/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott (cwabbott0@gmail.com)
*
*/
#include "nir.h"
#include "nir_control_flow_private.h"
#include <assert.h>
nir_shader *
nir_shader_create(void *mem_ctx,
gl_shader_stage stage,
const nir_shader_compiler_options *options,
shader_info *si)
{
nir_shader *shader = rzalloc(mem_ctx, nir_shader);
exec_list_make_empty(&shader->uniforms);
exec_list_make_empty(&shader->inputs);
exec_list_make_empty(&shader->outputs);
exec_list_make_empty(&shader->shared);
shader->options = options;
if (si) {
assert(si->stage == stage);
shader->info = *si;
} else {
shader->info.stage = stage;
}
exec_list_make_empty(&shader->functions);
exec_list_make_empty(&shader->registers);
exec_list_make_empty(&shader->globals);
exec_list_make_empty(&shader->system_values);
shader->reg_alloc = 0;
shader->num_inputs = 0;
shader->num_outputs = 0;
shader->num_uniforms = 0;
shader->num_shared = 0;
return shader;
}
static nir_register *
reg_create(void *mem_ctx, struct exec_list *list)
{
nir_register *reg = ralloc(mem_ctx, nir_register);
list_inithead(®->uses);
list_inithead(®->defs);
list_inithead(®->if_uses);
reg->num_components = 0;
reg->bit_size = 32;
reg->num_array_elems = 0;
reg->is_packed = false;
reg->name = NULL;
exec_list_push_tail(list, ®->node);
return reg;
}
nir_register *
nir_global_reg_create(nir_shader *shader)
{
nir_register *reg = reg_create(shader, &shader->registers);
reg->index = shader->reg_alloc++;
reg->is_global = true;
return reg;
}
nir_register *
nir_local_reg_create(nir_function_impl *impl)
{
nir_register *reg = reg_create(ralloc_parent(impl), &impl->registers);
reg->index = impl->reg_alloc++;
reg->is_global = false;
return reg;
}
void
nir_reg_remove(nir_register *reg)
{
exec_node_remove(®->node);
}
void
nir_shader_add_variable(nir_shader *shader, nir_variable *var)
{
switch (var->data.mode) {
case nir_var_all:
assert(!"invalid mode");
break;
case nir_var_local:
assert(!"nir_shader_add_variable cannot be used for local variables");
break;
case nir_var_param:
assert(!"nir_shader_add_variable cannot be used for function parameters");
break;
case nir_var_global:
exec_list_push_tail(&shader->globals, &var->node);
break;
case nir_var_shader_in:
exec_list_push_tail(&shader->inputs, &var->node);
break;
case nir_var_shader_out:
exec_list_push_tail(&shader->outputs, &var->node);
break;
case nir_var_uniform:
case nir_var_shader_storage:
exec_list_push_tail(&shader->uniforms, &var->node);
break;
case nir_var_shared:
assert(shader->info.stage == MESA_SHADER_COMPUTE);
exec_list_push_tail(&shader->shared, &var->node);
break;
case nir_var_system_value:
exec_list_push_tail(&shader->system_values, &var->node);
break;
}
}
nir_variable *
nir_variable_create(nir_shader *shader, nir_variable_mode mode,
const struct glsl_type *type, const char *name)
{
nir_variable *var = rzalloc(shader, nir_variable);
var->name = ralloc_strdup(var, name);
var->type = type;
var->data.mode = mode;
if ((mode == nir_var_shader_in &&
shader->info.stage != MESA_SHADER_VERTEX) ||
(mode == nir_var_shader_out &&
shader->info.stage != MESA_SHADER_FRAGMENT))
var->data.interpolation = INTERP_MODE_SMOOTH;
if (mode == nir_var_shader_in || mode == nir_var_uniform)
var->data.read_only = true;
nir_shader_add_variable(shader, var);
return var;
}
nir_variable *
nir_local_variable_create(nir_function_impl *impl,
const struct glsl_type *type, const char *name)
{
nir_variable *var = rzalloc(impl->function->shader, nir_variable);
var->name = ralloc_strdup(var, name);
var->type = type;
var->data.mode = nir_var_local;
nir_function_impl_add_variable(impl, var);
return var;
}
nir_function *
nir_function_create(nir_shader *shader, const char *name)
{
nir_function *func = ralloc(shader, nir_function);
exec_list_push_tail(&shader->functions, &func->node);
func->name = ralloc_strdup(func, name);
func->shader = shader;
func->num_params = 0;
func->params = NULL;
func->return_type = glsl_void_type();
func->impl = NULL;
