**< Number of variables to find */
unsigned num_found; /**< Number of variables already found */
find_variable * const *variables; /**< Variables to find */
};
/**
* Determine whether or not any of NULL-terminated list of variables is ever
* written to.
*/
static void
find_assignments(exec_list *ir, find_variable * const *vars)
{
unsigned num_variables = 0;
for (find_variable * const *v = vars; *v; ++v)
num_variables++;
find_assignment_visitor visitor(num_variables, vars);
visitor.run(ir);
}
/**
* Determine whether or not the given variable is ever written to.
*/
static void
find_assignments(exec_list *ir, find_variable *var)
{
find_assignment_visitor visitor(1, &var);
visitor.run(ir);
}
/**
* Visitor that determines whether or not a variable is ever read.
*/
class find_deref_visitor : public ir_hierarchical_visitor {
public:
find_deref_visitor(const char *name)
: name(name), found(false)
{
/* empty */
}
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
if (strcmp(this->name, ir->var->name) == 0) {
this->found = true;
return visit_stop;
}
return visit_continue;
}
bool variable_found() const
{
return this->found;
}
private:
const char *name; /**< Find writes to a variable with this name. */
bool found; /**< Was a write to the variable found? */
};
/**
* A visitor helper that provides methods for updating the types of
* ir_dereferences. Classes that update variable types (say, updating
* array sizes) will want to use this so that dereference types stay in sync.
*/
class deref_type_updater : public ir_hierarchical_visitor {
public:
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
ir->type = ir->var->type;
return visit_continue;
}
virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
{
const glsl_type *const vt = ir->array->type;
if (vt->is_array())
ir->type = vt->fields.array;
return visit_continue;
}
virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
{
ir->type = ir->record->type->fields.structure[ir->field_idx].type;
return visit_continue;
}
};
class array_resize_visitor : public deref_type_updater {
public:
unsigned num_vertices;
gl_shader_program *prog;
gl_shader_stage stage;
array_resize_visitor(unsigned num_vertices,
gl_shader_program *prog,
gl_shader_stage stage)
{
this->num_vertices = num_vertices;
this->prog = prog;
this->stage = stage;
}
virtual ~array_resize_visitor()
{
/* empty */
}
virtual ir_visitor_status visit(ir_variable *var)
{
if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
var->data.patch)
return visit_continue;
unsigned size = var->type->length;
if (stage == MESA_SHADER_GEOMETRY) {
/* Generate a link error if the shader has declared this array with
* an incorrect size.
*/
if (!var->data.implicit_sized_array &&
size && size != this->num_vertices) {
linker_error(this->prog, "size of array %s declared as %u, "
"but number of input vertices is %u\n",
var->name, size, this->num_vertices);
return visit_continue;
}
/* Generate a link error if the shader attempts to access an input
* array using an index too large for its actual size assigned at
* link time.
*/
if (var->data.max_array_access >= (int)this->num_vertices) {
linker_error(this->prog, "%s shader accesses element %i of "
"%s, but only %i input vertices\n",
_mesa_shader_stage_to_string(this->stage),
var->data.max_array_access, var->name, this->num_vertices);
return visit_continue;
}
}
var->type = glsl_type::get_array_instance(var->type->fields.array,
this->num_vertices);
var->data.max_array_access = this->num_vertices - 1;
return visit_continue;
}
};
/**
* Visitor that determines the highest stream id to which a (geometry) shader
* emits vertices. It also checks whether End{Stream}Primitive is ever called.
*/
class find_emit_vertex_visitor : public ir_hierarchical_visitor {
public:
find_emit_vertex_visitor(int max_allowed)
: max_stream_allowed(max_allowed),
invalid_stream_id(0),
invalid_stream_id_from_emit_vertex(false),
end_primitive_found(false),
uses_non_zero_stream(false)
{
/* empty */
}
virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
{
int stream_id = ir->stream_id();
if (stream_id < 0) {
invalid_stream_id = stream_id;
invalid_stream_id_from_emit_vertex = true;
return visit_stop;
}
if (stream_id > max_stream_allowed) {
invalid_stream_id = stream_id;
invalid_stream_id_from_emit_vertex = true;
return visit_stop;
}
if (stream_id != 0)
uses_non_zero_stream = true;
return visit_continue;
}
virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
{
end_primitive_found = true;
int stream_id = ir->stream_id();
if (stream_id < 0) {
invalid_stream_id = stream_id;
invalid_stream_id_from_emit_vertex = false;
return visit_stop;
}
if (stream_id > max_stream_allowed) {
invalid_stream_id = stream_id;
invalid_stream_id_from_emit_vertex = false;
return visit_stop;
}
if (stream_id != 0)
uses_non_zero_stream = true;
return visit_continue;
}
bool error()
{
return invalid_stream_id != 0;
}
const char *error_func()
{
return invalid_stream_id_from_emit_vertex ?
"EmitStreamVertex" : "EndStreamPrimitive";
}
int error_stream()
{
return invalid_stream_id;
}
bool uses_streams()
{
return uses_non_zero_stream;
}
bool uses_end_primitive()
{
return end_primitive_found;
}
private:
int max_stream_allowed;
int invalid_stream_id;
bool invalid_stream_id_from_emit_vertex;
bool end_primitive_found;
bool uses_non_zero_stream;
};
/* Class that finds array derefs and check if indexes are dynamic. */
class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
{
public:
dynamic_sampler_array_indexing_visitor() :
dynamic_sampler_array_indexing(false)
{
}
ir_visitor_status visit_enter(ir_dereference_array *ir)
{
if (!ir->variable_referenced())
return visit_continue;
if (!ir->variable_referenced()->type->contains_sampler())
return visit_continue;
if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
dynamic_sampler_array_indexing = true;
return visit_stop;
}
return visit_continue;
}
bool uses_dynamic_sampler_array_indexing()
{
return dynamic_sampler_array_indexing;
}
private:
bool dynamic_sampler_array_indexing;
};
} /* anonymous namespace */
void
linker_error(gl_shader_program *prog, const char *fmt, ...)
{
va_list ap;
ralloc_strcat(&prog->data->InfoLog, "error: ");
va_start(ap, fmt);
ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
va_end(ap);
prog->data->LinkStatus = linking_failure;
}
void
linker_warning(gl_shader_program *prog, const char *fmt, ...)
{
va_list ap;
ralloc_strcat(&prog->data->InfoLog, "warning: ");
va_start(ap, fmt);
ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
va_end(ap);
}
/**
* Given a string identifying a program resource, break it into a base name
* and an optional array index in square brackets.
*
* If an array index is present, \c out_base_name_end is set to point to the
* "[" that precedes the array index, and the array index itself is returned
* as a long.
*
* If no array index is present (or if the array index is negative or
* mal-formed), \c out_base_name_end, is set to point to the null terminator
* at the end of the input string, and -1 is returned.
*
* Only the final array index is parsed; if the string contains other array
* indices (or structure field accesses), they are left in the base name.
*
* No attempt is made to check that the base name is properly formed;
* typically the caller will look up the base name in a hash table, so
* ill-formed base names simply turn into hash table lookup failures.
*/
long
parse_program_resource_name(const GLchar *name,
const GLchar **out_base_name_end)
{
/* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
*
* "When an integer array element or block instance number is part of
* the name string, it will be specified in decimal form without a "+"
* or "-" sign or any extra leading zeroes. Additionally, the name
* string will not include white space anywhere in the string."
*/
const size_t len = strlen(name);
*out_base_name_end = name + len;
if (len == 0 || name[len-1] != ']')
return -1;
/* Walk backwards over the string looking for a non-digit character. This
* had better be the opening bracket for an array index.
*
* Initially, i specifies the location of the ']'. Since the string may
* contain only the ']' charcater, walk backwards very carefully.
*/
unsigned i;
for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
/* empty */ ;
if ((i == 0) || name[i-1] != '[')
return -1;
long array_index = strtol(&name[i], NULL, 10);
if (array_index < 0)
return -1;
/* Check for leading zero */
if (name[i] == '0' && name[i+1] != ']')
return -1;
*out_base_name_end = name + (i - 1);
return array_index;
}
void
link_invalidate_variable_locations(exec_list *ir)
{
foreach_in_list(ir_instruction, node, ir) {
ir_variable *const var = node->as_variable();
if (var == NULL)
continue;
/* Only assign locations for variables that lack an explicit location.
* Explicit locations are set for all built-in variables, generic vertex
* shader inputs (via layout(location=...)), and generic fragment shader
* outputs (also via layout(location=...)).
*/
if (!var->data.explicit_location) {
var->data.location = -1;
var->data.location_frac = 0;
}
/* ir_variable::is_unmatched_generic_inout is used by the linker while
* connecting outputs from one stage to inputs of the next stage.
*/
if (var->data.explicit_location &&
var->data.location < VARYING_SLOT_VAR0) {
var->data.is_unmatched_generic_inout = 0;
} else {
var->data.is_unmatched_generic_inout = 1;
}
}
}
/**
* Set clip_distance_array_size based and cull_distance_array_size on the given
* shader.
*
* Also check for errors based on incorrect usage of gl_ClipVertex and
* gl_ClipDistance and gl_CullDistance.
* Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
* exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
*
* Return false if an error was reported.
*/
static void
analyze_clip_cull_usage(struct gl_shader_program *prog,
struct gl_linked_shader *shader,
struct gl_context *ctx,
GLuint *clip_distance_array_size,
GLuint *cull_distance_array_size)
{
*clip_distance_array_size = 0;
*cull_distance_array_size = 0;
if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
/* From section 7.1 (Vertex Shader Special Variables) of the
* GLSL 1.30 spec:
*
* "It is an error for a shader to statically write both
* gl_ClipVertex and gl_ClipDistance."
*
* This does not apply to GLSL ES shaders, since GLSL ES defines neither
* gl_ClipVertex nor gl_ClipDistance. However with
* GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
*/
find_variable gl_ClipDistance("gl_ClipDistance");
find_variable gl_CullDistance("gl_CullDistance");
find_variable gl_ClipVertex("gl_ClipVertex");
find_variable * const variables[] = {
&gl_ClipDistance,
&gl_CullDistance,
!prog->IsES ? &gl_ClipVertex : NULL,
NULL
};
find_assignments(shader->ir, variables);
/* From the ARB_cull_distance spec:
*
* It is a compile-time or link-time error for the set of shaders forming
* a program to statically read or write both gl_ClipVertex and either
* gl_ClipDistance or gl_CullDistance.
*
* This does not apply to GLSL ES shaders, since GLSL ES doesn't define
* gl_ClipVertex.
*/
if (!prog->IsES) {
if (gl_ClipVertex.found && gl_ClipDistance.found) {
linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
"and `gl_ClipDistance'\n",
_mesa_shader_stage_to_string(shader->Stage));
return;
}
if (gl_ClipVertex.found && gl_CullDistance.found) {
linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
"and `gl_CullDistance'\n",
_mesa_shader_stage_to_string(shader->Stage));
return;
}
}
if (gl_ClipDistance.found) {
ir_variable *clip_distance_var =
shader->symbols->get_variable("gl_ClipDistance");
assert(clip_distance_var);
*clip_distance_array_size = clip_distance_var->type->length;
}
if (gl_CullDistance.found) {
ir_variable *cull_distance_var =
shader->symbols->get_variable("gl_CullDistance");
assert(cull_distance_var);
*cull_distance_array_size = cull_distance_var->type->length;
}
/* From the ARB_cull_distance spec:
*
* It is a compile-time or link-time error for the set of shaders forming
* a program to have the sum of the sizes of the gl_ClipDistance and
* gl_CullDistance arrays to be larger than
* gl_MaxCombinedClipAndCullDistances.
*/
if ((*clip_distance_array_size + *cull_distance_array_size) >
ctx->Const.MaxClipPlanes) {
linker_error(prog, "%s shader: the combined size of "
"'gl_ClipDistance' and 'gl_CullDistance' size cannot "
"be larger than "
"gl_MaxCombinedClipAndCullDistances (%u)",
_mesa_shader_stage_to_string(shader->Stage),
ctx->Const.MaxClipPlanes);
}
}
}
/**
* Verify that a vertex shader executable meets all semantic requirements.
*
* Also sets info.clip_distance_array_size and
* info.cull_distance_array_size as a side effect.
*
* \param shader Vertex shader executable to be verified
*/
static void
validate_vertex_shader_executable(struct gl_shader_program *prog,
struct gl_linked_shader *shader,
struct gl_context *ctx)
{
if (shader == NULL)
return;
/* From the GLSL 1.10 spec, page 48:
*
* "The variable gl_Position is available only in the vertex
* language and is intended for writing the homogeneous vertex
* position. All executions of a well-formed vertex shader
* executable must write a value into this variable. [...] The
* variable gl_Position is available only in the vertex
* language and is intended for writing the homogeneous vertex
* position. All executions of a well-formed vertex shader
* executable must write a value into this variable."
*
* while in GLSL 1.40 this text is changed to:
*
* "The variable gl_Position is available only in the vertex
* language and is intended for writing the homogeneous vertex
* position. It can be written at any time during shader
* execution. It may also be read back by a vertex shader
* after being written. This value will be used by primitive
* assembly, clipping, culling, and other fixed functionality
* operations, if present, that operate on primitives after
* vertex processing has occurred. Its value is undefined if
* the vertex shader executable does not write gl_Position."
*
* All GLSL ES Versions are similar to GLSL 1.40--failing to write to
* gl_Position is not an error.
*/
if (prog->data->Version < (prog->IsES ? 300 : 140)) {
find_variable gl_Position("gl_Position");
find_assignments(shader->ir, &gl_Position);
if (!gl_Position.found) {
if (prog->IsES) {
linker_warning(prog,
"vertex shader does not write to `gl_Position'. "
"Its value is undefined. \n");
} else {
linker_error(prog,
"vertex shader does not write to `gl_Position'. \n");
}
return;
}
}
analyze_clip_cull_usage(prog, shader, ctx,
&shader->Program->info.clip_distance_array_size,
&shader->Program->info.cull_distance_array_size);
}
static void
validate_tess_eval_shader_executable(struct gl_shader_program *prog,
struct gl_linked_shader *shader,
struct gl_context *ctx)
{
if (shader == NULL)
return;
analyze_clip_cull_usage(prog, shader, ctx,
&shader->Program->info.clip_distance_array_size,
&shader->Program->info.cull_distance_array_size);
}
/**
* Verify that a fragment shader executable meets all semantic requirements
*
* \param shader Fragment shader executable to be verified
*/
static void
validate_fragment_shader_executable(struct gl_shader_program *prog,
struct gl_linked_shader *shader)
{
if (shader == NULL)
return;
find_variable gl_FragColor("gl_FragColor");
find_variable gl_FragData("gl_FragData");
find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
find_assignments(shader->ir, variables);
if (gl_FragColor.found && gl_FragData.found) {
linker_error(prog, "fragment shader writes to both "
"`gl_FragColor' and `gl_FragData'\n");
}
}
/**
* Verify that a geometry shader executable meets all semantic requirements
*
* Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
* info.cull_distance_array_size as a side effect.
*
* \param shader Geometry shader executable to be verified
*/
static void
validate_geometry_shader_executable(struct gl_shader_program *prog,
struct gl_linked_shader *shader,
struct gl_context *ctx)
{
if (shader == NULL)
return;
unsigned num_vertices =
vertices_per_prim(shader->Program->info.gs.input_primitive);
prog->Geom.VerticesIn = num_vertices;
analyze_clip_cull_usage(prog, shader, ctx,
&shader->Program->info.clip_distance_array_size,
&shader->Program->info.cull_distance_array_size);
}
/**
* Check if geometry shaders emit to non-zero streams and do corresponding
* validations.
