/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <gtest/gtest.h>
#include "ir.h"
#include "ir_array_refcount.h"
#include "ir_builder.h"
#include "util/hash_table.h"
using namespace ir_builder;
class array_refcount_test : public ::testing::Test {
public:
virtual void SetUp();
virtual void TearDown();
exec_list instructions;
ir_factory *body;
void *mem_ctx;
/**
* glsl_type for a vec4[3][4][5].
*
* The exceptionally verbose name is picked because it matches the syntax
* of http://cdecl.org/.
*/
const glsl_type *array_3_of_array_4_of_array_5_of_vec4;
/**
* glsl_type for a int[3].
*
* The exceptionally verbose name is picked because it matches the syntax
* of http://cdecl.org/.
*/
const glsl_type *array_3_of_int;
/**
* Wrapper to access private member "bits" of ir_array_refcount_entry
*
* The test class is a friend to ir_array_refcount_entry, but the
* individual tests are not part of the class. Since the friendliness of
* the test class does not extend to the tests, provide a wrapper.
*/
const BITSET_WORD *get_bits(const ir_array_refcount_entry &entry)
{
return entry.bits;
}
/**
* Wrapper to access private member "num_bits" of ir_array_refcount_entry
*
* The test class is a friend to ir_array_refcount_entry, but the
* individual tests are not part of the class. Since the friendliness of
* the test class does not extend to the tests, provide a wrapper.
*/
unsigned get_num_bits(const ir_array_refcount_entry &entry)
{
return entry.num_bits;
}
/**
* Wrapper to access private member "array_depth" of ir_array_refcount_entry
*
* The test class is a friend to ir_array_refcount_entry, but the
* individual tests are not part of the class. Since the friendliness of
* the test class does not extend to the tests, provide a wrapper.
*/
unsigned get_array_depth(const ir_array_refcount_entry &entry)
{
return entry.array_depth;
}
};
void
array_refcount_test::SetUp()
{
mem_ctx = ralloc_context(NULL);
instructions.make_empty();
body = new ir_factory(&instructions, mem_ctx);
/* The type of vec4 x[3][4][5]; */
const glsl_type *const array_5_of_vec4 =
glsl_type::get_array_instance(glsl_type::vec4_type, 5);
const glsl_type *const array_4_of_array_5_of_vec4 =
glsl_type::get_array_instance(array_5_of_vec4, 4);
array_3_of_array_4_of_array_5_of_vec4 =
glsl_type::get_array_instance(array_4_of_array_5_of_vec4, 3);
array_3_of_int = glsl_type::get_array_instance(glsl_type::int_type, 3);
}
void
array_refcount_test::TearDown()
{
delete body;
body = NULL;
ralloc_free(mem_ctx);
mem_ctx = NULL;
}
static operand
deref_array(operand array, operand index)
{
void *mem_ctx = ralloc_parent(array.val);
ir_rvalue *val = new(mem_ctx) ir_dereference_array(array.val, index.val);
return operand(val);
}
static operand
deref_struct(operand s, const char *field)
{
void *mem_ctx = ralloc_parent(s.val);
ir_rvalue *val = new(mem_ctx) ir_dereference_record(s.val, field);
return operand(val);
}
/**
* Verify that only the specified set of ir_variables exists in the hash table
*/
static void
validate_variables_in_hash_table(struct hash_table *ht,
unsigned count,
...)
{
ir_variable **vars = new ir_variable *[count];
va_list args;
/* Make a copy of the list of expected ir_variables. The copied list can
* be modified during the checking.