return func;
}
void nir_src_copy(nir_src *dest, const nir_src *src, void *mem_ctx)
{
dest->is_ssa = src->is_ssa;
if (src->is_ssa) {
dest->ssa = src->ssa;
} else {
dest->reg.base_offset = src->reg.base_offset;
dest->reg.reg = src->reg.reg;
if (src->reg.indirect) {
dest->reg.indirect = ralloc(mem_ctx, nir_src);
nir_src_copy(dest->reg.indirect, src->reg.indirect, mem_ctx);
} else {
dest->reg.indirect = NULL;
}
}
}
void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr)
{
/* Copying an SSA definition makes no sense whatsoever. */
assert(!src->is_ssa);
dest->is_ssa = false;
dest->reg.base_offset = src->reg.base_offset;
dest->reg.reg = src->reg.reg;
if (src->reg.indirect) {
dest->reg.indirect = ralloc(instr, nir_src);
nir_src_copy(dest->reg.indirect, src->reg.indirect, instr);
} else {
dest->reg.indirect = NULL;
}
}
void
nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
nir_alu_instr *instr)
{
nir_src_copy(&dest->src, &src->src, &instr->instr);
dest->abs = src->abs;
dest->negate = src->negate;
for (unsigned i = 0; i < 4; i++)
dest->swizzle[i] = src->swizzle[i];
}
void
nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
nir_alu_instr *instr)
{
nir_dest_copy(&dest->dest, &src->dest, &instr->instr);
dest->write_mask = src->write_mask;
dest->saturate = src->saturate;
}
static void
cf_init(nir_cf_node *node, nir_cf_node_type type)
{
exec_node_init(&node->node);
node->parent = NULL;
node->type = type;
}
nir_function_impl *
nir_function_impl_create_bare(nir_shader *shader)
{
nir_function_impl *impl = ralloc(shader, nir_function_impl);
impl->function = NULL;
cf_init(&impl->cf_node, nir_cf_node_function);
exec_list_make_empty(&impl->body);
exec_list_make_empty(&impl->registers);
exec_list_make_empty(&impl->locals);
impl->num_params = 0;
impl->params = NULL;
impl->return_var = NULL;
impl->reg_alloc = 0;
impl->ssa_alloc = 0;
impl->valid_metadata = nir_metadata_none;
/* create start & end blocks */
nir_block *start_block = nir_block_create(shader);
nir_block *end_block = nir_block_create(shader);
start_block->cf_node.parent = &impl->cf_node;
end_block->cf_node.parent = &impl->cf_node;
impl->end_block = end_block;
exec_list_push_tail(&impl->body, &start_block->cf_node.node);
start_block->successors[0] = end_block;
_mesa_set_add(end_block->predecessors, start_block);
return impl;
}
nir_function_impl *
nir_function_impl_create(nir_function *function)
{
assert(function->impl == NULL);
nir_function_impl *impl = nir_function_impl_create_bare(function->shader);
function->impl = impl;
impl->function = function;
impl->num_params = function->num_params;
impl->params = ralloc_array(function->shader,
nir_variable *, impl->num_params);
for (unsigned i = 0; i < impl->num_params; i++) {
impl->params[i] = rzalloc(function->shader, nir_variable);
impl->params[i]->type = function->params[i].type;
impl->params[i]->data.mode = nir_var_param;
impl->params[i]->data.location = i;
}
if (!glsl_type_is_void(function->return_type)) {
impl->return_var = rzalloc(function->shader, nir_variable);
impl->return_var->type = function->return_type;
impl->return_var->data.mode = nir_var_param;
impl->return_var->data.location = -1;
} else {
impl->return_var = NULL;
}
return impl;
}
nir_block *
nir_block_create(nir_shader *shader)
{
nir_block *block = rzalloc(shader, nir_block);
cf_init(&block->cf_node, nir_cf_node_block);
block->successors[0] = block->successors[1] = NULL;
block->predecessors = _mesa_set_create(block, _mesa_hash_pointer,
_mesa_key_pointer_equal);
block->imm_dom = NULL;
/* XXX maybe it would be worth it to defer allocation? This
* way it doesn't get allocated for shader refs that never run
* nir_calc_dominance? For example, state-tracker creates an
* initial IR, clones that, runs appropriate lowering pass, passes
* to driver which does common lowering/opt, and then stores ref
* which is later used to do state specific lowering and futher
* opt. Do any of the references not need dominance metadata?