*/
static void
validate_geometry_shader_emissions(struct gl_context *ctx,
struct gl_shader_program *prog)
{
struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
if (sh != NULL) {
find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
emit_vertex.run(sh->ir);
if (emit_vertex.error()) {
linker_error(prog, "Invalid call %s(%d). Accepted values for the "
"stream parameter are in the range [0, %d].\n",
emit_vertex.error_func(),
emit_vertex.error_stream(),
ctx->Const.MaxVertexStreams - 1);
}
prog->Geom.UsesStreams = emit_vertex.uses_streams();
prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
/* From the ARB_gpu_shader5 spec:
*
* "Multiple vertex streams are supported only if the output primitive
* type is declared to be "points". A program will fail to link if it
* contains a geometry shader calling EmitStreamVertex() or
* EndStreamPrimitive() if its output primitive type is not "points".
*
* However, in the same spec:
*
* "The function EmitVertex() is equivalent to calling EmitStreamVertex()
* with <stream> set to zero."
*
* And:
*
* "The function EndPrimitive() is equivalent to calling
* EndStreamPrimitive() with <stream> set to zero."
*
* Since we can call EmitVertex() and EndPrimitive() when we output
* primitives other than points, calling EmitStreamVertex(0) or
* EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
* does. Currently we only set prog->Geom.UsesStreams to TRUE when
* EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
* stream.
*/
if (prog->Geom.UsesStreams &&
sh->Program->info.gs.output_primitive != GL_POINTS) {
linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
"with n>0 requires point output\n");
}
}
}
bool
validate_intrastage_arrays(struct gl_shader_program *prog,
ir_variable *const var,
ir_variable *const existing)
{
/* Consider the types to be "the same" if both types are arrays
* of the same type and one of the arrays is implicitly sized.
* In addition, set the type of the linked variable to the
* explicitly sized array.
*/
if (var->type->is_array() && existing->type->is_array()) {
if ((var->type->fields.array == existing->type->fields.array) &&
((var->type->length == 0)|| (existing->type->length == 0))) {
if (var->type->length != 0) {
if ((int)var->type->length <= existing->data.max_array_access) {
linker_error(prog, "%s `%s' declared as type "
"`%s' but outermost dimension has an index"
" of `%i'\n",
mode_string(var),
var->name, var->type->name,
existing->data.max_array_access);
}
existing->type = var->type;
return true;
} else if (existing->type->length != 0) {
if((int)existing->type->length <= var->data.max_array_access &&
!existing->data.from_ssbo_unsized_array) {
linker_error(prog, "%s `%s' declared as type "
"`%s' but outermost dimension has an index"
" of `%i'\n",
mode_string(var),
var->name, existing->type->name,
var->data.max_array_access);
}
return true;
}
}
}
return false;
}
/**
* Perform validation of global variables used across multiple shaders
*/
static void
cross_validate_globals(struct gl_shader_program *prog,
struct exec_list *ir, glsl_symbol_table *variables,
bool uniforms_only)
{
foreach_in_list(ir_instruction, node, ir) {
ir_variable *const var = node->as_variable();
if (var == NULL)
continue;
if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
continue;
/* don't cross validate subroutine uniforms */
if (var->type->contains_subroutine())
continue;
/* Don't cross validate interface instances. These are only relevant
* inside a shader. The cross validation is done at the Interface Block
* name level.
*/
if (var->is_interface_instance())
continue;
/* Don't cross validate temporaries that are at global scope. These
* will eventually get pulled into the shaders 'main'.
*/
if (var->data.mode == ir_var_temporary)
continue;
/* If a global with this name has already been seen, verify that the
* new instance has the same type. In addition, if the globals have
* initializers, the values of the initializers must be the same.
*/
ir_variable *const existing = variables->get_variable(var->name);
if (existing != NULL) {
/* Check if types match. */
if (var->type != existing->type) {
if (!validate_intrastage_arrays(prog, var, existing)) {
/* If it is an unsized array in a Shader Storage Block,
* two different shaders can access to different elements.
* Because of that, they might be converted to different
* sized arrays, then check that they are compatible but
* ignore the array size.
*/
if (!(var->data.mode == ir_var_shader_storage &&
var->data.from_ssbo_unsized_array &&
existing->data.mode == ir_var_shader_storage &&
existing->data.from_ssbo_unsized_array &&
var->type->gl_type == existing->type->gl_type)) {
linker_error(prog, "%s `%s' declared as type "
"`%s' and type `%s'\n",
mode_string(var),
var->name, var->type->name,
existing->type->name);
return;
}
}
}
if (var->data.explicit_location) {
if (existing->data.explicit_location
&& (var->data.location != existing->data.location)) {
linker_error(prog, "explicit locations for %s "
"`%s' have differing values\n",
mode_string(var), var->name);
return;
}
if (var->data.location_frac != existing->data.location_frac) {
linker_error(prog, "explicit components for %s `%s' have "
"differing values\n", mode_string(var), var->name);
return;
}
existing->data.location = var->data.location;
existing->data.explicit_location = true;
} else {
/* Check if uniform with implicit location was marked explicit
* by earlier shader stage. If so, mark it explicit in this stage
* too to make sure later processing does not treat it as
* implicit one.
*/
if (existing->data.explicit_location) {
var->data.location = existing->data.location;
var->data.explicit_location = true;
}
}
/* From the GLSL 4.20 specification:
* "A link error will result if two compilation units in a program
* specify different integer-constant bindings for the same
* opaque-uniform name. However, it is not an error to specify a
* binding on some but not all declarations for the same name"
*/
if (var->data.explicit_binding) {
if (existing->data.explicit_binding &&
var->data.binding != existing->data.binding) {
linker_error(prog, "explicit bindings for %s "
"`%s' have differing values\n",
mode_string(var), var->name);
return;
}
existing->data.binding = var->data.binding;
existing->data.explicit_binding = true;
}
if (var->type->contains_atomic() &&
var->data.offset != existing->data.offset) {
linker_error(prog, "offset specifications for %s "
"`%s' have differing values\n",
mode_string(var), var->name);
return;
}
/* Validate layout qualifiers for gl_FragDepth.
*
* From the AMD/ARB_conservative_depth specs:
*
* "If gl_FragDepth is redeclared in any fragment shader in a
* program, it must be redeclared in all fragment shaders in
* that program that have static assignments to
* gl_FragDepth. All redeclarations of gl_FragDepth in all
* fragment shaders in a single program must have the same set
* of qualifiers."
*/
if (strcmp(var->name, "gl_FragDepth") == 0) {
bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
bool layout_differs =
var->data.depth_layout != existing->data.depth_layout;
if (layout_declared && layout_differs) {
linker_error(prog,
"All redeclarations of gl_FragDepth in all "
"fragment shaders in a single program must have "
"the same set of qualifiers.\n");
}
if (var->data.used && layout_differs) {
linker_error(prog,
"If gl_FragDepth is redeclared with a layout "
"qualifier in any fragment shader, it must be "
"redeclared with the same layout qualifier in "
"all fragment shaders that have assignments to "
"gl_FragDepth\n");
}
}
/* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
*
* "If a shared global has multiple initializers, the
* initializers must all be constant expressions, and they
* must all have the same value. Otherwise, a link error will
* result. (A shared global having only one initializer does
* not require that initializer to be a constant expression.)"
*
* Previous to 4.20 the GLSL spec simply said that initializers
* must have the same value. In this case of non-constant
* initializers, this was impossible to determine. As a result,
* no vendor actually implemented that behavior. The 4.20
* behavior matches the implemented behavior of at least one other
* vendor, so we'll implement that for all GLSL versions.
*/
if (var->constant_initializer != NULL) {
if (existing->constant_initializer != NULL) {
if (!var->constant_initializer->has_value(existing->constant_initializer)) {
linker_error(prog, "initializers for %s "
"`%s' have differing values\n",
mode_string(var), var->name);
return;
}
} else {
/* If the first-seen instance of a particular uniform did
* not have an initializer but a later instance does,
* replace the former with the later.
*/
variables->replace_variable(existing->name, var);
}
}
if (var->data.has_initializer) {
if (existing->data.has_initializer
&& (var->constant_initializer == NULL
|| existing->constant_initializer == NULL)) {
linker_error(prog,
"shared global variable `%s' has multiple "
"non-constant initializers.\n",
var->name);
return;
}
}
if (existing->data.invariant != var->data.invariant) {
linker_error(prog, "declarations for %s `%s' have "
"mismatching invariant qualifiers\n",
mode_string(var), var->name);
return;
}
if (existing->data.centroid != var->data.centroid) {
linker_error(prog, "declarations for %s `%s' have "
"mismatching centroid qualifiers\n",
mode_string(var), var->name);
return;
}
if (existing->data.sample != var->data.sample) {
linker_error(prog, "declarations for %s `%s` have "
"mismatching sample qualifiers\n",
mode_string(var), var->name);
return;
}
if (existing->data.image_format != var->data.image_format) {
linker_error(prog, "declarations for %s `%s` have "
"mismatching image format qualifiers\n",
mode_string(var), var->name);
return;
}
/* Check the precision qualifier matches for uniform variables on
* GLSL ES.
*/
if (prog->IsES && !var->get_interface_type() &&
existing->data.precision != var->data.precision) {
if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
linker_error(prog, "declarations for %s `%s` have "
"mismatching precision qualifiers\n",
mode_string(var), var->name);
return;
} else {
linker_warning(prog, "declarations for %s `%s` have "
"mismatching precision qualifiers\n",
mode_string(var), var->name);
}
}
/* In OpenGL GLSL 3.20 spec, section 4.3.9:
*
* "It is a link-time error if any particular shader interface
* contains:
*
* - two different blocks, each having no instance name, and each
* having a member of the same name, or
*
* - a variable outside a block, and a block with no instance name,
* where the variable has the same name as a member in the block."
*/
const glsl_type *var_itype = var->get_interface_type();
const glsl_type *existing_itype = existing->get_interface_type();
if (var_itype != existing_itype) {
if (!var_itype || !existing_itype) {
linker_error(prog, "declarations for %s `%s` are inside block "
"`%s` and outside a block",
mode_string(var), var->name,
var_itype ? var_itype->name : existing_itype->name);
return;
} else if (strcmp(var_itype->name, existing_itype->name) != 0) {
linker_error(prog, "declarations for %s `%s` are inside blocks "
"`%s` and `%s`",
mode_string(var), var->name,
existing_itype->name,
var_itype->name);
return;
}
}
} else
variables->add_variable(var);
}
}
/**
* Perform validation of uniforms used across multiple shader stages
*/
static void
cross_validate_uniforms(struct gl_shader_program *prog)
{
glsl_symbol_table variables;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
true);
}
}
/**
* Accumulates the array of buffer blocks and checks that all definitions of
* blocks agree on their contents.
*/
static bool
interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
bool validate_ssbo)
{
int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
struct gl_uniform_block *blks = NULL;
unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
&prog->data->NumUniformBlocks;
unsigned max_num_buffer_blocks = 0;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i]) {
if (validate_ssbo) {
max_num_buffer_blocks +=
prog->_LinkedShaders[i]->Program->info.num_ssbos;
} else {
max_num_buffer_blocks +=
prog->_LinkedShaders[i]->Program->info.num_ubos;
}
}
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
InterfaceBlockStageIndex[i][j] = -1;
if (sh == NULL)
continue;
unsigned sh_num_blocks;
struct gl_uniform_block **sh_blks;
if (validate_ssbo) {
sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
sh_blks = sh->Program->sh.ShaderStorageBlocks;
} else {
sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
sh_blks = sh->Program->sh.UniformBlocks;
}
for (unsigned int j = 0; j < sh_num_blocks; j++) {
int index = link_cross_validate_uniform_block(prog->data, &blks,
num_blks, sh_blks[j]);
if (index == -1) {
linker_error(prog, "buffer block `%s' has mismatching "
"definitions\n", sh_blks[j]->Name);
for (unsigned k = 0; k <= i; k++) {
delete[] InterfaceBlockStageIndex[k];
}
/* Reset the block count. This will help avoid various segfaults
* from api calls that assume the array exists due to the count
* being non-zero.
*/
*num_blks = 0;
return false;
}
InterfaceBlockStageIndex[i][index] = j;
}
}
/* Update per stage block pointers to point to the program list.
* FIXME: We should be able to free the per stage blocks here.
*/
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
for (unsigned j = 0; j < *num_blks; j++) {
int stage_index = InterfaceBlockStageIndex[i][j];
if (stage_index != -1) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
struct gl_uniform_block **sh_blks = validate_ssbo ?
sh->Program->sh.ShaderStorageBlocks :
sh->Program->sh.UniformBlocks;
blks[j].stageref |= sh_blks[stage_index]->stageref;
sh_blks[stage_index] = &blks[j];
}
}
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
delete[] InterfaceBlockStageIndex[i];
}
if (validate_ssbo)
prog->data->ShaderStorageBlocks = blks;
else
prog->data->UniformBlocks = blks;
return true;
}
/**
* Populates a shaders symbol table with all global declarations
*/
static void
populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
{
sh->symbols = new(sh) glsl_symbol_table;
_mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
}
/**
* Remap variables referenced in an instruction tree
*
* This is used when instruction trees are cloned from one shader and placed in
* another. These trees will contain references to \c ir_variable nodes that
* do not exist in the target shader. This function finds these \c ir_variable
* references and replaces the references with matching variables in the target
* shader.
*
* If there is no matching variable in the target shader, a clone of the
* \c ir_variable is made and added to the target shader. The new variable is
* added to \b both the instruction stream and the symbol table.
*
* \param inst IR tree that is to be processed.
* \param symbols Symbol table containing global scope symbols in the
* linked shader.
* \param instructions Instruction stream where new variable declarations
* should be added.
*/
static void
remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
hash_table *temps)
{
class remap_visitor : public ir_hierarchical_visitor {
public:
remap_visitor(struct gl_linked_shader *target, hash_table *temps)
{
this->target = target;
this->symbols = target->symbols;
this->instructions = target->ir;
this->temps = temps;
}
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
if (ir->var->data.mode == ir_var_temporary) {
hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
assert(var != NULL);
ir->var = var;
return visit_continue;
}
ir_variable *const existing =
this->symbols->get_variable(ir->var->name);
if (existing != NULL)
ir->var = existing;
else {
ir_variable *copy = ir->var->clone(this->target, NULL);
this->symbols->add_variable(copy);
this->instructions->push_head(copy);
ir->var = copy;
}
return visit_continue;
}
private:
struct gl_linked_shader *target;
glsl_symbol_table *symbols;
exec_list *instructions;
hash_table *temps;
};
remap_visitor v(target, temps);
inst->accept(&v);
}
/**
* Move non-declarations from one instruction stream to another
*
* The intended usage pattern of this function is to pass the pointer to the
* head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
* pointer) for \c last and \c false for \c make_copies on the first
* call. Successive calls pass the return value of the previous call for
* \c last and \c true for \c make_copies.
*
* \param instructions Source instruction stream
* \param last Instruction after which new instructions should be
* inserted in the target instruction stream
* \param make_copies Flag selecting whether instructions in \c instructions
* should be copied (via \c ir_instruction::clone) into the
* target list or moved.
*
* \return
* The new "last" instruction in the target instruction stream. This pointer
* is suitable for use as the \c last parameter of a later call to this
* function.
*/
static exec_node *
move_non_declarations(exec_list *instructions, exec_node *last,
bool make_copies, gl_linked_shader *target)
{
hash_table *temps = NULL;
if (make_copies)
temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
foreach_in_list_safe(ir_instruction, inst, instructions) {
if (inst->as_function())
continue;
ir_variable *var = inst->as_variable();
if ((var != NULL) && (var->data.mode != ir_var_temporary))
continue;
assert(inst->as_assignment()
|| inst->as_call()
|| inst->as_if() /* for initializers with the ?: operator */
|| ((var != NULL) && (var->data.mode == ir_var_temporary)));
if (make_copies) {
inst = inst->clone(target, NULL);
if (var != NULL)
_mesa_hash_table_insert(temps, var, inst);
else
remap_variables(inst, target, temps);
} else {
inst->remove();
}
last->insert_after(inst);
last = inst;
}
if (make_copies)
_mesa_hash_table_destroy(temps, NULL);
return last;
}
/**
* This class is only used in link_intrastage_shaders() below but declaring
* it inside that function leads to compiler warnings with some versions of
* gcc.