*/
va_start(args, count);
for (unsigned i = 0; i < count; i++)
vars[i] = va_arg(args, ir_variable *);
va_end(args);
struct hash_entry *entry;
hash_table_foreach(ht, entry) {
const ir_instruction *const ir = (ir_instruction *) entry->key;
const ir_variable *const v = ir->as_variable();
if (v == NULL) {
ADD_FAILURE() << "Invalid junk in hash table: ir_type = "
<< ir->ir_type << ", address = "
<< (void *) ir;
continue;
}
unsigned i;
for (i = 0; i < count; i++) {
if (vars[i] == NULL)
continue;
if (vars[i] == v)
break;
}
if (i == count) {
ADD_FAILURE() << "Invalid variable in hash table: \""
<< v->name << "\"";
} else {
/* As each variable is encountered, remove it from the set. Don't
* bother compacting the set because we don't care about
* performance here.
*/
vars[i] = NULL;
}
}
/* Check that there's nothing left in the set. */
for (unsigned i = 0; i < count; i++) {
if (vars[i] != NULL) {
ADD_FAILURE() << "Variable was not in the hash table: \""
<< vars[i]->name << "\"";
}
}
delete [] vars;
}
TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_scalar)
{
ir_variable *const var =
new(mem_ctx) ir_variable(glsl_type::int_type, "a", ir_var_auto);
ir_array_refcount_entry entry(var);
ASSERT_NE((void *)0, get_bits(entry));
EXPECT_FALSE(entry.is_referenced);
EXPECT_EQ(1, get_num_bits(entry));
EXPECT_EQ(0, get_array_depth(entry));
EXPECT_FALSE(entry.is_linearized_index_referenced(0));
}
TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_vector)
{
ir_variable *const var =
new(mem_ctx) ir_variable(glsl_type::vec4_type, "a", ir_var_auto);
ir_array_refcount_entry entry(var);
ASSERT_NE((void *)0, get_bits(entry));
EXPECT_FALSE(entry.is_referenced);
EXPECT_EQ(1, get_num_bits(entry));
EXPECT_EQ(0, get_array_depth(entry));
EXPECT_FALSE(entry.is_linearized_index_referenced(0));
}
TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_matrix)
{
ir_variable *const var =
new(mem_ctx) ir_variable(glsl_type::mat4_type, "a", ir_var_auto);
ir_array_refcount_entry entry(var);
ASSERT_NE((void *)0, get_bits(entry));
EXPECT_FALSE(entry.is_referenced);
EXPECT_EQ(1, get_num_bits(entry));
EXPECT_EQ(0, get_array_depth(entry));
EXPECT_FALSE(entry.is_linearized_index_referenced(0));
}
TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_array)
{
ir_variable *const var =
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"a",
ir_var_auto);
const unsigned total_elements = var->type->arrays_of_arrays_size();
ir_array_refcount_entry entry(var);
ASSERT_NE((void *)0, get_bits(entry));
EXPECT_FALSE(entry.is_referenced);
EXPECT_EQ(total_elements, get_num_bits(entry));
EXPECT_EQ(3, get_array_depth(entry));
for (unsigned i = 0; i < total_elements; i++)
EXPECT_FALSE(entry.is_linearized_index_referenced(i)) << "index = " << i;
}
TEST_F(array_refcount_test, mark_array_elements_referenced_simple)
{
ir_variable *const var =
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"a",
ir_var_auto);
const unsigned total_elements = var->type->arrays_of_arrays_size();
ir_array_refcount_entry entry(var);
static const array_deref_range dr[] = {
{ 0, 5 }, { 1, 4 }, { 2, 3 }
};
const unsigned accessed_element = 0 + (1 * 5) + (2 * 4 * 5);
entry.mark_array_elements_referenced(dr, 3);
for (unsigned i = 0; i < total_elements; i++)
EXPECT_EQ(i == accessed_element, entry.is_linearized_index_referenced(i));
}
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_first_array)
{
ir_variable *const var =
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"a",
ir_var_auto);
ir_array_refcount_entry entry(var);