*/
block->dom_frontier = _mesa_set_create(block, _mesa_hash_pointer,
_mesa_key_pointer_equal);
exec_list_make_empty(&block->instr_list);
return block;
}
static inline void
src_init(nir_src *src)
{
src->is_ssa = false;
src->reg.reg = NULL;
src->reg.indirect = NULL;
src->reg.base_offset = 0;
}
nir_if *
nir_if_create(nir_shader *shader)
{
nir_if *if_stmt = ralloc(shader, nir_if);
cf_init(&if_stmt->cf_node, nir_cf_node_if);
src_init(&if_stmt->condition);
nir_block *then = nir_block_create(shader);
exec_list_make_empty(&if_stmt->then_list);
exec_list_push_tail(&if_stmt->then_list, &then->cf_node.node);
then->cf_node.parent = &if_stmt->cf_node;
nir_block *else_stmt = nir_block_create(shader);
exec_list_make_empty(&if_stmt->else_list);
exec_list_push_tail(&if_stmt->else_list, &else_stmt->cf_node.node);
else_stmt->cf_node.parent = &if_stmt->cf_node;
return if_stmt;
}
nir_loop *
nir_loop_create(nir_shader *shader)
{
nir_loop *loop = rzalloc(shader, nir_loop);
cf_init(&loop->cf_node, nir_cf_node_loop);
nir_block *body = nir_block_create(shader);
exec_list_make_empty(&loop->body);
exec_list_push_tail(&loop->body, &body->cf_node.node);
body->cf_node.parent = &loop->cf_node;
body->successors[0] = body;
_mesa_set_add(body->predecessors, body);
return loop;
}
static void
instr_init(nir_instr *instr, nir_instr_type type)
{
instr->type = type;
instr->block = NULL;
exec_node_init(&instr->node);
}
static void
dest_init(nir_dest *dest)
{
dest->is_ssa = false;
dest->reg.reg = NULL;
dest->reg.indirect = NULL;
dest->reg.base_offset = 0;
}
static void
alu_dest_init(nir_alu_dest *dest)
{
dest_init(&dest->dest);
dest->saturate = false;
dest->write_mask = 0xf;
}
static void
alu_src_init(nir_alu_src *src)
{
src_init(&src->src);
src->abs = src->negate = false;
src->swizzle[0] = 0;
src->swizzle[1] = 1;
src->swizzle[2] = 2;
src->swizzle[3] = 3;
}
nir_alu_instr *
nir_alu_instr_create(nir_shader *shader, nir_op op)
{
unsigned num_srcs = nir_op_infos[op].num_inputs;
/* TODO: don't use rzalloc */
nir_alu_instr *instr =
rzalloc_size(shader,
sizeof(nir_alu_instr) + num_srcs * sizeof(nir_alu_src));
instr_init(&instr->instr, nir_instr_type_alu);
instr->op = op;
alu_dest_init(&instr->dest);
for (unsigned i = 0; i < num_srcs; i++)
alu_src_init(&instr->src[i]);
return instr;
}
nir_jump_instr *
nir_jump_instr_create(nir_shader *shader, nir_jump_type type)
{
nir_jump_instr *instr = ralloc(shader, nir_jump_instr);
instr_init(&instr->instr, nir_instr_type_jump);
instr->type = type;
return instr;
}
nir_load_const_instr *
nir_load_const_instr_create(nir_shader *shader, unsigned num_components,
unsigned bit_size)
{
nir_load_const_instr *instr = rzalloc(shader, nir_load_const_instr);
instr_init(&instr->instr, nir_instr_type_load_const);
nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size, NULL);
return instr;
}
nir_intrinsic_instr *
nir_intrinsic_instr_create(nir_shader *shader, nir_intrinsic_op op)
{
unsigned num_srcs = nir_intrinsic_infos[op].num_srcs;
/* TODO: don't use rzalloc */
nir_intrinsic_instr *instr =
rzalloc_size(shader,
sizeof(nir_intrinsic_instr) + num_srcs * sizeof(nir_src));
instr_init(&instr->instr, nir_instr_type_intrinsic);
instr->intrinsic = op;
if (nir_intrinsic_infos[op].has_dest)
dest_init(&instr->dest);
for (unsigned i = 0; i < num_srcs; i++)
src_init(&instr->src[i]);
return instr;
}
nir_call_instr *
nir_call_instr_create(nir_shader *shader, nir_function *callee)
{
nir_call_instr *instr = ralloc(shader, nir_call_instr);
instr_init(&instr->instr, nir_instr_type_call);
instr->callee = callee;
instr->num_params = callee->num_params;
instr->params = ralloc_array(instr, nir_deref_var *, instr->num_params);
instr->return_deref = NULL;
return instr;
}
nir_tex_instr *
nir_tex_instr_create(nir_shader *shader, unsigned num_srcs)
{
nir_tex_instr *instr = rzalloc(shader, nir_tex_instr);
instr_init(&instr->instr, nir_instr_type_tex);
dest_init(&instr->dest);
instr->num_srcs = num_srcs;
instr->src = ralloc_array(instr, nir_tex_src, num_srcs);
for (unsigned i = 0; i < num_srcs; i++)
src_init(&instr->src[i].src);
instr->texture_index = 0;
instr->texture_array_size = 0;
instr->texture = NULL;
instr->sampler_index = 0;
instr->sampler = NULL;
return instr;
}
void
nir_tex_instr_add_src(nir_tex_instr *tex,
nir_tex_src_type src_type,
nir_src src)
{