*/
class array_sizing_visitor : public deref_type_updater {
public:
array_sizing_visitor()
: mem_ctx(ralloc_context(NULL)),
unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal))
{
}
~array_sizing_visitor()
{
_mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
ralloc_free(this->mem_ctx);
}
virtual ir_visitor_status visit(ir_variable *var)
{
const glsl_type *type_without_array;
bool implicit_sized_array = var->data.implicit_sized_array;
fixup_type(&var->type, var->data.max_array_access,
var->data.from_ssbo_unsized_array,
&implicit_sized_array);
var->data.implicit_sized_array = implicit_sized_array;
type_without_array = var->type->without_array();
if (var->type->is_interface()) {
if (interface_contains_unsized_arrays(var->type)) {
const glsl_type *new_type =
resize_interface_members(var->type,
var->get_max_ifc_array_access(),
var->is_in_shader_storage_block());
var->type = new_type;
var->change_interface_type(new_type);
}
} else if (type_without_array->is_interface()) {
if (interface_contains_unsized_arrays(type_without_array)) {
const glsl_type *new_type =
resize_interface_members(type_without_array,
var->get_max_ifc_array_access(),
var->is_in_shader_storage_block());
var->change_interface_type(new_type);
var->type = update_interface_members_array(var->type, new_type);
}
} else if (const glsl_type *ifc_type = var->get_interface_type()) {
/* Store a pointer to the variable in the unnamed_interfaces
* hashtable.
*/
hash_entry *entry =
_mesa_hash_table_search(this->unnamed_interfaces,
ifc_type);
ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
if (interface_vars == NULL) {
interface_vars = rzalloc_array(mem_ctx, ir_variable *,
ifc_type->length);
_mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
interface_vars);
}
unsigned index = ifc_type->field_index(var->name);
assert(index < ifc_type->length);
assert(interface_vars[index] == NULL);
interface_vars[index] = var;
}
return visit_continue;
}
/**
* For each unnamed interface block that was discovered while running the
* visitor, adjust the interface type to reflect the newly assigned array
* sizes, and fix up the ir_variable nodes to point to the new interface
* type.
*/
void fixup_unnamed_interface_types()
{
hash_table_call_foreach(this->unnamed_interfaces,
fixup_unnamed_interface_type, NULL);
}
private:
/**
* If the type pointed to by \c type represents an unsized array, replace
* it with a sized array whose size is determined by max_array_access.
*/
static void fixup_type(const glsl_type **type, unsigned max_array_access,
bool from_ssbo_unsized_array, bool *implicit_sized)
{
if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
*type = glsl_type::get_array_instance((*type)->fields.array,
max_array_access + 1);
*implicit_sized = true;
assert(*type != NULL);
}
}
static const glsl_type *
update_interface_members_array(const glsl_type *type,
const glsl_type *new_interface_type)
{
const glsl_type *element_type = type->fields.array;
if (element_type->is_array()) {
const glsl_type *new_array_type =
update_interface_members_array(element_type, new_interface_type);
return glsl_type::get_array_instance(new_array_type, type->length);
} else {
return glsl_type::get_array_instance(new_interface_type,
type->length);
}
}
/**
* Determine whether the given interface type contains unsized arrays (if
* it doesn't, array_sizing_visitor doesn't need to process it).
*/
static bool interface_contains_unsized_arrays(const glsl_type *type)
{
for (unsigned i = 0; i < type->length; i++) {
const glsl_type *elem_type = type->fields.structure[i].type;
if (elem_type->is_unsized_array())
return true;
}
return false;
}
/**
* Create a new interface type based on the given type, with unsized arrays
* replaced by sized arrays whose size is determined by
* max_ifc_array_access.
*/
static const glsl_type *
resize_interface_members(const glsl_type *type,
const int *max_ifc_array_access,
bool is_ssbo)
{
unsigned num_fields = type->length;
glsl_struct_field *fields = new glsl_struct_field[num_fields];
memcpy(fields, type->fields.structure,
num_fields * sizeof(*fields));
for (unsigned i = 0; i < num_fields; i++) {
bool implicit_sized_array = fields[i].implicit_sized_array;
/* If SSBO last member is unsized array, we don't replace it by a sized
* array.
*/
if (is_ssbo && i == (num_fields - 1))
fixup_type(&fields[i].type, max_ifc_array_access[i],
true, &implicit_sized_array);
else
fixup_type(&fields[i].type, max_ifc_array_access[i],
false, &implicit_sized_array);
fields[i].implicit_sized_array = implicit_sized_array;
}
glsl_interface_packing packing =
(glsl_interface_packing) type->interface_packing;
bool row_major = (bool) type->interface_row_major;
const glsl_type *new_ifc_type =
glsl_type::get_interface_instance(fields, num_fields,
packing, row_major, type->name);
delete [] fields;
return new_ifc_type;
}
static void fixup_unnamed_interface_type(const void *key, void *data,
void *)
{
const glsl_type *ifc_type = (const glsl_type *) key;
ir_variable **interface_vars = (ir_variable **) data;
unsigned num_fields = ifc_type->length;
glsl_struct_field *fields = new glsl_struct_field[num_fields];
memcpy(fields, ifc_type->fields.structure,
num_fields * sizeof(*fields));
bool interface_type_changed = false;
for (unsigned i = 0; i < num_fields; i++) {
if (interface_vars[i] != NULL &&
fields[i].type != interface_vars[i]->type) {
fields[i].type = interface_vars[i]->type;
interface_type_changed = true;
}
}
if (!interface_type_changed) {
delete [] fields;
return;
}
glsl_interface_packing packing =
(glsl_interface_packing) ifc_type->interface_packing;
bool row_major = (bool) ifc_type->interface_row_major;
const glsl_type *new_ifc_type =
glsl_type::get_interface_instance(fields, num_fields, packing,
row_major, ifc_type->name);
delete [] fields;
for (unsigned i = 0; i < num_fields; i++) {
if (interface_vars[i] != NULL)
interface_vars[i]->change_interface_type(new_ifc_type);
}
}
/**
* Memory context used to allocate the data in \c unnamed_interfaces.
*/
void *mem_ctx;
/**
* Hash table from const glsl_type * to an array of ir_variable *'s
* pointing to the ir_variables constituting each unnamed interface block.
*/
hash_table *unnamed_interfaces;
};
static bool
validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
struct gl_shader_program *prog)
{
/* We will validate doubles at a later stage */
if (prog->TransformFeedback.BufferStride[idx] % 4) {
linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
"multiple of 4 or if its applied to a type that is "
"or contains a double a multiple of 8.",
prog->TransformFeedback.BufferStride[idx]);
return false;
}
if (prog->TransformFeedback.BufferStride[idx] / 4 >
ctx->Const.MaxTransformFeedbackInterleavedComponents) {
linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
"limit has been exceeded.");
return false;
}
return true;
}
/**
* Check for conflicting xfb_stride default qualifiers and store buffer stride
* for later use.
*/
static void
link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
struct gl_shader_program *prog,
struct gl_shader **shader_list,
unsigned num_shaders)
{
for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
prog->TransformFeedback.BufferStride[i] = 0;
}
for (unsigned i = 0; i < num_shaders; i++) {
struct gl_shader *shader = shader_list[i];
for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
if (shader->TransformFeedbackBufferStride[j]) {
if (prog->TransformFeedback.BufferStride[j] == 0) {
prog->TransformFeedback.BufferStride[j] =
shader->TransformFeedbackBufferStride[j];
if (!validate_xfb_buffer_stride(ctx, j, prog))
return;
} else if (prog->TransformFeedback.BufferStride[j] !=
shader->TransformFeedbackBufferStride[j]){
linker_error(prog,
"intrastage shaders defined with conflicting "
"xfb_stride for buffer %d (%d and %d)\n", j,
prog->TransformFeedback.BufferStride[j],
shader->TransformFeedbackBufferStride[j]);
return;
}
}
}
}
}
/**
* Check for conflicting bindless/bound sampler/image layout qualifiers at
* global scope.
*/
static void
link_bindless_layout_qualifiers(struct gl_shader_program *prog,
struct gl_shader **shader_list,
unsigned num_shaders)
{
bool bindless_sampler, bindless_image;
bool bound_sampler, bound_image;
bindless_sampler = bindless_image = false;
bound_sampler = bound_image = false;
for (unsigned i = 0; i < num_shaders; i++) {
struct gl_shader *shader = shader_list[i];
if (shader->bindless_sampler)
bindless_sampler = true;
if (shader->bindless_image)
bindless_image = true;
if (shader->bound_sampler)
bound_sampler = true;
if (shader->bound_image)
bound_image = true;
if ((bindless_sampler && bound_sampler) ||
(bindless_image && bound_image)) {
/* From section 4.4.6 of the ARB_bindless_texture spec:
*
* "If both bindless_sampler and bound_sampler, or bindless_image
* and bound_image, are declared at global scope in any
* compilation unit, a link- time error will be generated."
*/
linker_error(prog, "both bindless_sampler and bound_sampler, or "
"bindless_image and bound_image, can't be declared at "
"global scope");
}
}
}
/**
* Performs the cross-validation of tessellation control shader vertices and
* layout qualifiers for the attached tessellation control shaders,
* and propagates them to the linked TCS and linked shader program.
*/
static void
link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
struct gl_program *gl_prog,
struct gl_shader **shader_list,
unsigned num_shaders)
{
if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
return;
gl_prog->info.tess.tcs_vertices_out = 0;
/* From the GLSL 4.0 spec (chapter 4.3.8.2):
*
* "All tessellation control shader layout declarations in a program
* must specify the same output patch vertex count. There must be at
* least one layout qualifier specifying an output patch vertex count
* in any program containing tessellation control shaders; however,
* such a declaration is not required in all tessellation control
* shaders."
*/
for (unsigned i = 0; i < num_shaders; i++) {
struct gl_shader *shader = shader_list[i];
if (shader->info.TessCtrl.VerticesOut != 0) {
if (gl_prog->info.tess.tcs_vertices_out != 0 &&
gl_prog->info.tess.tcs_vertices_out !=
(unsigned) shader->info.TessCtrl.VerticesOut) {
linker_error(prog, "tessellation control shader defined with "
"conflicting output vertex count (%d and %d)\n",
gl_prog->info.tess.tcs_vertices_out,
shader->info.TessCtrl.VerticesOut);
return;
}
gl_prog->info.tess.tcs_vertices_out =
shader->info.TessCtrl.VerticesOut;
}
}
/* Just do the intrastage -> interstage propagation right now,
* since we already know we're in the right type of shader program
* for doing it.
*/
if (gl_prog->info.tess.tcs_vertices_out == 0) {
linker_error(prog, "tessellation control shader didn't declare "
"vertices out layout qualifier\n");
return;
}
}
/**
* Performs the cross-validation of tessellation evaluation shader
* primitive type, vertex spacing, ordering and point_mode layout qualifiers
* for the attached tessellation evaluation shaders, and propagates them
* to the linked TES and linked shader program.
*/
static void
link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
struct gl_program *gl_prog,
struct gl_shader **shader_list,
unsigned num_shaders)
{
if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
return;
int point_mode = -1;
unsigned vertex_order = 0;
gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
/* From the GLSL 4.0 spec (chapter 4.3.8.1):
*
* "At least one tessellation evaluation shader (compilation unit) in
* a program must declare a primitive mode in its input layout.
* Declaration vertex spacing, ordering, and point mode identifiers is
* optional. It is not required that all tessellation evaluation
* shaders in a program declare a primitive mode. If spacing or
* vertex ordering declarations are omitted, the tessellation
* primitive generator will use equal spacing or counter-clockwise
* vertex ordering, respectively. If a point mode declaration is
* omitted, the tessellation primitive generator will produce lines or
* triangles according to the primitive mode."
*/
for (unsigned i = 0; i < num_shaders; i++) {
struct gl_shader *shader = shader_list[i];
if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
gl_prog->info.tess.primitive_mode !=
shader->info.TessEval.PrimitiveMode) {
linker_error(prog, "tessellation evaluation shader defined with "
"conflicting input primitive modes.\n");
return;
}
gl_prog->info.tess.primitive_mode =
shader->info.TessEval.PrimitiveMode;
}
if (shader->info.TessEval.Spacing != 0) {
if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
shader->info.TessEval.Spacing) {
linker_error(prog, "tessellation evaluation shader defined with "
"conflicting vertex spacing.\n");
return;
}
gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
}
if (shader->info.TessEval.VertexOrder != 0) {
if (vertex_order != 0 &&
vertex_order != shader->info.TessEval.VertexOrder) {
linker_error(prog, "tessellation evaluation shader defined with "
"conflicting ordering.\n");
return;
}
vertex_order = shader->info.TessEval.VertexOrder;
}
if (shader->info.TessEval.PointMode != -1) {
if (point_mode != -1 &&
point_mode != shader->info.TessEval.PointMode) {
linker_error(prog, "tessellation evaluation shader defined with "
"conflicting point modes.\n");
return;
}
point_mode = shader->info.TessEval.PointMode;
}
}
/* Just do the intrastage -> interstage propagation right now,
* since we already know we're in the right type of shader program
* for doing it.
*/
if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
linker_error(prog,
"tessellation evaluation shader didn't declare input "
"primitive modes.\n");
return;
}
if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
if (vertex_order == 0 || vertex_order == GL_CCW)
gl_prog->info.tess.ccw = true;
else
gl_prog->info.tess.ccw = false;
if (point_mode == -1 || point_mode == GL_FALSE)
gl_prog->info.tess.point_mode = false;
else
gl_prog->info.tess.point_mode = true;
}
/**
* Performs the cross-validation of layout qualifiers specified in
* redeclaration of gl_FragCoord for the attached fragment shaders,
* and propagates them to the linked FS and linked shader program.
*/
static void
link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
struct gl_linked_shader *linked_shader,
struct gl_shader **shader_list,
unsigned num_shaders)
{
bool redeclares_gl_fragcoord = false;
bool uses_gl_fragcoord = false;
bool origin_upper_left = false;
bool pixel_center_integer = false;
if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
(prog->data->Version < 150 &&
!prog->ARB_fragment_coord_conventions_enable))
return;
for (unsigned i = 0; i < num_shaders; i++) {
struct gl_shader *shader = shader_list[i];
/* From the GLSL 1.50 spec, page 39:
*
* "If gl_FragCoord is redeclared in any fragment shader in a program,
* it must be redeclared in all the fragment shaders in that program
* that have a static use gl_FragCoord."
*/
if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
shader->uses_gl_fragcoord)
|| (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
uses_gl_fragcoord)) {
linker_error(prog, "fragment shader defined with conflicting "
"layout qualifiers for gl_FragCoord\n");
}
/* From the GLSL 1.50 spec, page 39:
*
* "All redeclarations of gl_FragCoord in all fragment shaders in a
* single program must have the same set of qualifiers."
*/
if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
(shader->origin_upper_left != origin_upper_left ||
shader->pixel_center_integer != pixel_center_integer)) {
linker_error(prog, "fragment shader defined with conflicting "
"layout qualifiers for gl_FragCoord\n");
}
/* Update the linked shader state. Note that uses_gl_fragcoord should
* accumulate the results. The other values should replace. If there
* are multiple redeclarations, all the fields except uses_gl_fragcoord
* are already known to be the same.
*/
if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
uses_gl_fragcoord |= shader->uses_gl_fragcoord;
origin_upper_left = shader->origin_upper_left;
pixel_center_integer = shader->pixel_center_integer;
}
linked_shader->Program->info.fs.early_fragment_tests |=
shader->EarlyFragmentTests || shader->PostDepthCoverage;
linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
linked_shader->Program->info.fs.post_depth_coverage |=
shader->PostDepthCoverage;
linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
}
}
/**
* Performs the cross-validation of geometry shader max_vertices and
* primitive type layout qualifiers for the attached geometry shaders,
* and propagates them to the linked GS and linked shader program.
*/
static void
link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
struct gl_program *gl_prog,
struct gl_shader **shader_list,
unsigned num_shaders)
{
/* No in/out qualifiers defined for anything but GLSL 1.50+
* geometry shaders so far.