static const array_deref_range dr[] = {
{ 0, 5 }, { 1, 4 }, { 3, 3 }
};
entry.mark_array_elements_referenced(dr, 3);
for (unsigned i = 0; i < 3; i++) {
for (unsigned j = 0; j < 4; j++) {
for (unsigned k = 0; k < 5; k++) {
const bool accessed = (j == 1) && (k == 0);
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
EXPECT_EQ(accessed,
entry.is_linearized_index_referenced(linearized_index));
}
}
}
}
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_second_array)
{
ir_variable *const var =
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"a",
ir_var_auto);
ir_array_refcount_entry entry(var);
static const array_deref_range dr[] = {
{ 0, 5 }, { 4, 4 }, { 1, 3 }
};
entry.mark_array_elements_referenced(dr, 3);
for (unsigned i = 0; i < 3; i++) {
for (unsigned j = 0; j < 4; j++) {
for (unsigned k = 0; k < 5; k++) {
const bool accessed = (i == 1) && (k == 0);
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
EXPECT_EQ(accessed,
entry.is_linearized_index_referenced(linearized_index));
}
}
}
}
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_third_array)
{
ir_variable *const var =
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"a",
ir_var_auto);
ir_array_refcount_entry entry(var);
static const array_deref_range dr[] = {
{ 5, 5 }, { 2, 4 }, { 1, 3 }
};
entry.mark_array_elements_referenced(dr, 3);
for (unsigned i = 0; i < 3; i++) {
for (unsigned j = 0; j < 4; j++) {
for (unsigned k = 0; k < 5; k++) {
const bool accessed = (i == 1) && (j == 2);
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
EXPECT_EQ(accessed,
entry.is_linearized_index_referenced(linearized_index));
}
}
}
}
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_first_and_third_arrays)
{
ir_variable *const var =
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"a",
ir_var_auto);
ir_array_refcount_entry entry(var);
static const array_deref_range dr[] = {
{ 5, 5 }, { 3, 4 }, { 3, 3 }
};
entry.mark_array_elements_referenced(dr, 3);
for (unsigned i = 0; i < 3; i++) {
for (unsigned j = 0; j < 4; j++) {
for (unsigned k = 0; k < 5; k++) {
const bool accessed = (j == 3);
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
EXPECT_EQ(accessed,
entry.is_linearized_index_referenced(linearized_index));
}
}
}
}
TEST_F(array_refcount_test, do_not_process_vector_indexing)
{
/* Vectors and matrices can also be indexed in much the same manner as
* arrays. The visitor should not try to track per-element accesses to
* these types.
*/
ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::float_type,
"a",
ir_var_auto);
ir_variable *var_b = new(mem_ctx) ir_variable(glsl_type::int_type,
"b",
ir_var_auto);
ir_variable *var_c = new(mem_ctx) ir_variable(glsl_type::vec4_type,
"c",
ir_var_auto);
body->emit(assign(var_a, deref_array(var_c, var_b)));
ir_array_refcount_visitor v;
visit_list_elements(&v, &instructions);
ir_array_refcount_entry *entry_a = v.get_variable_entry(var_a);
ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b);
ir_array_refcount_entry *entry_c = v.get_variable_entry(var_c);
EXPECT_TRUE(entry_a->is_referenced);
EXPECT_TRUE(entry_b->is_referenced);
EXPECT_TRUE(entry_c->is_referenced);
/* As validated by previous tests, for non-array types, num_bits is 1. */
ASSERT_EQ(1, get_num_bits(*entry_c));
EXPECT_FALSE(entry_c->is_linearized_index_referenced(0));
}
TEST_F(array_refcount_test, do_not_process_matrix_indexing)
{
/* Vectors and matrices can also be indexed in much the same manner as
* arrays. The visitor should not try to track per-element accesses to
* these types.