nir_tex_src *new_srcs = rzalloc_array(tex, nir_tex_src,
tex->num_srcs + 1);
for (unsigned i = 0; i < tex->num_srcs; i++) {
new_srcs[i].src_type = tex->src[i].src_type;
nir_instr_move_src(&tex->instr, &new_srcs[i].src,
&tex->src[i].src);
}
ralloc_free(tex->src);
tex->src = new_srcs;
tex->src[tex->num_srcs].src_type = src_type;
nir_instr_rewrite_src(&tex->instr, &tex->src[tex->num_srcs].src, src);
tex->num_srcs++;
}
void
nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx)
{
assert(src_idx < tex->num_srcs);
/* First rewrite the source to NIR_SRC_INIT */
nir_instr_rewrite_src(&tex->instr, &tex->src[src_idx].src, NIR_SRC_INIT);
/* Now, move all of the other sources down */
for (unsigned i = src_idx + 1; i < tex->num_srcs; i++) {
tex->src[i-1].src_type = tex->src[i].src_type;
nir_instr_move_src(&tex->instr, &tex->src[i-1].src, &tex->src[i].src);
}
tex->num_srcs--;
}
nir_phi_instr *
nir_phi_instr_create(nir_shader *shader)
{
nir_phi_instr *instr = ralloc(shader, nir_phi_instr);
instr_init(&instr->instr, nir_instr_type_phi);
dest_init(&instr->dest);
exec_list_make_empty(&instr->srcs);
return instr;
}
nir_parallel_copy_instr *
nir_parallel_copy_instr_create(nir_shader *shader)
{
nir_parallel_copy_instr *instr = ralloc(shader, nir_parallel_copy_instr);
instr_init(&instr->instr, nir_instr_type_parallel_copy);
exec_list_make_empty(&instr->entries);
return instr;
}
nir_ssa_undef_instr *
nir_ssa_undef_instr_create(nir_shader *shader,
unsigned num_components,
unsigned bit_size)
{
nir_ssa_undef_instr *instr = ralloc(shader, nir_ssa_undef_instr);
instr_init(&instr->instr, nir_instr_type_ssa_undef);
nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size, NULL);
return instr;
}
nir_deref_var *
nir_deref_var_create(void *mem_ctx, nir_variable *var)
{
nir_deref_var *deref = ralloc(mem_ctx, nir_deref_var);
deref->deref.deref_type = nir_deref_type_var;
deref->deref.child = NULL;
deref->deref.type = var->type;
deref->var = var;
return deref;
}
nir_deref_array *
nir_deref_array_create(void *mem_ctx)
{
nir_deref_array *deref = ralloc(mem_ctx, nir_deref_array);
deref->deref.deref_type = nir_deref_type_array;
deref->deref.child = NULL;
deref->deref_array_type = nir_deref_array_type_direct;
src_init(&deref->indirect);
deref->base_offset = 0;
return deref;
}
nir_deref_struct *
nir_deref_struct_create(void *mem_ctx, unsigned field_index)
{
nir_deref_struct *deref = ralloc(mem_ctx, nir_deref_struct);
deref->deref.deref_type = nir_deref_type_struct;
deref->deref.child = NULL;
deref->index = field_index;
return deref;
}
nir_deref_var *
nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx)
{
if (deref == NULL)
return NULL;
nir_deref_var *ret = nir_deref_var_create(mem_ctx, deref->var);
ret->deref.type = deref->deref.type;
if (deref->deref.child)
ret->deref.child = nir_deref_clone(deref->deref.child, ret);
return ret;
}
static nir_deref_array *
deref_array_clone(const nir_deref_array *deref, void *mem_ctx)
{
nir_deref_array *ret = nir_deref_array_create(mem_ctx);
ret->base_offset = deref->base_offset;
ret->deref_array_type = deref->deref_array_type;
if (deref->deref_array_type == nir_deref_array_type_indirect) {
nir_src_copy(&ret->indirect, &deref->indirect, mem_ctx);
}
ret->deref.type = deref->deref.type;
if (deref->deref.child)
ret->deref.child = nir_deref_clone(deref->deref.child, ret);
return ret;
}
static nir_deref_struct *
deref_struct_clone(const nir_deref_struct *deref, void *mem_ctx)
{
nir_deref_struct *ret = nir_deref_struct_create(mem_ctx, deref->index);
ret->deref.type = deref->deref.type;
if (deref->deref.child)
ret->deref.child = nir_deref_clone(deref->deref.child, ret);
return ret;
}
nir_deref *
nir_deref_clone(const nir_deref *deref, void *mem_ctx)
{
if (deref == NULL)
return NULL;
switch (deref->deref_type) {
case nir_deref_type_var:
return &nir_deref_var_clone(nir_deref_as_var(deref), mem_ctx)->deref;
case nir_deref_type_array:
return &deref_array_clone(nir_deref_as_array(deref), mem_ctx)->deref;
case nir_deref_type_struct:
return &deref_struct_clone(nir_deref_as_struct(deref), mem_ctx)->deref;
default:
unreachable("Invalid dereference type");
}
return NULL;
}
/* This is the second step in the recursion. We've found the tail and made a
* copy. Now we need to iterate over all possible leaves and call the
* callback on each one.