*/
if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
prog->data->Version < 150)
return;
int vertices_out = -1;
gl_prog->info.gs.invocations = 0;
gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
/* From the GLSL 1.50 spec, page 46:
*
* "All geometry shader output layout declarations in a program
* must declare the same layout and same value for
* max_vertices. There must be at least one geometry output
* layout declaration somewhere in a program, but not all
* geometry shaders (compilation units) are required to
* declare it."
*/
for (unsigned i = 0; i < num_shaders; i++) {
struct gl_shader *shader = shader_list[i];
if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
gl_prog->info.gs.input_primitive !=
shader->info.Geom.InputType) {
linker_error(prog, "geometry shader defined with conflicting "
"input types\n");
return;
}
gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
}
if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
gl_prog->info.gs.output_primitive !=
shader->info.Geom.OutputType) {
linker_error(prog, "geometry shader defined with conflicting "
"output types\n");
return;
}
gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
}
if (shader->info.Geom.VerticesOut != -1) {
if (vertices_out != -1 &&
vertices_out != shader->info.Geom.VerticesOut) {
linker_error(prog, "geometry shader defined with conflicting "
"output vertex count (%d and %d)\n",
vertices_out, shader->info.Geom.VerticesOut);
return;
}
vertices_out = shader->info.Geom.VerticesOut;
}
if (shader->info.Geom.Invocations != 0) {
if (gl_prog->info.gs.invocations != 0 &&
gl_prog->info.gs.invocations !=
(unsigned) shader->info.Geom.Invocations) {
linker_error(prog, "geometry shader defined with conflicting "
"invocation count (%d and %d)\n",
gl_prog->info.gs.invocations,
shader->info.Geom.Invocations);
return;
}
gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
}
}
/* Just do the intrastage -> interstage propagation right now,
* since we already know we're in the right type of shader program
* for doing it.
*/
if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
linker_error(prog,
"geometry shader didn't declare primitive input type\n");
return;
}
if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
linker_error(prog,
"geometry shader didn't declare primitive output type\n");
return;
}
if (vertices_out == -1) {
linker_error(prog,
"geometry shader didn't declare max_vertices\n");
return;
} else {
gl_prog->info.gs.vertices_out = vertices_out;
}
if (gl_prog->info.gs.invocations == 0)
gl_prog->info.gs.invocations = 1;
}
/**
* Perform cross-validation of compute shader local_size_{x,y,z} layout
* qualifiers for the attached compute shaders, and propagate them to the
* linked CS and linked shader program.
*/
static void
link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
struct gl_program *gl_prog,
struct gl_shader **shader_list,
unsigned num_shaders)
{
/* This function is called for all shader stages, but it only has an effect
* for compute shaders.
*/
if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
return;
for (int i = 0; i < 3; i++)
gl_prog->info.cs.local_size[i] = 0;
gl_prog->info.cs.local_size_variable = false;
/* From the ARB_compute_shader spec, in the section describing local size
* declarations:
*
* If multiple compute shaders attached to a single program object
* declare local work-group size, the declarations must be identical;
* otherwise a link-time error results. Furthermore, if a program
* object contains any compute shaders, at least one must contain an
* input layout qualifier specifying the local work sizes of the
* program, or a link-time error will occur.
*/
for (unsigned sh = 0; sh < num_shaders; sh++) {
struct gl_shader *shader = shader_list[sh];
if (shader->info.Comp.LocalSize[0] != 0) {
if (gl_prog->info.cs.local_size[0] != 0) {
for (int i = 0; i < 3; i++) {
if (gl_prog->info.cs.local_size[i] !=
shader->info.Comp.LocalSize[i]) {
linker_error(prog, "compute shader defined with conflicting "
"local sizes\n");
return;
}
}
}
for (int i = 0; i < 3; i++) {
gl_prog->info.cs.local_size[i] =
shader->info.Comp.LocalSize[i];
}
} else if (shader->info.Comp.LocalSizeVariable) {
if (gl_prog->info.cs.local_size[0] != 0) {
/* The ARB_compute_variable_group_size spec says:
*
* If one compute shader attached to a program declares a
* variable local group size and a second compute shader
* attached to the same program declares a fixed local group
* size, a link-time error results.
*/
linker_error(prog, "compute shader defined with both fixed and "
"variable local group size\n");
return;
}
gl_prog->info.cs.local_size_variable = true;
}
}
/* Just do the intrastage -> interstage propagation right now,
* since we already know we're in the right type of shader program
* for doing it.
*/
if (gl_prog->info.cs.local_size[0] == 0 &&
!gl_prog->info.cs.local_size_variable) {
linker_error(prog, "compute shader must contain a fixed or a variable "
"local group size\n");
return;
}
}
/**
* Combine a group of shaders for a single stage to generate a linked shader
*
* \note
* If this function is supplied a single shader, it is cloned, and the new
* shader is returned.
*/
struct gl_linked_shader *
link_intrastage_shaders(void *mem_ctx,
struct gl_context *ctx,
struct gl_shader_program *prog,
struct gl_shader **shader_list,
unsigned num_shaders,
bool allow_missing_main)
{
struct gl_uniform_block *ubo_blocks = NULL;
struct gl_uniform_block *ssbo_blocks = NULL;
unsigned num_ubo_blocks = 0;
unsigned num_ssbo_blocks = 0;
/* Check that global variables defined in multiple shaders are consistent.
*/
glsl_symbol_table variables;
for (unsigned i = 0; i < num_shaders; i++) {
if (shader_list[i] == NULL)
continue;
cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
}
if (!prog->data->LinkStatus)
return NULL;
/* Check that interface blocks defined in multiple shaders are consistent.
*/
validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
num_shaders);
if (!prog->data->LinkStatus)
return NULL;
/* Check that there is only a single definition of each function signature
* across all shaders.
*/
for (unsigned i = 0; i < (num_shaders - 1); i++) {
foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
ir_function *const f = node->as_function();
if (f == NULL)
continue;
for (unsigned j = i + 1; j < num_shaders; j++) {
ir_function *const other =
shader_list[j]->symbols->get_function(f->name);
/* If the other shader has no function (and therefore no function
* signatures) with the same name, skip to the next shader.
*/
if (other == NULL)
continue;
foreach_in_list(ir_function_signature, sig, &f->signatures) {
if (!sig->is_defined)
continue;
ir_function_signature *other_sig =
other->exact_matching_signature(NULL, &sig->parameters);
if (other_sig != NULL && other_sig->is_defined) {
linker_error(prog, "function `%s' is multiply defined\n",
f->name);
return NULL;
}
}
}
}
}
/* Find the shader that defines main, and make a clone of it.
*
* Starting with the clone, search for undefined references. If one is
* found, find the shader that defines it. Clone the reference and add
* it to the shader. Repeat until there are no undefined references or
* until a reference cannot be resolved.
*/
gl_shader *main = NULL;
for (unsigned i = 0; i < num_shaders; i++) {
if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
main = shader_list[i];
break;
}
}
if (main == NULL && allow_missing_main)
main = shader_list[0];
if (main == NULL) {
linker_error(prog, "%s shader lacks `main'\n",
_mesa_shader_stage_to_string(shader_list[0]->Stage));
return NULL;
}
gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
linked->Stage = shader_list[0]->Stage;
/* Create program and attach it to the linked shader */
struct gl_program *gl_prog =
ctx->Driver.NewProgram(ctx,
_mesa_shader_stage_to_program(shader_list[0]->Stage),
prog->Name, false);
if (!gl_prog) {
prog->data->LinkStatus = linking_failure;
_mesa_delete_linked_shader(ctx, linked);
return NULL;
}
_mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
/* Don't use _mesa_reference_program() just take ownership */
linked->Program = gl_prog;
linked->ir = new(linked) exec_list;
clone_ir_list(mem_ctx, linked->ir, main->ir);
link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
if (linked->Stage != MESA_SHADER_FRAGMENT)
link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
populate_symbol_table(linked, shader_list[0]->symbols);
/* The pointer to the main function in the final linked shader (i.e., the
* copy of the original shader that contained the main function).
*/
ir_function_signature *const main_sig =
_mesa_get_main_function_signature(linked->symbols);
/* Move any instructions other than variable declarations or function
* declarations into main.
*/
if (main_sig != NULL) {
exec_node *insertion_point =
move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
linked);
for (unsigned i = 0; i < num_shaders; i++) {
if (shader_list[i] == main)
continue;
insertion_point = move_non_declarations(shader_list[i]->ir,
insertion_point, true, linked);
}
}
if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
_mesa_delete_linked_shader(ctx, linked);
return NULL;
}
/* Make a pass over all variable declarations to ensure that arrays with
* unspecified sizes have a size specified. The size is inferred from the
* max_array_access field.
*/
array_sizing_visitor v;
v.run(linked->ir);
v.fixup_unnamed_interface_types();
/* Link up uniform blocks defined within this stage. */
link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
&num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
if (!prog->data->LinkStatus) {
_mesa_delete_linked_shader(ctx, linked);
return NULL;
}
/* Copy ubo blocks to linked shader list */
linked->Program->sh.UniformBlocks =
ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
ralloc_steal(linked, ubo_blocks);
for (unsigned i = 0; i < num_ubo_blocks; i++) {
linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
}
linked->Program->info.num_ubos = num_ubo_blocks;
/* Copy ssbo blocks to linked shader list */
linked->Program->sh.ShaderStorageBlocks =
ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
ralloc_steal(linked, ssbo_blocks);
for (unsigned i = 0; i < num_ssbo_blocks; i++) {
linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
}
linked->Program->info.num_ssbos = num_ssbo_blocks;
/* At this point linked should contain all of the linked IR, so
* validate it to make sure nothing went wrong.
*/
validate_ir_tree(linked->ir);
/* Set the size of geometry shader input arrays */
if (linked->Stage == MESA_SHADER_GEOMETRY) {
unsigned num_vertices =
vertices_per_prim(gl_prog->info.gs.input_primitive);
array_resize_visitor input_resize_visitor(num_vertices, prog,
MESA_SHADER_GEOMETRY);
foreach_in_list(ir_instruction, ir, linked->ir) {
ir->accept(&input_resize_visitor);
}
}
if (ctx->Const.VertexID_is_zero_based)
lower_vertex_id(linked);
if (ctx->Const.LowerCsDerivedVariables)
lower_cs_derived(linked);
#ifdef DEBUG
/* Compute the source checksum. */
linked->SourceChecksum = 0;
for (unsigned i = 0; i < num_shaders; i++) {
if (shader_list[i] == NULL)
continue;
linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
}
#endif
return linked;
}
/**
* Update the sizes of linked shader uniform arrays to the maximum
* array index used.
*
* From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
*
* If one or more elements of an array are active,
* GetActiveUniform will return the name of the array in name,
* subject to the restrictions listed above. The type of the array
* is returned in type. The size parameter contains the highest
* array element index used, plus one. The compiler or linker
* determines the highest index used. There will be only one
* active uniform reported by the GL per uniform array.
*/
static void
update_array_sizes(struct gl_shader_program *prog)
{
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
bool types_were_updated = false;
foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
ir_variable *const var = node->as_variable();
if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
!var->type->is_array())
continue;
/* GL_ARB_uniform_buffer_object says that std140 uniforms
* will not be eliminated. Since we always do std140, just
* don't resize arrays in UBOs.
*
* Atomic counters are supposed to get deterministic
* locations assigned based on the declaration ordering and
* sizes, array compaction would mess that up.
*
* Subroutine uniforms are not removed.
*/
if (var->is_in_buffer_block() || var->type->contains_atomic() ||
var->type->contains_subroutine() || var->constant_initializer)
continue;
int size = var->data.max_array_access;
for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
if (prog->_LinkedShaders[j] == NULL)
continue;
foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
ir_variable *other_var = node2->as_variable();
if (!other_var)
continue;
if (strcmp(var->name, other_var->name) == 0 &&
other_var->data.max_array_access > size) {
size = other_var->data.max_array_access;
}
}
}
if (size + 1 != (int)var->type->length) {
/* If this is a built-in uniform (i.e., it's backed by some
* fixed-function state), adjust the number of state slots to
* match the new array size. The number of slots per array entry
* is not known. It seems safe to assume that the total number of
* slots is an integer multiple of the number of array elements.
* Determine the number of slots per array element by dividing by
* the old (total) size.
*/
const unsigned num_slots = var->get_num_state_slots();
if (num_slots > 0) {
var->set_num_state_slots((size + 1)
* (num_slots / var->type->length));
}
var->type = glsl_type::get_array_instance(var->type->fields.array,
size + 1);
types_were_updated = true;
}
}
/* Update the types of dereferences in case we changed any. */
if (types_were_updated) {
deref_type_updater v;
v.run(prog->_LinkedShaders[i]->ir);
}
}
}
/**
* Resize tessellation evaluation per-vertex inputs to the size of
* tessellation control per-vertex outputs.
*/
static void
resize_tes_inputs(struct gl_context *ctx,
struct gl_shader_program *prog)
{
if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
return;
gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
/* If no control shader is present, then the TES inputs are statically
* sized to MaxPatchVertices; the actual size of the arrays won't be
* known until draw time.
*/
const int num_vertices = tcs
? tcs->Program->info.tess.tcs_vertices_out
: ctx->Const.MaxPatchVertices;
array_resize_visitor input_resize_visitor(num_vertices, prog,
MESA_SHADER_TESS_EVAL);
foreach_in_list(ir_instruction, ir, tes->ir) {
ir->accept(&input_resize_visitor);
}
if (tcs) {
/* Convert the gl_PatchVerticesIn system value into a constant, since
* the value is known at this point.
*/
foreach_in_list(ir_instruction, ir, tes->ir) {
ir_variable *var = ir->as_variable();
if (var && var->data.mode == ir_var_system_value &&
var->data.location == SYSTEM_VALUE_VERTICES_IN) {
void *mem_ctx = ralloc_parent(var);
var->data.location = 0;
var->data.explicit_location = false;
var->data.mode = ir_var_auto;
var->constant_value = new(mem_ctx) ir_constant(num_vertices);
}
}
}
}
/**
* Find a contiguous set of available bits in a bitmask.
*
* \param used_mask Bits representing used (1) and unused (0) locations
* \param needed_count Number of contiguous bits needed.
*
* \return
* Base location of the available bits on success or -1 on failure.
*/
static int
find_available_slots(unsigned used_mask, unsigned needed_count)
{
unsigned needed_mask = (1 << needed_count) - 1;
const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
/* The comparison to 32 is redundant, but without it GCC emits "warning:
* cannot optimize possibly infinite loops" for the loop below.
*/
if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
return -1;
for (int i = 0; i <= max_bit_to_test; i++) {
if ((needed_mask & ~used_mask) == needed_mask)
return i;
needed_mask <<= 1;
}
return -1;
}
#define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
/**
* Assign locations for either VS inputs or FS outputs
*
* \param mem_ctx Temporary ralloc context used for linking
* \param prog Shader program whose variables need locations assigned
* \param constants Driver specific constant values for the program.
* \param target_index Selector for the program target to receive location
* assignmnets. Must be either \c MESA_SHADER_VERTEX or
* \c MESA_SHADER_FRAGMENT.
*
* \return
* If locations are successfully assigned, true is returned. Otherwise an
* error is emitted to the shader link log and false is returned.
*/
static bool
assign_attribute_or_color_locations(void *mem_ctx,
gl_shader_program *prog,
struct gl_constants *constants,
unsigned target_index)
{
/* Maximum number of generic locations. This corresponds to either the
* maximum number of draw buffers or the maximum number of generic
* attributes.
*/
unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
constants->Program[target_index].MaxAttribs :
MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
/* Mark invalid locations as being used.
*/
unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
unsigned double_storage_locations = 0;
assert((target_index == MESA_SHADER_VERTEX)
|| (target_index == MESA_SHADER_FRAGMENT));
gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
if (sh == NULL)
return true;
/* Operate in a total of four passes.
*
* 1. Invalidate the location assignments for all vertex shader inputs.
*
* 2. Assign locations for inputs that have user-defined (via
* glBindVertexAttribLocation) locations and outputs that have
* user-defined locations (via glBindFragDataLocation).