*/
ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::vec4_type,
"a",
ir_var_auto);
ir_variable *var_b = new(mem_ctx) ir_variable(glsl_type::int_type,
"b",
ir_var_auto);
ir_variable *var_c = new(mem_ctx) ir_variable(glsl_type::mat4_type,
"c",
ir_var_auto);
body->emit(assign(var_a, deref_array(var_c, var_b)));
ir_array_refcount_visitor v;
visit_list_elements(&v, &instructions);
ir_array_refcount_entry *entry_a = v.get_variable_entry(var_a);
ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b);
ir_array_refcount_entry *entry_c = v.get_variable_entry(var_c);
EXPECT_TRUE(entry_a->is_referenced);
EXPECT_TRUE(entry_b->is_referenced);
EXPECT_TRUE(entry_c->is_referenced);
/* As validated by previous tests, for non-array types, num_bits is 1. */
ASSERT_EQ(1, get_num_bits(*entry_c));
EXPECT_FALSE(entry_c->is_linearized_index_referenced(0));
}
TEST_F(array_refcount_test, do_not_process_array_inside_structure)
{
/* Structures can contain arrays. The visitor should not try to track
* per-element accesses to arrays contained inside structures.
*/
const glsl_struct_field fields[] = {
glsl_struct_field(array_3_of_int, "i"),
};
const glsl_type *const record_of_array_3_of_int =
glsl_type::get_record_instance(fields, ARRAY_SIZE(fields), "S");
ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::int_type,
"a",
ir_var_auto);
ir_variable *var_b = new(mem_ctx) ir_variable(record_of_array_3_of_int,
"b",
ir_var_auto);
/* a = b.i[2] */
body->emit(assign(var_a,
deref_array(
deref_struct(var_b, "i"),
body->constant(int(2)))));
ir_array_refcount_visitor v;
visit_list_elements(&v, &instructions);
ir_array_refcount_entry *entry_a = v.get_variable_entry(var_a);
ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b);
EXPECT_TRUE(entry_a->is_referenced);
EXPECT_TRUE(entry_b->is_referenced);
ASSERT_EQ(1, get_num_bits(*entry_b));
EXPECT_FALSE(entry_b->is_linearized_index_referenced(0));
validate_variables_in_hash_table(v.ht, 2, var_a, var_b);
}
TEST_F(array_refcount_test, visit_simple_indexing)
{
ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::vec4_type,
"a",
ir_var_auto);
ir_variable *var_b = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"b",
ir_var_auto);
/* a = b[2][1][0] */
body->emit(assign(var_a,
deref_array(
deref_array(
deref_array(var_b, body->constant(int(2))),
body->constant(int(1))),
body->constant(int(0)))));
ir_array_refcount_visitor v;
visit_list_elements(&v, &instructions);
const unsigned accessed_element = 0 + (1 * 5) + (2 * 4 * 5);
ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b);
const unsigned total_elements = var_b->type->arrays_of_arrays_size();
for (unsigned i = 0; i < total_elements; i++)
EXPECT_EQ(i == accessed_element, entry_b->is_linearized_index_referenced(i)) <<
"i = " << i;
validate_variables_in_hash_table(v.ht, 2, var_a, var_b);
}
TEST_F(array_refcount_test, visit_whole_second_array_indexing)
{
ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::vec4_type,
"a",
ir_var_auto);
ir_variable *var_b = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"b",
ir_var_auto);
ir_variable *var_i = new(mem_ctx) ir_variable(glsl_type::int_type,
"i",
ir_var_auto);
/* a = b[2][i][1] */
body->emit(assign(var_a,
deref_array(
deref_array(
deref_array(var_b, body->constant(int(2))),
var_i),
body->constant(int(1)))));
ir_array_refcount_visitor v;
visit_list_elements(&v, &instructions);
ir_array_refcount_entry *const entry_b = v.get_variable_entry(var_b);
for (unsigned i = 0; i < 3; i++) {
for (unsigned j = 0; j < 4; j++) {
for (unsigned k = 0; k < 5; k++) {
const bool accessed = (i == 2) && (k == 1);