*/
static bool
deref_foreach_leaf_build_recur(nir_deref_var *deref, nir_deref *tail,
nir_deref_foreach_leaf_cb cb, void *state)
{
unsigned length;
union {
nir_deref_array arr;
nir_deref_struct str;
} tmp;
assert(tail->child == NULL);
switch (glsl_get_base_type(tail->type)) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT:
case GLSL_TYPE_INT16:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
if (glsl_type_is_vector_or_scalar(tail->type))
return cb(deref, state);
/* Fall Through */
case GLSL_TYPE_ARRAY:
tmp.arr.deref.deref_type = nir_deref_type_array;
tmp.arr.deref.type = glsl_get_array_element(tail->type);
tmp.arr.deref_array_type = nir_deref_array_type_direct;
tmp.arr.indirect = NIR_SRC_INIT;
tail->child = &tmp.arr.deref;
length = glsl_get_length(tail->type);
for (unsigned i = 0; i < length; i++) {
tmp.arr.deref.child = NULL;
tmp.arr.base_offset = i;
if (!deref_foreach_leaf_build_recur(deref, &tmp.arr.deref, cb, state))
return false;
}
return true;
case GLSL_TYPE_STRUCT:
tmp.str.deref.deref_type = nir_deref_type_struct;
tail->child = &tmp.str.deref;
length = glsl_get_length(tail->type);
for (unsigned i = 0; i < length; i++) {
tmp.arr.deref.child = NULL;
tmp.str.deref.type = glsl_get_struct_field(tail->type, i);
tmp.str.index = i;
if (!deref_foreach_leaf_build_recur(deref, &tmp.arr.deref, cb, state))
return false;
}
return true;
default:
unreachable("Invalid type for dereference");
}
}
/* This is the first step of the foreach_leaf recursion. In this step we are
* walking to the end of the deref chain and making a copy in the stack as we
* go. This is because we don't want to mutate the deref chain that was
* passed in by the caller. The downside is that this deref chain is on the
* stack and , if the caller wants to do anything with it, they will have to
* make their own copy because this one will go away.
*/
static bool
deref_foreach_leaf_copy_recur(nir_deref_var *deref, nir_deref *tail,
nir_deref_foreach_leaf_cb cb, void *state)
{
union {
nir_deref_array arr;
nir_deref_struct str;
} c;
if (tail->child) {
switch (tail->child->deref_type) {
case nir_deref_type_array:
c.arr = *nir_deref_as_array(tail->child);
tail->child = &c.arr.deref;
return deref_foreach_leaf_copy_recur(deref, &c.arr.deref, cb, state);
case nir_deref_type_struct:
c.str = *nir_deref_as_struct(tail->child);
tail->child = &c.str.deref;
return deref_foreach_leaf_copy_recur(deref, &c.str.deref, cb, state);
case nir_deref_type_var:
default:
unreachable("Invalid deref type for a child");
}
} else {
/* We've gotten to the end of the original deref. Time to start
* building our own derefs.
*/
return deref_foreach_leaf_build_recur(deref, tail, cb, state);
}
}
/**
* This function iterates over all of the possible derefs that can be created
* with the given deref as the head. It then calls the provided callback with
* a full deref for each one.
*
* The deref passed to the callback will be allocated on the stack. You will
* need to make a copy if you want it to hang around.
*/
bool
nir_deref_foreach_leaf(nir_deref_var *deref,
nir_deref_foreach_leaf_cb cb, void *state)
{
nir_deref_var copy = *deref;
return deref_foreach_leaf_copy_recur(©, ©.deref, cb, state);
}
/* Returns a load_const instruction that represents the constant
* initializer for the given deref chain. The caller is responsible for
* ensuring that there actually is a constant initializer.
*/
nir_load_const_instr *
nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref)
{
nir_constant *constant = deref->var->constant_initializer;
assert(constant);
const nir_deref *tail = &deref->deref;
unsigned matrix_col = 0;
while (tail->child) {
switch (tail->child->deref_type) {
case nir_deref_type_array: {
nir_deref_array *arr = nir_deref_as_array(tail->child);
assert(arr->deref_array_type == nir_deref_array_type_direct);
if (glsl_type_is_matrix(tail->type)) {
assert(arr->deref.child == NULL);
matrix_col = arr->base_offset;
} else {
constant = constant->elements[arr->base_offset];
}
break;
}
case nir_deref_type_struct: {
constant = constant->elements[nir_deref_as_struct(tail->child)->index];
break;
}
default:
unreachable("Invalid deref child type");
}
tail = tail->child;
}
unsigned bit_size = glsl_get_bit_size(tail->type);
nir_load_const_instr *load =
nir_load_const_instr_create(shader, glsl_get_vector_elements(tail->type),
bit_size);
switch (glsl_get_base_type(tail->type)) {
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_BOOL:
load->value = constant->values[matrix_col];
break;
default:
unreachable("Invalid immediate type");
}
return load;
}
nir_function_impl *
nir_cf_node_get_function(nir_cf_node *node)
{
while (node->type != nir_cf_node_function) {
node = node->parent;
}
return nir_cf_node_as_function(node);
}
/* Reduces a cursor by trying to convert everything to after and trying to
* go up to block granularity when possible.