*
* 3. Sort the attributes without assigned locations by number of slots
* required in decreasing order. Fragmentation caused by attribute
* locations assigned by the application may prevent large attributes
* from having enough contiguous space.
*
* 4. Assign locations to any inputs without assigned locations.
*/
const int generic_base = (target_index == MESA_SHADER_VERTEX)
? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
const enum ir_variable_mode direction =
(target_index == MESA_SHADER_VERTEX)
? ir_var_shader_in : ir_var_shader_out;
/* Temporary storage for the set of attributes that need locations assigned.
*/
struct temp_attr {
unsigned slots;
ir_variable *var;
/* Used below in the call to qsort. */
static int compare(const void *a, const void *b)
{
const temp_attr *const l = (const temp_attr *) a;
const temp_attr *const r = (const temp_attr *) b;
/* Reversed because we want a descending order sort below. */
return r->slots - l->slots;
}
} to_assign[32];
assert(max_index <= 32);
/* Temporary array for the set of attributes that have locations assigned,
* for the purpose of checking overlapping slots/components of (non-ES)
* fragment shader outputs.
*/
ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
unsigned assigned_attr = 0;
unsigned num_attr = 0;
foreach_in_list(ir_instruction, node, sh->ir) {
ir_variable *const var = node->as_variable();
if ((var == NULL) || (var->data.mode != (unsigned) direction))
continue;
if (var->data.explicit_location) {
var->data.is_unmatched_generic_inout = 0;
if ((var->data.location >= (int)(max_index + generic_base))
|| (var->data.location < 0)) {
linker_error(prog,
"invalid explicit location %d specified for `%s'\n",
(var->data.location < 0)
? var->data.location
: var->data.location - generic_base,
var->name);
return false;
}
} else if (target_index == MESA_SHADER_VERTEX) {
unsigned binding;
if (prog->AttributeBindings->get(binding, var->name)) {
assert(binding >= VERT_ATTRIB_GENERIC0);
var->data.location = binding;
var->data.is_unmatched_generic_inout = 0;
}
} else if (target_index == MESA_SHADER_FRAGMENT) {
unsigned binding;
unsigned index;
const char *name = var->name;
const glsl_type *type = var->type;
while (type) {
/* Check if there's a binding for the variable name */
if (prog->FragDataBindings->get(binding, name)) {
assert(binding >= FRAG_RESULT_DATA0);
var->data.location = binding;
var->data.is_unmatched_generic_inout = 0;
if (prog->FragDataIndexBindings->get(index, name)) {
var->data.index = index;
}
break;
}
/* If not, but it's an array type, look for name[0] */
if (type->is_array()) {
name = ralloc_asprintf(mem_ctx, "%s[0]", name);
type = type->fields.array;
continue;
}
break;
}
}
if (strcmp(var->name, "gl_LastFragData") == 0)
continue;
/* From GL4.5 core spec, section 15.2 (Shader Execution):
*
* "Output binding assignments will cause LinkProgram to fail:
* ...
* If the program has an active output assigned to a location greater
* than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
* an active output assigned an index greater than or equal to one;"
*/
if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
var->data.location - generic_base >=
(int) constants->MaxDualSourceDrawBuffers) {
linker_error(prog,
"output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
"with index %u for %s\n",
var->data.location - generic_base, var->data.index,
var->name);
return false;
}
const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
/* If the variable is not a built-in and has a location statically
* assigned in the shader (presumably via a layout qualifier), make sure
* that it doesn't collide with other assigned locations. Otherwise,
* add it to the list of variables that need linker-assigned locations.
*/
if (var->data.location != -1) {
if (var->data.location >= generic_base && var->data.index < 1) {
/* From page 61 of the OpenGL 4.0 spec:
*
* "LinkProgram will fail if the attribute bindings assigned
* by BindAttribLocation do not leave not enough space to
* assign a location for an active matrix attribute or an
* active attribute array, both of which require multiple
* contiguous generic attributes."
*
* I think above text prohibits the aliasing of explicit and
* automatic assignments. But, aliasing is allowed in manual
* assignments of attribute locations. See below comments for
* the details.
*
* From OpenGL 4.0 spec, page 61:
*
* "It is possible for an application to bind more than one
* attribute name to the same location. This is referred to as
* aliasing. This will only work if only one of the aliased
* attributes is active in the executable program, or if no
* path through the shader consumes more than one attribute of
* a set of attributes aliased to the same location. A link
* error can occur if the linker determines that every path
* through the shader consumes multiple aliased attributes,
* but implementations are not required to generate an error
* in this case."
*
* From GLSL 4.30 spec, page 54:
*
* "A program will fail to link if any two non-vertex shader
* input variables are assigned to the same location. For
* vertex shaders, multiple input variables may be assigned
* to the same location using either layout qualifiers or via
* the OpenGL API. However, such aliasing is intended only to
* support vertex shaders where each execution path accesses
* at most one input per each location. Implementations are
* permitted, but not required, to generate link-time errors
* if they detect that every path through the vertex shader
* executable accesses multiple inputs assigned to any single
* location. For all shader types, a program will fail to link
* if explicit location assignments leave the linker unable
* to find space for other variables without explicit
* assignments."
*
* From OpenGL ES 3.0 spec, page 56:
*
* "Binding more than one attribute name to the same location
* is referred to as aliasing, and is not permitted in OpenGL
* ES Shading Language 3.00 vertex shaders. LinkProgram will
* fail when this condition exists. However, aliasing is
* possible in OpenGL ES Shading Language 1.00 vertex shaders.
* This will only work if only one of the aliased attributes
* is active in the executable program, or if no path through
* the shader consumes more than one attribute of a set of
* attributes aliased to the same location. A link error can
* occur if the linker determines that every path through the
* shader consumes multiple aliased attributes, but implemen-
* tations are not required to generate an error in this case."
*
* After looking at above references from OpenGL, OpenGL ES and
* GLSL specifications, we allow aliasing of vertex input variables
* in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
*
* NOTE: This is not required by the spec but its worth mentioning
* here that we're not doing anything to make sure that no path
* through the vertex shader executable accesses multiple inputs
* assigned to any single location.
*/
/* Mask representing the contiguous slots that will be used by
* this attribute.
*/
const unsigned attr = var->data.location - generic_base;
const unsigned use_mask = (1 << slots) - 1;
const char *const string = (target_index == MESA_SHADER_VERTEX)
? "vertex shader input" : "fragment shader output";
/* Generate a link error if the requested locations for this
* attribute exceed the maximum allowed attribute location.
*/
if (attr + slots > max_index) {
linker_error(prog,
"insufficient contiguous locations "
"available for %s `%s' %d %d %d\n", string,
var->name, used_locations, use_mask, attr);
return false;
}
/* Generate a link error if the set of bits requested for this
* attribute overlaps any previously allocated bits.
*/
if ((~(use_mask << attr) & used_locations) != used_locations) {
if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
/* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
* 4.40 spec:
*
* "Additionally, for fragment shader outputs, if two
* variables are placed within the same location, they
* must have the same underlying type (floating-point or
* integer). No component aliasing of output variables or
* members is allowed.
*/
for (unsigned i = 0; i < assigned_attr; i++) {
unsigned assigned_slots =
assigned[i]->type->count_attribute_slots(false);
unsigned assig_attr =
assigned[i]->data.location - generic_base;
unsigned assigned_use_mask = (1 << assigned_slots) - 1;
if ((assigned_use_mask << assig_attr) &
(use_mask << attr)) {
const glsl_type *assigned_type =
assigned[i]->type->without_array();
const glsl_type *type = var->type->without_array();
if (assigned_type->base_type != type->base_type) {
linker_error(prog, "types do not match for aliased"
" %ss %s and %s\n", string,
assigned[i]->name, var->name);
return false;
}
unsigned assigned_component_mask =
((1 << assigned_type->vector_elements) - 1) <<
assigned[i]->data.location_frac;
unsigned component_mask =
((1 << type->vector_elements) - 1) <<
var->data.location_frac;
if (assigned_component_mask & component_mask) {
linker_error(prog, "overlapping component is "
"assigned to %ss %s and %s "
"(component=%d)\n",
string, assigned[i]->name, var->name,
var->data.location_frac);
return false;
}
}
}
} else if (target_index == MESA_SHADER_FRAGMENT ||
(prog->IsES && prog->data->Version >= 300)) {
linker_error(prog, "overlapping location is assigned "
"to %s `%s' %d %d %d\n", string, var->name,
used_locations, use_mask, attr);
return false;
} else {
linker_warning(prog, "overlapping location is assigned "
"to %s `%s' %d %d %d\n", string, var->name,
used_locations, use_mask, attr);
}
}
if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
/* Only track assigned variables for non-ES fragment shaders
* to avoid overflowing the array.
*
* At most one variable per fragment output component should
* reach this.
*/
assert(assigned_attr < ARRAY_SIZE(assigned));
assigned[assigned_attr] = var;
assigned_attr++;
}
used_locations |= (use_mask << attr);
/* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
*
* "A program with more than the value of MAX_VERTEX_ATTRIBS
* active attribute variables may fail to link, unless
* device-dependent optimizations are able to make the program
* fit within available hardware resources. For the purposes
* of this test, attribute variables of the type dvec3, dvec4,
* dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
* count as consuming twice as many attributes as equivalent
* single-precision types. While these types use the same number
* of generic attributes as their single-precision equivalents,
* implementations are permitted to consume two single-precision
* vectors of internal storage for each three- or four-component
* double-precision vector."
*
* Mark this attribute slot as taking up twice as much space
* so we can count it properly against limits. According to
* issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
* is optional behavior, but it seems preferable.
*/
if (var->type->without_array()->is_dual_slot())
double_storage_locations |= (use_mask << attr);
}
continue;
}
if (num_attr >= max_index) {
linker_error(prog, "too many %s (max %u)",
target_index == MESA_SHADER_VERTEX ?
"vertex shader inputs" : "fragment shader outputs",
max_index);
return false;
}
to_assign[num_attr].slots = slots;
to_assign[num_attr].var = var;
num_attr++;
}
if (target_index == MESA_SHADER_VERTEX) {
unsigned total_attribs_size =
_mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
_mesa_bitcount(double_storage_locations);
if (total_attribs_size > max_index) {
linker_error(prog,
"attempt to use %d vertex attribute slots only %d available ",
total_attribs_size, max_index);
return false;
}
}
/* If all of the attributes were assigned locations by the application (or
* are built-in attributes with fixed locations), return early. This should
* be the common case.
*/
if (num_attr == 0)
return true;
qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
if (target_index == MESA_SHADER_VERTEX) {
/* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
* only be explicitly assigned by via glBindAttribLocation. Mark it as
* reserved to prevent it from being automatically allocated below.
*/
find_deref_visitor find("gl_Vertex");
find.run(sh->ir);
if (find.variable_found())
used_locations |= (1 << 0);
}
for (unsigned i = 0; i < num_attr; i++) {
/* Mask representing the contiguous slots that will be used by this
* attribute.
*/
const unsigned use_mask = (1 << to_assign[i].slots) - 1;
int location = find_available_slots(used_locations, to_assign[i].slots);
if (location < 0) {
const char *const string = (target_index == MESA_SHADER_VERTEX)
? "vertex shader input" : "fragment shader output";
linker_error(prog,
"insufficient contiguous locations "
"available for %s `%s'\n",
string, to_assign[i].var->name);
return false;
}
to_assign[i].var->data.location = generic_base + location;
to_assign[i].var->data.is_unmatched_generic_inout = 0;
used_locations |= (use_mask << location);
if (to_assign[i].var->type->without_array()->is_dual_slot())
double_storage_locations |= (use_mask << location);
}
/* Now that we have all the locations, from the GL 4.5 core spec, section
* 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
* dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
* as equivalent single-precision types.
*/
if (target_index == MESA_SHADER_VERTEX) {
unsigned total_attribs_size =
_mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
_mesa_bitcount(double_storage_locations);
if (total_attribs_size > max_index) {
linker_error(prog,
"attempt to use %d vertex attribute slots only %d available ",
total_attribs_size, max_index);
return false;
}
}
return true;
}
/**
* Match explicit locations of outputs to inputs and deactivate the
* unmatch flag if found so we don't optimise them away.
*/
static void
match_explicit_outputs_to_inputs(gl_linked_shader *producer,
gl_linked_shader *consumer)
{
glsl_symbol_table parameters;
ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
{ {NULL, NULL} };
/* Find all shader outputs in the "producer" stage.
*/
foreach_in_list(ir_instruction, node, producer->ir) {
ir_variable *const var = node->as_variable();
if ((var == NULL) || (var->data.mode != ir_var_shader_out))
continue;
if (var->data.explicit_location &&
var->data.location >= VARYING_SLOT_VAR0) {
const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
if (explicit_locations[idx][var->data.location_frac] == NULL)
explicit_locations[idx][var->data.location_frac] = var;
}
}
/* Match inputs to outputs */
foreach_in_list(ir_instruction, node, consumer->ir) {
ir_variable *const input = node->as_variable();
if ((input == NULL) || (input->data.mode != ir_var_shader_in))
continue;
ir_variable *output = NULL;
if (input->data.explicit_location
&& input->data.location >= VARYING_SLOT_VAR0) {
output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
[input->data.location_frac];
if (output != NULL){
input->data.is_unmatched_generic_inout = 0;
output->data.is_unmatched_generic_inout = 0;
}
}
}
}
/**
* Store the gl_FragDepth layout in the gl_shader_program struct.
*/
static void
store_fragdepth_layout(struct gl_shader_program *prog)
{
if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
return;
}
struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
/* We don't look up the gl_FragDepth symbol directly because if
* gl_FragDepth is not used in the shader, it's removed from the IR.
* However, the symbol won't be removed from the symbol table.
*
* We're only interested in the cases where the variable is NOT removed
* from the IR.
*/
foreach_in_list(ir_instruction, node, ir) {
ir_variable *const var = node->as_variable();
if (var == NULL || var->data.mode != ir_var_shader_out) {
continue;
}
if (strcmp(var->name, "gl_FragDepth") == 0) {
switch (var->data.depth_layout) {
case ir_depth_layout_none:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
return;
case ir_depth_layout_any:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
return;
case ir_depth_layout_greater:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
return;
case ir_depth_layout_less:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
return;
case ir_depth_layout_unchanged:
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
return;
default:
assert(0);
return;
}
}
}
}
/**
* Validate the resources used by a program versus the implementation limits
*/
static void
check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
{
unsigned total_uniform_blocks = 0;
unsigned total_shader_storage_blocks = 0;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (sh == NULL)
continue;
if (sh->Program->info.num_textures >
ctx->Const.Program[i].MaxTextureImageUnits) {
linker_error(prog, "Too many %s shader texture samplers\n",
_mesa_shader_stage_to_string(i));
}
if (sh->num_uniform_components >
ctx->Const.Program[i].MaxUniformComponents) {
if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
linker_warning(prog, "Too many %s shader default uniform block "
"components, but the driver will try to optimize "
"them out; this is non-portable out-of-spec "
"behavior\n",
_mesa_shader_stage_to_string(i));
} else {
linker_error(prog, "Too many %s shader default uniform block "
"components\n",
_mesa_shader_stage_to_string(i));
}
}
if (sh->num_combined_uniform_components >
ctx->Const.Program[i].MaxCombinedUniformComponents) {
if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
linker_warning(prog, "Too many %s shader uniform components, "
"but the driver will try to optimize them out; "
"this is non-portable out-of-spec behavior\n",
_mesa_shader_stage_to_string(i));
} else {
linker_error(prog, "Too many %s shader uniform components\n",
_mesa_shader_stage_to_string(i));
}
}
total_shader_storage_blocks += sh->Program->info.num_ssbos;
total_uniform_blocks += sh->Program->info.num_ubos;
const unsigned max_uniform_blocks =
ctx->Const.Program[i].MaxUniformBlocks;
if (max_uniform_blocks < sh->Program->info.num_ubos) {
linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
_mesa_shader_stage_to_string(i),
sh->Program->info.num_ubos, max_uniform_blocks);
}
const unsigned max_shader_storage_blocks =
ctx->Const.Program[i].MaxShaderStorageBlocks;
if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
_mesa_shader_stage_to_string(i),
sh->Program->info.num_ssbos, max_shader_storage_blocks);
}
}
if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
}
if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
total_shader_storage_blocks,
ctx->Const.MaxCombinedShaderStorageBlocks);
}
for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
if (prog->data->UniformBlocks[i].UniformBufferSize >
ctx->Const.MaxUniformBlockSize) {
linker_error(prog, "Uniform block %s too big (%d/%d)\n",
prog->data->UniformBlocks[i].Name,
prog->data->UniformBlocks[i].UniformBufferSize,
ctx->Const.MaxUniformBlockSize);
}
}
for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
ctx->Const.MaxShaderStorageBlockSize) {
linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
prog->data->ShaderStorageBlocks[i].Name,
prog->data->ShaderStorageBlocks[i].UniformBufferSize,
ctx->Const.MaxShaderStorageBlockSize);
}
}
}
static void
link_calculate_subroutine_compat(struct gl_shader_program *prog)
{
unsigned mask = prog->data->linked_stages;
while (mask) {
const int i = u_bit_scan(&mask);
struct gl_program *p = prog->_LinkedShaders[i]->Program;
for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
continue;
struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
if (!uni)
continue;
int count = 0;
if (p->sh.NumSubroutineFunctions == 0) {
linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
continue;
}
for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
for (int k = 0; k < fn->num_compat_types; k++) {
if (fn->types[k] == uni->type) {
count++;
break;
}
}
}
uni->num_compatible_subroutines = count;
}
}
}
static void
check_subroutine_resources(struct gl_shader_program *prog)
{
unsigned mask = prog->data->linked_stages;
while (mask) {
const int i = u_bit_scan(&mask);
struct gl_program *p = prog->_LinkedShaders[i]->Program;
if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
linker_error(prog, "Too many %s shader subroutine uniforms\n",
_mesa_shader_stage_to_string(i));
}
}
}
/**
* Validate shader image resources.