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
EXPECT_EQ(accessed,
entry_b->is_linearized_index_referenced(linearized_index)) <<
"i = " << i;
}
}
}
validate_variables_in_hash_table(v.ht, 3, var_a, var_b, var_i);
}
TEST_F(array_refcount_test, visit_array_indexing_an_array)
{
ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::vec4_type,
"a",
ir_var_auto);
ir_variable *var_b = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"b",
ir_var_auto);
ir_variable *var_c = new(mem_ctx) ir_variable(array_3_of_int,
"c",
ir_var_auto);
ir_variable *var_i = new(mem_ctx) ir_variable(glsl_type::int_type,
"i",
ir_var_auto);
/* a = b[2][3][c[i]] */
body->emit(assign(var_a,
deref_array(
deref_array(
deref_array(var_b, body->constant(int(2))),
body->constant(int(3))),
deref_array(var_c, var_i))));
ir_array_refcount_visitor v;
visit_list_elements(&v, &instructions);
ir_array_refcount_entry *const entry_b = v.get_variable_entry(var_b);
for (unsigned i = 0; i < 3; i++) {
for (unsigned j = 0; j < 4; j++) {
for (unsigned k = 0; k < 5; k++) {
const bool accessed = (i == 2) && (j == 3);
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
EXPECT_EQ(accessed,
entry_b->is_linearized_index_referenced(linearized_index)) <<
"array b[" << i << "][" << j << "][" << k << "], " <<
"linear index = " << linearized_index;
}
}
}
ir_array_refcount_entry *const entry_c = v.get_variable_entry(var_c);
for (int i = 0; i < var_c->type->array_size(); i++) {
EXPECT_EQ(true, entry_c->is_linearized_index_referenced(i)) <<
"array c, i = " << i;
}
validate_variables_in_hash_table(v.ht, 4, var_a, var_b, var_c, var_i);
}
TEST_F(array_refcount_test, visit_array_indexing_with_itself)
{
const glsl_type *const array_2_of_array_3_of_int =
glsl_type::get_array_instance(array_3_of_int, 2);
const glsl_type *const array_2_of_array_2_of_array_3_of_int =
glsl_type::get_array_instance(array_2_of_array_3_of_int, 2);
ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::int_type,
"a",
ir_var_auto);
ir_variable *var_b = new(mem_ctx) ir_variable(array_2_of_array_2_of_array_3_of_int,
"b",
ir_var_auto);
/* Given GLSL code:
*
* int b[2][2][3];
* a = b[ b[0][0][0] ][ b[ b[0][1][0] ][ b[1][0][0] ][1] ][2]
*
* b[0][0][0], b[0][1][0], and b[1][0][0] are trivially accessed.
*
* b[*][*][1] and b[*][*][2] are accessed.
*
* Only b[1][1][0] is not accessed.
*/
operand b000 = deref_array(
deref_array(
deref_array(var_b, body->constant(int(0))),
body->constant(int(0))),
body->constant(int(0)));
operand b010 = deref_array(
deref_array(
deref_array(var_b, body->constant(int(0))),
body->constant(int(1))),
body->constant(int(0)));
operand b100 = deref_array(
deref_array(
deref_array(var_b, body->constant(int(1))),
body->constant(int(0))),
body->constant(int(0)));
operand b_b010_b100_1 = deref_array(
deref_array(
deref_array(var_b, b010),
b100),
body->constant(int(1)));
body->emit(assign(var_a,
deref_array(
deref_array(
deref_array(var_b, b000),
b_b010_b100_1),
body->constant(int(2)))));
ir_array_refcount_visitor v;
visit_list_elements(&v, &instructions);
ir_array_refcount_entry *const entry_b = v.get_variable_entry(var_b);
for (unsigned i = 0; i < 2; i++) {
for (unsigned j = 0; j < 2; j++) {
for (unsigned k = 0; k < 3; k++) {
const bool accessed = !(i == 1 && j == 1 && k == 0);
const unsigned linearized_index = k + (j * 3) + (i * 2 * 3);
EXPECT_EQ(accessed,
entry_b->is_linearized_index_referenced(linearized_index)) <<
"array b[" << i << "][" << j << "][" << k << "], " <<
"linear index = " << linearized_index;
}
}
}
validate_variables_in_hash_table(v.ht, 2, var_a, var_b);
}