*/
static nir_cursor
reduce_cursor(nir_cursor cursor)
{
switch (cursor.option) {
case nir_cursor_before_block:
assert(nir_cf_node_prev(&cursor.block->cf_node) == NULL ||
nir_cf_node_prev(&cursor.block->cf_node)->type != nir_cf_node_block);
if (exec_list_is_empty(&cursor.block->instr_list)) {
/* Empty block. After is as good as before. */
cursor.option = nir_cursor_after_block;
}
return cursor;
case nir_cursor_after_block:
return cursor;
case nir_cursor_before_instr: {
nir_instr *prev_instr = nir_instr_prev(cursor.instr);
if (prev_instr) {
/* Before this instruction is after the previous */
cursor.instr = prev_instr;
cursor.option = nir_cursor_after_instr;
} else {
/* No previous instruction. Switch to before block */
cursor.block = cursor.instr->block;
cursor.option = nir_cursor_before_block;
}
return reduce_cursor(cursor);
}
case nir_cursor_after_instr:
if (nir_instr_next(cursor.instr) == NULL) {
/* This is the last instruction, switch to after block */
cursor.option = nir_cursor_after_block;
cursor.block = cursor.instr->block;
}
return cursor;
default:
unreachable("Inavlid cursor option");
}
}
bool
nir_cursors_equal(nir_cursor a, nir_cursor b)
{
/* Reduced cursors should be unique */
a = reduce_cursor(a);
b = reduce_cursor(b);
return a.block == b.block && a.option == b.option;
}
static bool
add_use_cb(nir_src *src, void *state)
{
nir_instr *instr = state;
src->parent_instr = instr;
list_addtail(&src->use_link,
src->is_ssa ? &src->ssa->uses : &src->reg.reg->uses);
return true;
}
static bool
add_ssa_def_cb(nir_ssa_def *def, void *state)
{
nir_instr *instr = state;
if (instr->block && def->index == UINT_MAX) {
nir_function_impl *impl =
nir_cf_node_get_function(&instr->block->cf_node);
def->index = impl->ssa_alloc++;
}
return true;
}
static bool
add_reg_def_cb(nir_dest *dest, void *state)
{
nir_instr *instr = state;
if (!dest->is_ssa) {
dest->reg.parent_instr = instr;
list_addtail(&dest->reg.def_link, &dest->reg.reg->defs);
}
return true;
}
static void
add_defs_uses(nir_instr *instr)
{
nir_foreach_src(instr, add_use_cb, instr);
nir_foreach_dest(instr, add_reg_def_cb, instr);
nir_foreach_ssa_def(instr, add_ssa_def_cb, instr);
}
void
nir_instr_insert(nir_cursor cursor, nir_instr *instr)
{
switch (cursor.option) {
case nir_cursor_before_block:
/* Only allow inserting jumps into empty blocks. */
if (instr->type == nir_instr_type_jump)
assert(exec_list_is_empty(&cursor.block->instr_list));
instr->block = cursor.block;
add_defs_uses(instr);
exec_list_push_head(&cursor.block->instr_list, &instr->node);
break;
case nir_cursor_after_block: {
/* Inserting instructions after a jump is illegal. */
nir_instr *last = nir_block_last_instr(cursor.block);
assert(last == NULL || last->type != nir_instr_type_jump);
(void) last;
instr->block = cursor.block;
add_defs_uses(instr);
exec_list_push_tail(&cursor.block->instr_list, &instr->node);
break;
}
case nir_cursor_before_instr:
assert(instr->type != nir_instr_type_jump);
instr->block = cursor.instr->block;
add_defs_uses(instr);
exec_node_insert_node_before(&cursor.instr->node, &instr->node);
break;
case nir_cursor_after_instr:
/* Inserting instructions after a jump is illegal. */
assert(cursor.instr->type != nir_instr_type_jump);
/* Only allow inserting jumps at the end of the block. */
if (instr->type == nir_instr_type_jump)
assert(cursor.instr == nir_block_last_instr(cursor.instr->block));
instr->block = cursor.instr->block;
add_defs_uses(instr);
exec_node_insert_after(&cursor.instr->node, &instr->node);
break;
}
if (instr->type == nir_instr_type_jump)
nir_handle_add_jump(instr->block);
}
static bool
src_is_valid(const nir_src *src)
{
return src->is_ssa ? (src->ssa != NULL) : (src->reg.reg != NULL);
}
static bool
remove_use_cb(nir_src *src, void *state)
{
(void) state;
if (src_is_valid(src))
list_del(&src->use_link);
return true;
}
static bool
remove_def_cb(nir_dest *dest, void *state)
{
(void) state;
if (!dest->is_ssa)
list_del(&dest->reg.def_link);
return true;
}
static void
remove_defs_uses(nir_instr *instr)
{
nir_foreach_dest(instr, remove_def_cb, instr);
nir_foreach_src(instr, remove_use_cb, instr);
}
void nir_instr_remove(nir_instr *instr)
{
remove_defs_uses(instr);
exec_node_remove(&instr->node);
if (instr->type == nir_instr_type_jump) {
nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
nir_handle_remove_jump(instr->block, jump_instr->type);
}
}
/*@}*/
void
nir_index_local_regs(nir_function_impl *impl)
{
unsigned index = 0;
foreach_list_typed(nir_register, reg, node, &impl->registers) {
reg->index = index++;
}
impl->reg_alloc = index;
}
void
nir_index_global_regs(nir_shader *shader)
{
unsigned index = 0;
foreach_list_typed(nir_register, reg, node, &shader->registers) {
reg->index = index++;