*/
static void
check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
{
unsigned total_image_units = 0;
unsigned fragment_outputs = 0;
unsigned total_shader_storage_blocks = 0;
if (!ctx->Extensions.ARB_shader_image_load_store)
return;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (sh) {
if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
_mesa_shader_stage_to_string(i),
sh->Program->info.num_images,
ctx->Const.Program[i].MaxImageUniforms);
total_image_units += sh->Program->info.num_images;
total_shader_storage_blocks += sh->Program->info.num_ssbos;
if (i == MESA_SHADER_FRAGMENT) {
foreach_in_list(ir_instruction, node, sh->ir) {
ir_variable *var = node->as_variable();
if (var && var->data.mode == ir_var_shader_out)
/* since there are no double fs outputs - pass false */
fragment_outputs += var->type->count_attribute_slots(false);
}
}
}
}
if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
linker_error(prog, "Too many combined image uniforms\n");
if (total_image_units + fragment_outputs + total_shader_storage_blocks >
ctx->Const.MaxCombinedShaderOutputResources)
linker_error(prog, "Too many combined image uniforms, shader storage "
" buffers and fragment outputs\n");
}
/**
* Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
* for a variable, checks for overlaps between other uniforms using explicit
* locations.
*/
static int
reserve_explicit_locations(struct gl_shader_program *prog,
string_to_uint_map *map, ir_variable *var)
{
unsigned slots = var->type->uniform_locations();
unsigned max_loc = var->data.location + slots - 1;
unsigned return_value = slots;
/* Resize remap table if locations do not fit in the current one. */
if (max_loc + 1 > prog->NumUniformRemapTable) {
prog->UniformRemapTable =
reralloc(prog, prog->UniformRemapTable,
gl_uniform_storage *,
max_loc + 1);
if (!prog->UniformRemapTable) {
linker_error(prog, "Out of memory during linking.\n");
return -1;
}
/* Initialize allocated space. */
for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
prog->UniformRemapTable[i] = NULL;
prog->NumUniformRemapTable = max_loc + 1;
}
for (unsigned i = 0; i < slots; i++) {
unsigned loc = var->data.location + i;
/* Check if location is already used. */
if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
/* Possibly same uniform from a different stage, this is ok. */
unsigned hash_loc;
if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
return_value = 0;
continue;
}
/* ARB_explicit_uniform_location specification states:
*
* "No two default-block uniform variables in the program can have
* the same location, even if they are unused, otherwise a compiler
* or linker error will be generated."
*/
linker_error(prog,
"location qualifier for uniform %s overlaps "
"previously used location\n",
var->name);
return -1;
}
/* Initialize location as inactive before optimization
* rounds and location assignment.
*/
prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
}
/* Note, base location used for arrays. */
map->put(var->data.location, var->name);
return return_value;
}
static bool
reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
struct gl_program *p,
ir_variable *var)
{
unsigned slots = var->type->uniform_locations();
unsigned max_loc = var->data.location + slots - 1;
/* Resize remap table if locations do not fit in the current one. */
if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
p->sh.SubroutineUniformRemapTable =
reralloc(p, p->sh.SubroutineUniformRemapTable,
gl_uniform_storage *,
max_loc + 1);
if (!p->sh.SubroutineUniformRemapTable) {
linker_error(prog, "Out of memory during linking.\n");
return false;
}
/* Initialize allocated space. */
for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
p->sh.SubroutineUniformRemapTable[i] = NULL;
p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
}
for (unsigned i = 0; i < slots; i++) {
unsigned loc = var->data.location + i;
/* Check if location is already used. */
if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
/* ARB_explicit_uniform_location specification states:
* "No two subroutine uniform variables can have the same location
* in the same shader stage, otherwise a compiler or linker error
* will be generated."
*/
linker_error(prog,
"location qualifier for uniform %s overlaps "
"previously used location\n",
var->name);
return false;
}
/* Initialize location as inactive before optimization
* rounds and location assignment.
*/
p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
}
return true;
}
/**
* Check and reserve all explicit uniform locations, called before
* any optimizations happen to handle also inactive uniforms and
* inactive array elements that may get trimmed away.
*/
static void
check_explicit_uniform_locations(struct gl_context *ctx,
struct gl_shader_program *prog)
{
prog->NumExplicitUniformLocations = 0;
if (!ctx->Extensions.ARB_explicit_uniform_location)
return;
/* This map is used to detect if overlapping explicit locations
* occur with the same uniform (from different stage) or a different one.
*/
string_to_uint_map *uniform_map = new string_to_uint_map;
if (!uniform_map) {
linker_error(prog, "Out of memory during linking.\n");
return;
}
unsigned entries_total = 0;
unsigned mask = prog->data->linked_stages;
while (mask) {
const int i = u_bit_scan(&mask);
struct gl_program *p = prog->_LinkedShaders[i]->Program;
foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
ir_variable *var = node->as_variable();
if (!var || var->data.mode != ir_var_uniform)
continue;
if (var->data.explicit_location) {
bool ret = false;
if (var->type->without_array()->is_subroutine())
ret = reserve_subroutine_explicit_locations(prog, p, var);
else {
int slots = reserve_explicit_locations(prog, uniform_map,
var);
if (slots != -1) {
ret = true;
entries_total += slots;
}
}
if (!ret) {
delete uniform_map;
return;
}
}
}
}
struct empty_uniform_block *current_block = NULL;
for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
/* We found empty space in UniformRemapTable. */
if (prog->UniformRemapTable[i] == NULL) {
/* We've found the beginning of a new continous block of empty slots */
if (!current_block || current_block->start + current_block->slots != i) {
current_block = rzalloc(prog, struct empty_uniform_block);
current_block->start = i;
exec_list_push_tail(&prog->EmptyUniformLocations,
¤t_block->link);
}
/* The current block continues, so we simply increment its slots */
current_block->slots++;
}
}
delete uniform_map;
prog->NumExplicitUniformLocations = entries_total;
}
static bool
should_add_buffer_variable(struct gl_shader_program *shProg,
GLenum type, const char *name)
{
bool found_interface = false;
unsigned block_name_len = 0;
const char *block_name_dot = strchr(name, '.');
/* These rules only apply to buffer variables. So we return
* true for the rest of types.
*/
if (type != GL_BUFFER_VARIABLE)
return true;
for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
block_name_len = strlen(block_name);
const char *block_square_bracket = strchr(block_name, '[');
if (block_square_bracket) {
/* The block is part of an array of named interfaces,
* for the name comparison we ignore the "[x]" part.
*/
block_name_len -= strlen(block_square_bracket);
}
if (block_name_dot) {
/* Check if the variable name starts with the interface
* name. The interface name (if present) should have the
* length than the interface block name we are comparing to.
*/
unsigned len = strlen(name) - strlen(block_name_dot);
if (len != block_name_len)
continue;
}
if (strncmp(block_name, name, block_name_len) == 0) {
found_interface = true;
break;
}
}
/* We remove the interface name from the buffer variable name,
* including the dot that follows it.
*/
if (found_interface)
name = name + block_name_len + 1;
/* The ARB_program_interface_query spec says:
*
* "For an active shader storage block member declared as an array, an
* entry will be generated only for the first array element, regardless
* of its type. For arrays of aggregate types, the enumeration rules
* are applied recursively for the single enumerated array element."
*/
const char *struct_first_dot = strchr(name, '.');
const char *first_square_bracket = strchr(name, '[');
/* The buffer variable is on top level and it is not an array */
if (!first_square_bracket) {
return true;
/* The shader storage block member is a struct, then generate the entry */
} else if (struct_first_dot && struct_first_dot < first_square_bracket) {
return true;
} else {
/* Shader storage block member is an array, only generate an entry for the
* first array element.
*/
if (strncmp(first_square_bracket, "[0]", 3) == 0)
return true;
}
return false;
}
static bool
add_program_resource(struct gl_shader_program *prog,
struct set *resource_set,
GLenum type, const void *data, uint8_t stages)
{
assert(data);
/* If resource already exists, do not add it again. */
if (_mesa_set_search(resource_set, data))
return true;
prog->data->ProgramResourceList =
reralloc(prog->data,
prog->data->ProgramResourceList,
gl_program_resource,
prog->data->NumProgramResourceList + 1);
if (!prog->data->ProgramResourceList) {
linker_error(prog, "Out of memory during linking.\n");
return false;
}
struct gl_program_resource *res =
&prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
res->Type = type;
res->Data = data;
res->StageReferences = stages;
prog->data->NumProgramResourceList++;
_mesa_set_add(resource_set, data);
return true;
}
/* Function checks if a variable var is a packed varying and
* if given name is part of packed varying's list.
*
* If a variable is a packed varying, it has a name like
* 'packed:a,b,c' where a, b and c are separate variables.
*/
static bool
included_in_packed_varying(ir_variable *var, const char *name)
{
if (strncmp(var->name, "packed:", 7) != 0)
return false;
char *list = strdup(var->name + 7);
assert(list);
bool found = false;
char *saveptr;
char *token = strtok_r(list, ",", &saveptr);
while (token) {
if (strcmp(token, name) == 0) {
found = true;
break;
}
token = strtok_r(NULL, ",", &saveptr);
}
free(list);
return found;
}
/**
* Function builds a stage reference bitmask from variable name.
*/
static uint8_t
build_stageref(struct gl_shader_program *shProg, const char *name,
unsigned mode)
{
uint8_t stages = 0;
/* Note, that we assume MAX 8 stages, if there will be more stages, type
* used for reference mask in gl_program_resource will need to be changed.
*/
assert(MESA_SHADER_STAGES < 8);
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
if (!sh)
continue;
/* Shader symbol table may contain variables that have
* been optimized away. Search IR for the variable instead.
*/
foreach_in_list(ir_instruction, node, sh->ir) {
ir_variable *var = node->as_variable();
if (var) {
unsigned baselen = strlen(var->name);
if (included_in_packed_varying(var, name)) {
stages |= (1 << i);
break;
}
/* Type needs to match if specified, otherwise we might
* pick a variable with same name but different interface.
*/
if (var->data.mode != mode)
continue;
if (strncmp(var->name, name, baselen) == 0) {
/* Check for exact name matches but also check for arrays and
* structs.
*/
if (name[baselen] == '\0' ||
name[baselen] == '[' ||
name[baselen] == '.') {
stages |= (1 << i);
break;
}
}
}
}
}
return stages;
}
/**
* Create gl_shader_variable from ir_variable class.
*/
static gl_shader_variable *
create_shader_variable(struct gl_shader_program *shProg,
const ir_variable *in,
const char *name, const glsl_type *type,
const glsl_type *interface_type,
bool use_implicit_location, int location,
const glsl_type *outermost_struct_type)
{
/* Allocate zero-initialized memory to ensure that bitfield padding
* is zero.
*/
gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
if (!out)
return NULL;
/* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
* expect to see gl_VertexID in the program resource list. Pretend.
*/
if (in->data.mode == ir_var_system_value &&
in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
out->name = ralloc_strdup(shProg, "gl_VertexID");
} else if ((in->data.mode == ir_var_shader_out &&
in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
(in->data.mode == ir_var_system_value &&
in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
type = glsl_type::get_array_instance(glsl_type::float_type, 4);
} else if ((in->data.mode == ir_var_shader_out &&
in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
(in->data.mode == ir_var_system_value &&
in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
type = glsl_type::get_array_instance(glsl_type::float_type, 2);
} else {
out->name = ralloc_strdup(shProg, name);
}
if (!out->name)
return NULL;
/* The ARB_program_interface_query spec says:
*
* "Not all active variables are assigned valid locations; the
* following variables will have an effective location of -1:
*
* * uniforms declared as atomic counters;
*
* * members of a uniform block;
*
* * built-in inputs, outputs, and uniforms (starting with "gl_"); and
*
* * inputs or outputs not declared with a "location" layout
* qualifier, except for vertex shader inputs and fragment shader
* outputs."
*/
if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
!(in->data.explicit_location || use_implicit_location)) {
out->location = -1;
} else {
out->location = location;
}
out->type = type;
out->outermost_struct_type = outermost_struct_type;
out->interface_type = interface_type;
out->component = in->data.location_frac;
out->index = in->data.index;
out->patch = in->data.patch;
out->mode = in->data.mode;
out->interpolation = in->data.interpolation;
out->explicit_location = in->data.explicit_location;
out->precision = in->data.precision;
return out;
}
static bool
add_shader_variable(const struct gl_context *ctx,
struct gl_shader_program *shProg,
struct set *resource_set,
unsigned stage_mask,
GLenum programInterface, ir_variable *var,
const char *name, const glsl_type *type,
bool use_implicit_location, int location,
bool inouts_share_location,
const glsl_type *outermost_struct_type = NULL)
{
const glsl_type *interface_type = var->get_interface_type();
if (outermost_struct_type == NULL) {
if (var->data.from_named_ifc_block) {
const char *interface_name = interface_type->name;
if (interface_type->is_array()) {
/* Issue #16 of the ARB_program_interface_query spec says:
*
* "* If a variable is a member of an interface block without an
* instance name, it is enumerated using just the variable name.
*
* * If a variable is a member of an interface block with an
* instance name, it is enumerated as "BlockName.Member", where
* "BlockName" is the name of the interface block (not the
* instance name) and "Member" is the name of the variable."
*
* In particular, it indicates that it should be "BlockName",
* not "BlockName[array length]". The conformance suite and
* dEQP both require this behavior.
*
* Here, we unwrap the extra array level added by named interface
* block array lowering so we have the correct variable type. We
* also unwrap the interface type when constructing the name.
*
* We leave interface_type the same so that ES 3.x SSO pipeline
* validation can enforce the rules requiring array length to
* match on interface blocks.
*/
type = type->fields.array;
interface_name = interface_type->fields.array->name;
}
name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
}
}
switch (type->base_type) {
case GLSL_TYPE_STRUCT: {
/* The ARB_program_interface_query spec says:
*
* "For an active variable declared as a structure, a separate entry
* will be generated for each active structure member. The name of
* each entry is formed by concatenating the name of the structure,
* the "." character, and the name of the structure member. If a
* structure member to enumerate is itself a structure or array,
* these enumeration rules are applied recursively."