}
shader->reg_alloc = index;
}
static bool
visit_alu_dest(nir_alu_instr *instr, nir_foreach_dest_cb cb, void *state)
{
return cb(&instr->dest.dest, state);
}
static bool
visit_intrinsic_dest(nir_intrinsic_instr *instr, nir_foreach_dest_cb cb,
void *state)
{
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
return cb(&instr->dest, state);
return true;
}
static bool
visit_texture_dest(nir_tex_instr *instr, nir_foreach_dest_cb cb,
void *state)
{
return cb(&instr->dest, state);
}
static bool
visit_phi_dest(nir_phi_instr *instr, nir_foreach_dest_cb cb, void *state)
{
return cb(&instr->dest, state);
}
static bool
visit_parallel_copy_dest(nir_parallel_copy_instr *instr,
nir_foreach_dest_cb cb, void *state)
{
nir_foreach_parallel_copy_entry(entry, instr) {
if (!cb(&entry->dest, state))
return false;
}
return true;
}
bool
nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state)
{
switch (instr->type) {
case nir_instr_type_alu:
return visit_alu_dest(nir_instr_as_alu(instr), cb, state);
case nir_instr_type_intrinsic:
return visit_intrinsic_dest(nir_instr_as_intrinsic(instr), cb, state);
case nir_instr_type_tex:
return visit_texture_dest(nir_instr_as_tex(instr), cb, state);
case nir_instr_type_phi:
return visit_phi_dest(nir_instr_as_phi(instr), cb, state);
case nir_instr_type_parallel_copy:
return visit_parallel_copy_dest(nir_instr_as_parallel_copy(instr),
cb, state);
case nir_instr_type_load_const:
case nir_instr_type_ssa_undef:
case nir_instr_type_call:
case nir_instr_type_jump:
break;
default:
unreachable("Invalid instruction type");
break;
}
return true;
}
struct foreach_ssa_def_state {
nir_foreach_ssa_def_cb cb;
void *client_state;
};
static inline bool
nir_ssa_def_visitor(nir_dest *dest, void *void_state)
{
struct foreach_ssa_def_state *state = void_state;
if (dest->is_ssa)
return state->cb(&dest->ssa, state->client_state);
else
return true;
}
bool
nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb, void *state)
{
switch (instr->type) {
case nir_instr_type_alu:
case nir_instr_type_tex:
case nir_instr_type_intrinsic:
case nir_instr_type_phi:
case nir_instr_type_parallel_copy: {
struct foreach_ssa_def_state foreach_state = {cb, state};
return nir_foreach_dest(instr, nir_ssa_def_visitor, &foreach_state);
}
case nir_instr_type_load_const:
return cb(&nir_instr_as_load_const(instr)->def, state);
case nir_instr_type_ssa_undef:
return cb(&nir_instr_as_ssa_undef(instr)->def, state);
case nir_instr_type_call:
case nir_instr_type_jump:
return true;
default:
unreachable("Invalid instruction type");
}
}
static bool
visit_src(nir_src *src, nir_foreach_src_cb cb, void *state)
{
if (!cb(src, state))
return false;
if (!src->is_ssa && src->reg.indirect)
return cb(src->reg.indirect, state);
return true;
}
static bool
visit_deref_array_src(nir_deref_array *deref, nir_foreach_src_cb cb,
void *state)
{
if (deref->deref_array_type == nir_deref_array_type_indirect)
return visit_src(&deref->indirect, cb, state);
return true;
}
static bool
visit_deref_src(nir_deref_var *deref, nir_foreach_src_cb cb, void *state)
{
nir_deref *cur = &deref->deref;
while (cur != NULL) {
if (cur->deref_type == nir_deref_type_array) {
if (!visit_deref_array_src(nir_deref_as_array(cur), cb, state))
return false;
}
cur = cur->child;
}
return true;
}
static bool
visit_alu_src(nir_alu_instr *instr, nir_foreach_src_cb cb, void *state)
{
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
if (!visit_src(&instr->src[i].src, cb, state))
return false;
return true;
}
static bool
visit_tex_src(nir_tex_instr *instr, nir_foreach_src_cb cb, void *state)
{
for (unsigned i = 0; i < instr->num_srcs; i++) {
if (!visit_src(&instr->src[i].src, cb, state))
return false;
}
if (instr->texture != NULL) {
if (!visit_deref_src(instr->texture, cb, state))
return false;
}
if (instr->sampler != NULL) {
if (!visit_deref_src(instr->sampler, cb, state))
return false;
}
return true;
}
static bool
visit_intrinsic_src(nir_intrinsic_instr *instr, nir_foreach_src_cb cb,
void *state)
{
unsigned num_srcs = nir_intrinsic_infos[instr->intrinsic].num_srcs;
for (unsigned i = 0; i < num_srcs; i++) {
if (!visit_src(&instr->src[i], cb, state))
return false;
}
unsigned num_vars =
nir_intrinsic_infos[instr->intrinsic].num_variables;
for (unsigned i = 0; i < num_vars; i++) {
if (!visit_deref_src(instr->variables[i], cb, state))
return false;
}
return true;
}
static bool
visit_phi_src(nir_phi_instr *instr, nir_foreach_src_cb cb, void *state)
{
nir_foreach_phi_src(src, instr) {
if (!visit_src(&src->src, cb, state))
return false;
}
return true;
}
static bool
visit_parallel_copy_src(nir_parallel_copy_instr *instr,
nir_foreach_src_cb cb, void *state)
{
nir_foreach_parallel_copy_entry(entry, instr) {