*/
if (outermost_struct_type == NULL)
outermost_struct_type = type;
unsigned field_location = location;
for (unsigned i = 0; i < type->length; i++) {
const struct glsl_struct_field *field = &type->fields.structure[i];
char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
if (!add_shader_variable(ctx, shProg, resource_set,
stage_mask, programInterface,
var, field_name, field->type,
use_implicit_location, field_location,
false, outermost_struct_type))
return false;
field_location += field->type->count_attribute_slots(false);
}
return true;
}
case GLSL_TYPE_ARRAY: {
/* The ARB_program_interface_query spec says:
*
* "For an active variable declared as an array of basic types, a
* single entry will be generated, with its name string formed by
* concatenating the name of the array and the string "[0]"."
*
* "For an active variable declared as an array of an aggregate data
* type (structures or arrays), a separate entry will be generated
* for each active array element, unless noted immediately below.
* The name of each entry is formed by concatenating the name of
* the array, the "[" character, an integer identifying the element
* number, and the "]" character. These enumeration rules are
* applied recursively, treating each enumerated array element as a
* separate active variable."
*/
const struct glsl_type *array_type = type->fields.array;
if (array_type->base_type == GLSL_TYPE_STRUCT ||
array_type->base_type == GLSL_TYPE_ARRAY) {
unsigned elem_location = location;
unsigned stride = inouts_share_location ? 0 :
array_type->count_attribute_slots(false);
for (unsigned i = 0; i < type->length; i++) {
char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
if (!add_shader_variable(ctx, shProg, resource_set,
stage_mask, programInterface,
var, elem, array_type,
use_implicit_location, elem_location,
false, outermost_struct_type))
return false;
elem_location += stride;
}
return true;
}
/* fallthrough */
}
default: {
/* The ARB_program_interface_query spec says:
*
* "For an active variable declared as a single instance of a basic
* type, a single entry will be generated, using the variable name
* from the shader source."
*/
gl_shader_variable *sha_v =
create_shader_variable(shProg, var, name, type, interface_type,
use_implicit_location, location,
outermost_struct_type);
if (!sha_v)
return false;
return add_program_resource(shProg, resource_set,
programInterface, sha_v, stage_mask);
}
}
}
static bool
inout_has_same_location(const ir_variable *var, unsigned stage)
{
if (!var->data.patch &&
((var->data.mode == ir_var_shader_out &&
stage == MESA_SHADER_TESS_CTRL) ||
(var->data.mode == ir_var_shader_in &&
(stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
stage == MESA_SHADER_GEOMETRY))))
return true;
else
return false;
}
static bool
add_interface_variables(const struct gl_context *ctx,
struct gl_shader_program *shProg,
struct set *resource_set,
unsigned stage, GLenum programInterface)
{
exec_list *ir = shProg->_LinkedShaders[stage]->ir;
foreach_in_list(ir_instruction, node, ir) {
ir_variable *var = node->as_variable();
if (!var || var->data.how_declared == ir_var_hidden)
continue;
int loc_bias;
switch (var->data.mode) {
case ir_var_system_value:
case ir_var_shader_in:
if (programInterface != GL_PROGRAM_INPUT)
continue;
loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
: int(VARYING_SLOT_VAR0);
break;
case ir_var_shader_out:
if (programInterface != GL_PROGRAM_OUTPUT)
continue;
loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
: int(VARYING_SLOT_VAR0);
break;
default:
continue;
};
if (var->data.patch)
loc_bias = int(VARYING_SLOT_PATCH0);
/* Skip packed varyings, packed varyings are handled separately
* by add_packed_varyings.
*/
if (strncmp(var->name, "packed:", 7) == 0)
continue;
/* Skip fragdata arrays, these are handled separately
* by add_fragdata_arrays.
*/
if (strncmp(var->name, "gl_out_FragData", 15) == 0)
continue;
const bool vs_input_or_fs_output =
(stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
(stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
if (!add_shader_variable(ctx, shProg, resource_set,
1 << stage, programInterface,
var, var->name, var->type, vs_input_or_fs_output,
var->data.location - loc_bias,
inout_has_same_location(var, stage)))
return false;
}
return true;
}
static bool
add_packed_varyings(const struct gl_context *ctx,
struct gl_shader_program *shProg,
struct set *resource_set,
int stage, GLenum type)
{
struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
GLenum iface;
if (!sh || !sh->packed_varyings)
return true;
foreach_in_list(ir_instruction, node, sh->packed_varyings) {
ir_variable *var = node->as_variable();
if (var) {
switch (var->data.mode) {
case ir_var_shader_in:
iface = GL_PROGRAM_INPUT;
break;
case ir_var_shader_out:
iface = GL_PROGRAM_OUTPUT;
break;
default:
unreachable("unexpected type");
}
if (type == iface) {
const int stage_mask =
build_stageref(shProg, var->name, var->data.mode);
if (!add_shader_variable(ctx, shProg, resource_set,
stage_mask,
iface, var, var->name, var->type, false,
var->data.location - VARYING_SLOT_VAR0,
inout_has_same_location(var, stage)))
return false;
}
}
}
return true;
}
static bool
add_fragdata_arrays(const struct gl_context *ctx,
struct gl_shader_program *shProg,
struct set *resource_set)
{
struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
if (!sh || !sh->fragdata_arrays)
return true;
foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
ir_variable *var = node->as_variable();
if (var) {
assert(var->data.mode == ir_var_shader_out);
if (!add_shader_variable(ctx, shProg, resource_set,
1 << MESA_SHADER_FRAGMENT,
GL_PROGRAM_OUTPUT, var, var->name, var->type,
true, var->data.location - FRAG_RESULT_DATA0,
false))
return false;
}
}
return true;
}
static char*
get_top_level_name(const char *name)
{
const char *first_dot = strchr(name, '.');
const char *first_square_bracket = strchr(name, '[');
int name_size = 0;
/* The ARB_program_interface_query spec says:
*
* "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
* the number of active array elements of the top-level shader storage
* block member containing to the active variable is written to
* <params>. If the top-level block member is not declared as an
* array, the value one is written to <params>. If the top-level block
* member is an array with no declared size, the value zero is written
* to <params>."
*/
/* The buffer variable is on top level.*/
if (!first_square_bracket && !first_dot)
name_size = strlen(name);
else if ((!first_square_bracket ||
(first_dot && first_dot < first_square_bracket)))
name_size = first_dot - name;
else
name_size = first_square_bracket - name;
return strndup(name, name_size);
}
static char*
get_var_name(const char *name)
{
const char *first_dot = strchr(name, '.');
if (!first_dot)
return strdup(name);
return strndup(first_dot+1, strlen(first_dot) - 1);
}
static bool
is_top_level_shader_storage_block_member(const char* name,
const char* interface_name,
const char* field_name)
{
bool result = false;
/* If the given variable is already a top-level shader storage
* block member, then return array_size = 1.
* We could have two possibilities: if we have an instanced
* shader storage block or not instanced.
*
* For the first, we check create a name as it was in top level and
* compare it with the real name. If they are the same, then
* the variable is already at top-level.
*
* Full instanced name is: interface name + '.' + var name +
* NULL character
*/
int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
if (!full_instanced_name) {
fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
return false;
}
snprintf(full_instanced_name, name_length, "%s.%s",
interface_name, field_name);
/* Check if its top-level shader storage block member of an
* instanced interface block, or of a unnamed interface block.
*/
if (strcmp(name, full_instanced_name) == 0 ||
strcmp(name, field_name) == 0)
result = true;
free(full_instanced_name);
return result;
}
static int
get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
char *interface_name, char *var_name)
{
/* The ARB_program_interface_query spec says:
*
* "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
* the number of active array elements of the top-level shader storage
* block member containing to the active variable is written to
* <params>. If the top-level block member is not declared as an
* array, the value one is written to <params>. If the top-level block
* member is an array with no declared size, the value zero is written
* to <params>."
*/
if (is_top_level_shader_storage_block_member(uni->name,
interface_name,
var_name))
return 1;
else if (field->type->is_unsized_array())
return 0;
else if (field->type->is_array())
return field->type->length;
return 1;
}
static int
get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
const glsl_type *interface, const glsl_struct_field *field,
char *interface_name, char *var_name)
{
/* The ARB_program_interface_query spec says:
*
* "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
* identifying the stride between array elements of the top-level
* shader storage block member containing the active variable is
* written to <params>. For top-level block members declared as
* arrays, the value written is the difference, in basic machine units,
* between the offsets of the active variable for consecutive elements
* in the top-level array. For top-level block members not declared as
* an array, zero is written to <params>."
*/
if (field->type->is_array()) {
const enum glsl_matrix_layout matrix_layout =
glsl_matrix_layout(field->matrix_layout);
bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
const glsl_type *array_type = field->type->fields.array;
if (is_top_level_shader_storage_block_member(uni->name,
interface_name,
var_name))
return 0;
if (GLSL_INTERFACE_PACKING_STD140 ==
interface->
get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
if (array_type->is_record() || array_type->is_array())
return glsl_align(array_type->std140_size(row_major), 16);
else
return MAX2(array_type->std140_base_alignment(row_major), 16);
} else {
return array_type->std430_array_stride(row_major);
}
}
return 0;
}
static void
calculate_array_size_and_stride(struct gl_context *ctx,
struct gl_shader_program *shProg,
struct gl_uniform_storage *uni)
{
int block_index = uni->block_index;
int array_size = -1;
int array_stride = -1;
char *var_name = get_top_level_name(uni->name);
char *interface_name =
get_top_level_name(uni->is_shader_storage ?
shProg->data->ShaderStorageBlocks[block_index].Name :
shProg->data->UniformBlocks[block_index].Name);
if (strcmp(var_name, interface_name) == 0) {
/* Deal with instanced array of SSBOs */
char *temp_name = get_var_name(uni->name);
if (!temp_name) {
linker_error(shProg, "Out of memory during linking.\n");
goto write_top_level_array_size_and_stride;
}
free(var_name);
var_name = get_top_level_name(temp_name);
free(temp_name);
if (!var_name) {
linker_error(shProg, "Out of memory during linking.\n");
goto write_top_level_array_size_and_stride;
}
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
const gl_linked_shader *sh = shProg->_LinkedShaders[i];
if (sh == NULL)
continue;
foreach_in_list(ir_instruction, node, sh->ir) {
ir_variable *var = node->as_variable();
if (!var || !var->get_interface_type() ||
var->data.mode != ir_var_shader_storage)
continue;
const glsl_type *interface = var->get_interface_type();
if (strcmp(interface_name, interface->name) != 0)
continue;
for (unsigned i = 0; i < interface->length; i++) {
const glsl_struct_field *field = &interface->fields.structure[i];
if (strcmp(field->name, var_name) != 0)
continue;
array_stride = get_array_stride(ctx, uni, interface, field,
interface_name, var_name);
array_size = get_array_size(uni, field, interface_name, var_name);
goto write_top_level_array_size_and_stride;
}
}
}
write_top_level_array_size_and_stride:
free(interface_name);
free(var_name);
uni->top_level_array_stride = array_stride;
uni->top_level_array_size = array_size;
}
/**
* Builds up a list of program resources that point to existing
* resource data.
*/
void
build_program_resource_list(struct gl_context *ctx,
struct gl_shader_program *shProg)
{
/* Rebuild resource list. */
if (shProg->data->ProgramResourceList) {
ralloc_free(shProg->data->ProgramResourceList);
shProg->data->ProgramResourceList = NULL;
shProg->data->NumProgramResourceList = 0;
}
int input_stage = MESA_SHADER_STAGES, output_stage = 0;
/* Determine first input and final output stage. These are used to
* detect which variables should be enumerated in the resource list
* for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
*/
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (!shProg->_LinkedShaders[i])
continue;
if (input_stage == MESA_SHADER_STAGES)
input_stage = i;
output_stage = i;
}
/* Empty shader, no resources. */
if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
return;
struct set *resource_set = _mesa_set_create(NULL,
_mesa_hash_pointer,
_mesa_key_pointer_equal);
/* Program interface needs to expose varyings in case of SSO. */
if (shProg->SeparateShader) {
if (!add_packed_varyings(ctx, shProg, resource_set,
input_stage, GL_PROGRAM_INPUT))
return;
if (!add_packed_varyings(ctx, shProg, resource_set,
output_stage, GL_PROGRAM_OUTPUT))
return;
}
if (!add_fragdata_arrays(ctx, shProg, resource_set))
return;
/* Add inputs and outputs to the resource list. */
if (!add_interface_variables(ctx, shProg, resource_set,
input_stage, GL_PROGRAM_INPUT))
return;
if (!add_interface_variables(ctx, shProg, resource_set,
output_stage, GL_PROGRAM_OUTPUT))
return;
if (shProg->last_vert_prog) {
struct gl_transform_feedback_info *linked_xfb =
shProg->last_vert_prog->sh.LinkedTransformFeedback;
/* Add transform feedback varyings. */
if (linked_xfb->NumVarying > 0) {
for (int i = 0; i < linked_xfb->NumVarying; i++) {
if (!add_program_resource(shProg, resource_set,
GL_TRANSFORM_FEEDBACK_VARYING,
&linked_xfb->Varyings[i], 0))
return;
}
}
/* Add transform feedback buffers. */
for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
if ((linked_xfb->ActiveBuffers >> i) & 1) {
linked_xfb->Buffers[i].Binding = i;
if (!add_program_resource(shProg, resource_set,
GL_TRANSFORM_FEEDBACK_BUFFER,
&linked_xfb->Buffers[i], 0))
return;
}
}
}
/* Add uniforms from uniform storage. */
for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
/* Do not add uniforms internally used by Mesa. */
if (shProg->data->UniformStorage[i].hidden)
continue;
uint8_t stageref =
build_stageref(shProg, shProg->data->UniformStorage[i].name,
ir_var_uniform);
/* Add stagereferences for uniforms in a uniform block. */
bool is_shader_storage =
shProg->data->UniformStorage[i].is_shader_storage;
int block_index = shProg->data->UniformStorage[i].block_index;
if (block_index != -1) {
stageref |= is_shader_storage ?
shProg->data->ShaderStorageBlocks[block_index].stageref :
shProg->data->UniformBlocks[block_index].stageref;
}
GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
if (!should_add_buffer_variable(shProg, type,
shProg->data->UniformStorage[i].name))
continue;
if (is_shader_storage) {
calculate_array_size_and_stride(ctx, shProg,
&shProg->data->UniformStorage[i]);
}
if (!add_program_resource(shProg, resource_set, type,
&shProg->data->UniformStorage[i], stageref))
return;
}
/* Add program uniform blocks. */
for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
&shProg->data->UniformBlocks[i], 0))
return;
}
/* Add program shader storage blocks. */
for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
&shProg->data->ShaderStorageBlocks[i], 0))
return;
}
/* Add atomic counter buffers. */
for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
&shProg->data->AtomicBuffers[i], 0))
return;
}
for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
GLenum type;
if (!shProg->data->UniformStorage[i].hidden)
continue;
for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
if (!shProg->data->UniformStorage[i].opaque[j].active ||
!shProg->data->UniformStorage[i].type->is_subroutine())
continue;
type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
/* add shader subroutines */
if (!add_program_resource(shProg, resource_set,
type, &shProg->data->UniformStorage[i], 0))
return;
}
}
unsigned mask = shProg->data->linked_stages;
while (mask) {
const int i = u_bit_scan(&mask);
struct gl_program *p = shProg->_LinkedShaders[i]->Program;
GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
if (!add_program_resource(shProg, resource_set,
type, &p->sh.SubroutineFunctions[j], 0))
return;
}
}
_mesa_set_destroy(resource_set, NULL);
}
/**
* This check is done to make sure we allow only constant expression
* indexing and "constant-index-expression" (indexing with an expression
* that includes loop induction variable).
*/
static bool
validate_sampler_array_indexing(struct gl_context *ctx,
struct gl_shader_program *prog)
{
dynamic_sampler_array_indexing_visitor v;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
bool no_dynamic_indexing =
ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
/* Search for array derefs in shader. */
v.run(prog->_LinkedShaders[i]->ir);
if (v.uses_dynamic_sampler_array_indexing()) {
const char *msg = "sampler arrays indexed with non-constant "
"expressions is forbidden in GLSL %s %u";
/* Backend has indicated that it has no dynamic indexing support. */
if (no_dynamic_indexing) {
linker_error(prog, msg, prog->IsES ? "ES" : "",
prog->data->Version);
return false;
} else {
linker_warning(prog, msg, prog->IsES ? "ES" : "",
prog->data->Version);
}
}
}
return true;
}
static void
link_assign_subroutine_types(struct gl_shader_program *prog)
{
unsigned mask = prog->data->linked_stages;
while (mask) {
const int i = u_bit_scan(&mask);
gl_program *p = prog->_LinkedShaders[i]->Program;
p->sh.MaxSubroutineFunctionIndex = 0;
foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
ir_function *fn = node->as_function();
if (!fn)
continue;
if (fn->is_subroutine)
p->sh.NumSubroutineUniformTypes++;
if (!fn->num_subroutine_types)
continue;
/* these should have been calculated earlier. */
assert(fn->subroutine_index != -1);
if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
linker_error(prog, "Too many subroutine functions declared.\n");
return;
}
p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
struct gl_subroutine_function,
p->sh.NumSubroutineFunctions + 1);
p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
ralloc_array(p, const struct glsl_type *,
fn->num_subroutine_types);
/* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
* GLSL 4.5 spec:
*
* "Each subroutine with an index qualifier in the shader must be
* given a unique index, otherwise a compile or link error will be
* generated."
*/
for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
if (p->sh.SubroutineFunctions[j].index != -1 &&
p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
linker_error(prog, "each subroutine index qualifier in the "
"shader must be unique\n");
return;
}
}
p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
fn->subroutine_index;
if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
for (int j = 0; j < fn->num_subroutine_types; j++)
p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
p->sh.NumSubroutineFunctions++;
}
}
}
static void
set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
{
assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
foreach_in_list(ir_instruction, node, ir) {
ir_variable *const var = node->as_variable();
if (var == NULL || var->data.mode != io_mode)
continue;
/* Don't set always active on builtins that haven't been redeclared */
if (var->data.how_declared == ir_var_declared_implicitly)
continue;
var->data.always_active_io = true;
}
}
/**
* When separate shader programs are enabled, only input/outputs between
* the stages of a multi-stage separate program can be safely removed
* from the shader interface. Other inputs/outputs must remain active.
*/
static void
disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
{
unsigned first, last;
assert(prog->SeparateShader);
first = MESA_SHADER_STAGES;
last = 0;
/* Determine first and last stage. Excluding the compute stage */
for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
if (!prog->_LinkedShaders[i])
continue;
if (first == MESA_SHADER_STAGES)
first = i;
last = i;
}
if (first == MESA_SHADER_STAGES)
return;
for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
gl_linked_shader *sh = prog->_LinkedShaders[stage];
if (!sh)
continue;
/* Prevent the removal of inputs to the first and outputs from the last
* stage, unless they are the initial pipeline inputs or final pipeline
* outputs, respectively.
*
* The removal of IO between shaders in the same program is always
* allowed.
*/
if (stage == first && stage != MESA_SHADER_VERTEX)
set_always_active_io(sh->ir, ir_var_shader_in);
if (stage == last && stage != MESA_SHADER_FRAGMENT)
set_always_active_io(sh->ir, ir_var_shader_out);
}
}
static void
link_and_validate_uniforms(struct gl_context *ctx,
struct gl_shader_program *prog)
{
update_array_sizes(prog);
link_assign_uniform_locations(prog, ctx);
link_assign_atomic_counter_resources(ctx, prog);
link_calculate_subroutine_compat(prog);
check_resources(ctx, prog);
check_subroutine_resources(prog);
check_image_resources(ctx, prog);
link_check_atomic_counter_resources(ctx, prog);
}
static bool
link_varyings_and_uniforms(unsigned first, unsigned last,
struct gl_context *ctx,
struct gl_shader_program *prog, void *mem_ctx)
{
/* Mark all generic shader inputs and outputs as unpaired. */
for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
if (prog->_LinkedShaders[i] != NULL) {
link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
}
}
unsigned prev = first;
for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
prog->_LinkedShaders[i]);
prev = i;
}
if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
MESA_SHADER_VERTEX)) {
return false;
}
if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
MESA_SHADER_FRAGMENT)) {
return false;
}
prog->last_vert_prog = NULL;
for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
if (prog->_LinkedShaders[i] == NULL)
continue;
prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
break;
}
if (!link_varyings(prog, first, last, ctx, mem_ctx))
return false;
link_and_validate_uniforms(ctx, prog);
if (!prog->data->LinkStatus)
return false;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
const struct gl_shader_compiler_options *options =
&ctx->Const.ShaderCompilerOptions[i];
if (options->LowerBufferInterfaceBlocks)
lower_ubo_reference(prog->_LinkedShaders[i],
options->ClampBlockIndicesToArrayBounds,
ctx->Const.UseSTD430AsDefaultPacking);
if (i == MESA_SHADER_COMPUTE)
lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
lower_vector_derefs(prog->_LinkedShaders[i]);
do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
}
return true;
}
static void
linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
unsigned stage)
{
if (ctx->Const.GLSLOptimizeConservatively) {
/* Run it just once. */
do_common_optimization(ir, true, false,
&ctx->Const.ShaderCompilerOptions[stage],
ctx->Const.NativeIntegers);
} else {
/* Repeat it until it stops making changes. */
while (do_common_optimization(ir, true, false,
&ctx->Const.ShaderCompilerOptions[stage],
ctx->Const.NativeIntegers))
;
}
}
void
link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
{
prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
prog->data->Validated = false;
/* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
*
* "Linking can fail for a variety of reasons as specified in the
* OpenGL Shading Language Specification, as well as any of the
* following reasons:
*
* - No shader objects are attached to program."
*
* The Compatibility Profile specification does not list the error. In
* Compatibility Profile missing shader stages are replaced by
* fixed-function. This applies to the case where all stages are
* missing.
*/
if (prog->NumShaders == 0) {
if (ctx->API != API_OPENGL_COMPAT)
linker_error(prog, "no shaders attached to the program\n");
return;
}
#ifdef ENABLE_SHADER_CACHE
/* If transform feedback used on the program then compile all shaders. */
bool skip_cache = false;
if (prog->TransformFeedback.NumVarying > 0) {
for (unsigned i = 0; i < prog->NumShaders; i++) {
_mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
}
skip_cache = true;
}
if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
return;
#endif
void *mem_ctx = ralloc_context(NULL); // temporary linker context
prog->ARB_fragment_coord_conventions_enable = false;
/* Separate the shaders into groups based on their type.
*/
struct gl_shader **shader_list[MESA_SHADER_STAGES];
unsigned num_shaders[MESA_SHADER_STAGES];
for (int i = 0; i < MESA_SHADER_STAGES; i++) {
shader_list[i] = (struct gl_shader **)
calloc(prog->NumShaders, sizeof(struct gl_shader *));
num_shaders[i] = 0;
}
unsigned min_version = UINT_MAX;
unsigned max_version = 0;
for (unsigned i = 0; i < prog->NumShaders; i++) {
min_version = MIN2(min_version, prog->Shaders[i]->Version);
max_version = MAX2(max_version, prog->Shaders[i]->Version);
if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
linker_error(prog, "all shaders must use same shading "
"language version\n");
goto done;
}
if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
prog->ARB_fragment_coord_conventions_enable = true;
}
gl_shader_stage shader_type = prog->Shaders[i]->Stage;
shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
num_shaders[shader_type]++;
}
/* In desktop GLSL, different shader versions may be linked together. In
* GLSL ES, all shader versions must be the same.
*/
if (prog->Shaders[0]->IsES && min_version != max_version) {
linker_error(prog, "all shaders must use same shading "
"language version\n");
goto done;
}
prog->data->Version = max_version;
prog->IsES = prog->Shaders[0]->IsES;
/* Some shaders have to be linked with some other shaders present.
*/
if (!prog->SeparateShader) {
if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
num_shaders[MESA_SHADER_VERTEX] == 0) {
linker_error(prog, "Geometry shader must be linked with "
"vertex shader\n");
goto done;
}
if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
num_shaders[MESA_SHADER_VERTEX] == 0) {
linker_error(prog, "Tessellation evaluation shader must be linked "
"with vertex shader\n");
goto done;
}
if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
num_shaders[MESA_SHADER_VERTEX] == 0) {
linker_error(prog, "Tessellation control shader must be linked with "
"vertex shader\n");
goto done;
}
/* Section 7.3 of the OpenGL ES 3.2 specification says:
*
* "Linking can fail for [...] any of the following reasons:
*
* * program contains an object to form a tessellation control
* shader [...] and [...] the program is not separable and
* contains no object to form a tessellation evaluation shader"
*
* The OpenGL spec is contradictory. It allows linking without a tess
* eval shader, but that can only be used with transform feedback and
* rasterization disabled. However, transform feedback isn't allowed
* with GL_PATCHES, so it can't be used.
*
* More investigation showed that the idea of transform feedback after
* a tess control shader was dropped, because some hw vendors couldn't
* support tessellation without a tess eval shader, but the linker
* section wasn't updated to reflect that.
*
* All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
* spec bug.
*
* Do what's reasonable and always require a tess eval shader if a tess
* control shader is present.
*/
if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
linker_error(prog, "Tessellation control shader must be linked with "
"tessellation evaluation shader\n");
goto done;
}
if (prog->IsES) {
if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
linker_error(prog, "GLSL ES requires non-separable programs "
"containing a tessellation evaluation shader to also "
"be linked with a tessellation control shader\n");
goto done;
}
}
}
/* Compute shaders have additional restrictions. */
if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
linker_error(prog, "Compute shaders may not be linked with any other "
"type of shader\n");
}
/* Link all shaders for a particular stage and validate the result.
*/
for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
if (num_shaders[stage] > 0) {
gl_linked_shader *const sh =
link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
num_shaders[stage], false);
if (!prog->data->LinkStatus) {
if (sh)
_mesa_delete_linked_shader(ctx, sh);
goto done;
}
switch (stage) {
case MESA_SHADER_VERTEX:
validate_vertex_shader_executable(prog, sh, ctx);
break;
case MESA_SHADER_TESS_CTRL:
/* nothing to be done */
break;
case MESA_SHADER_TESS_EVAL:
validate_tess_eval_shader_executable(prog, sh, ctx);
break;
case MESA_SHADER_GEOMETRY:
validate_geometry_shader_executable(prog, sh, ctx);
break;
case MESA_SHADER_FRAGMENT:
validate_fragment_shader_executable(prog, sh);
break;
}
if (!prog->data->LinkStatus) {
if (sh)
_mesa_delete_linked_shader(ctx, sh);
goto done;
}
prog->_LinkedShaders[stage] = sh;
prog->data->linked_stages |= 1 << stage;
}
}
/* Here begins the inter-stage linking phase. Some initial validation is
* performed, then locations are assigned for uniforms, attributes, and
* varyings.
*/
cross_validate_uniforms(prog);
if (!prog->data->LinkStatus)
goto done;
unsigned first, last, prev;
first = MESA_SHADER_STAGES;
last = 0;
/* Determine first and last stage. */
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (!prog->_LinkedShaders[i])
continue;
if (first == MESA_SHADER_STAGES)
first = i;
last = i;
}
check_explicit_uniform_locations(ctx, prog);
link_assign_subroutine_types(prog);
if (!prog->data->LinkStatus)
goto done;
resize_tes_inputs(ctx, prog);
/* Validate the inputs of each stage with the output of the preceding
* stage.
*/
prev = first;
for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
prog->_LinkedShaders[i]);
if (!prog->data->LinkStatus)
goto done;
cross_validate_outputs_to_inputs(ctx, prog,
prog->_LinkedShaders[prev],
prog->_LinkedShaders[i]);
if (!prog->data->LinkStatus)
goto done;
prev = i;
}
/* The cross validation of outputs/inputs above validates explicit locations
* but for SSO programs we need to do this also for the inputs in the
* first stage and outputs of the last stage included in the program, since
* there is no cross validation for these.
*/
if (prog->SeparateShader)
validate_sso_explicit_locations(ctx, prog,
(gl_shader_stage) first,
(gl_shader_stage) last);
/* Cross-validate uniform blocks between shader stages */
validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
if (!prog->data->LinkStatus)
goto done;
for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] != NULL)
lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
}
/* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
* it before optimization because we want most of the checks to get
* dropped thanks to constant propagation.
*
* This rule also applies to GLSL ES 3.00.
*/
if (max_version >= (prog->IsES ? 300 : 130)) {
struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
if (sh) {
lower_discard_flow(sh->ir);
}
}
if (prog->SeparateShader)
disable_varying_optimizations_for_sso(prog);
/* Process UBOs */
if (!interstage_cross_validate_uniform_blocks(prog, false))
goto done;
/* Process SSBOs */
if (!interstage_cross_validate_uniform_blocks(prog, true))
goto done;
/* Do common optimization before assigning storage for attributes,
* uniforms, and varyings. Later optimization could possibly make
* some of that unused.
*/
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
if (!prog->data->LinkStatus)
goto done;
if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
}
if (ctx->Const.LowerTessLevel) {
lower_tess_level(prog->_LinkedShaders[i]);
}
/* Call opts before lowering const arrays to uniforms so we can const
* propagate any elements accessed directly.
*/
linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
/* Call opts after lowering const arrays to copy propagate things. */
if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
propagate_invariance(prog->_LinkedShaders[i]->ir);
}
/* Validation for special cases where we allow sampler array indexing
* with loop induction variable. This check emits a warning or error
* depending if backend can handle dynamic indexing.
*/
if ((!prog->IsES && prog->data->Version < 130) ||
(prog->IsES && prog->data->Version < 300)) {
if (!validate_sampler_array_indexing(ctx, prog))
goto done;
}
/* Check and validate stream emissions in geometry shaders */
validate_geometry_shader_emissions(ctx, prog);
store_fragdepth_layout(prog);
if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
goto done;
/* Linking varyings can cause some extra, useless swizzles to be generated
* due to packing and unpacking.
*/
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
optimize_swizzles(prog->_LinkedShaders[i]->ir);
}
/* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
* be present in a linked program. GL_ARB_ES2_compatibility doesn't say
* anything about shader linking when one of the shaders (vertex or
* fragment shader) is absent. So, the extension shouldn't change the
* behavior specified in GLSL specification.
*
* From OpenGL ES 3.1 specification (7.3 Program Objects):
* "Linking can fail for a variety of reasons as specified in the
* OpenGL ES Shading Language Specification, as well as any of the
* following reasons:
*
* ...
*
* * program contains objects to form either a vertex shader or
* fragment shader, and program is not separable, and does not
* contain objects to form both a vertex shader and fragment
* shader."
*
* However, the only scenario in 3.1+ where we don't require them both is
* when we have a compute shader. For example:
*
* - No shaders is a link error.
* - Geom or Tess without a Vertex shader is a link error which means we
* always require a Vertex shader and hence a Fragment shader.
* - Finally a Compute shader linked with any other stage is a link error.
*/
if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
num_shaders[MESA_SHADER_COMPUTE] == 0) {
if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
linker_error(prog, "program lacks a vertex shader\n");
} else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
linker_error(prog, "program lacks a fragment shader\n");
}
}
done:
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
free(shader_list[i]);
if (prog->_LinkedShaders[i] == NULL)
continue;
/* Do a final validation step to make sure that the IR wasn't
* invalidated by any modifications performed after intrastage linking.
*/
validate_ir_tree(prog->_LinkedShaders[i]->ir);
/* Retain any live IR, but trash the rest. */
reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
/* The symbol table in the linked shaders may contain references to
* variables that were removed (e.g., unused uniforms). Since it may
* contain junk, there is no possible valid use. Delete it and set the
* pointer to NULL.
*/
delete prog->_LinkedShaders[i]->symbols;
prog->_LinkedShaders[i]->symbols = NULL;
}
ralloc_free(mem_ctx);
}