if (!visit_src(&entry->src, cb, state))
return false;
}
return true;
}
typedef struct {
void *state;
nir_foreach_src_cb cb;
} visit_dest_indirect_state;
static bool
visit_dest_indirect(nir_dest *dest, void *_state)
{
visit_dest_indirect_state *state = (visit_dest_indirect_state *) _state;
if (!dest->is_ssa && dest->reg.indirect)
return state->cb(dest->reg.indirect, state->state);
return true;
}
bool
nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state)
{
switch (instr->type) {
case nir_instr_type_alu:
if (!visit_alu_src(nir_instr_as_alu(instr), cb, state))
return false;
break;
case nir_instr_type_intrinsic:
if (!visit_intrinsic_src(nir_instr_as_intrinsic(instr), cb, state))
return false;
break;
case nir_instr_type_tex:
if (!visit_tex_src(nir_instr_as_tex(instr), cb, state))
return false;
break;
case nir_instr_type_call:
/* Call instructions have no regular sources */
break;
case nir_instr_type_load_const:
/* Constant load instructions have no regular sources */
break;
case nir_instr_type_phi:
if (!visit_phi_src(nir_instr_as_phi(instr), cb, state))
return false;
break;
case nir_instr_type_parallel_copy:
if (!visit_parallel_copy_src(nir_instr_as_parallel_copy(instr),
cb, state))
return false;
break;
case nir_instr_type_jump:
case nir_instr_type_ssa_undef:
return true;
default:
unreachable("Invalid instruction type");
break;
}
visit_dest_indirect_state dest_state;
dest_state.state = state;
dest_state.cb = cb;
return nir_foreach_dest(instr, visit_dest_indirect, &dest_state);
}
nir_const_value *
nir_src_as_const_value(nir_src src)
{
if (!src.is_ssa)
return NULL;
if (src.ssa->parent_instr->type != nir_instr_type_load_const)
return NULL;
nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr);
return &load->value;
}
/**
* Returns true if the source is known to be dynamically uniform. Otherwise it
* returns false which means it may or may not be dynamically uniform but it
* can't be determined.
*/
bool
nir_src_is_dynamically_uniform(nir_src src)
{
if (!src.is_ssa)
return false;
/* Constants are trivially dynamically uniform */
if (src.ssa->parent_instr->type == nir_instr_type_load_const)
return true;
/* As are uniform variables */
if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr);
if (intr->intrinsic == nir_intrinsic_load_uniform)
return true;
}
/* XXX: this could have many more tests, such as when a sampler function is
* called with dynamically uniform arguments.
*/
return false;
}
static void
src_remove_all_uses(nir_src *src)
{
for (; src; src = src->is_ssa ? NULL : src->reg.indirect) {
if (!src_is_valid(src))
continue;
list_del(&src->use_link);
}
}
static void
src_add_all_uses(nir_src *src, nir_instr *parent_instr, nir_if *parent_if)
{
for (; src; src = src->is_ssa ? NULL : src->reg.indirect) {
if (!src_is_valid(src))
continue;
if (parent_instr) {
src->parent_instr = parent_instr;
if (src->is_ssa)
list_addtail(&src->use_link, &src->ssa->uses);
else
list_addtail(&src->use_link, &src->reg.reg->uses);
} else {
assert(parent_if);
src->parent_if = parent_if;
if (src->is_ssa)
list_addtail(&src->use_link, &src->ssa->if_uses);
else
list_addtail(&src->use_link, &src->reg.reg->if_uses);
}
}
}
void
nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src)
{
assert(!src_is_valid(src) || src->parent_instr == instr);
src_remove_all_uses(src);
*src = new_src;
src_add_all_uses(src, instr, NULL);
}
void
nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src)
{
assert(!src_is_valid(dest) || dest->parent_instr == dest_instr);
src_remove_all_uses(dest);
src_remove_all_uses(src);
*dest = *src;
*src = NIR_SRC_INIT;
src_add_all_uses(dest, dest_instr, NULL);
}
void
nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src)
{
nir_src *src = &if_stmt->condition;
assert(!src_is_valid(src) || src->parent_if == if_stmt);
src_remove_all_uses(src);
*src = new_src;
src_add_all_uses(src, NULL, if_stmt);
}
void
nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest, nir_dest new_dest)
{
if (dest->is_ssa) {
/* We can only overwrite an SSA destination if it has no uses. */
assert(list_empty(&dest->ssa.uses) && list_empty(&dest->ssa.if_uses));
} else {
list_del(&dest->reg.def_link);
if (dest->reg.indirect)
src_remove_all_uses(dest->reg.indirect);
}
/* We can't re-write with an SSA def */
assert(!new_dest.is_ssa);
nir_dest_copy(dest, &new_dest, instr);
dest->reg.parent_instr = instr;
list_addtail(&dest->reg.def_link, &new_dest.reg.reg->defs);
if (dest->reg.indirect)
src_add_all_uses(dest->reg.indirect, instr, NULL);
}
void
nir_instr_rewrite_deref(nir_instr *instr, nir_deref_var **deref,
nir_deref_var *new_deref)
{
if (*deref)
visit_deref_src(*deref, remove_use_cb, NULL);
*deref = new_deref;
if (*deref)
visit_deref_src(*deref, add_use_cb, instr);
}
/* note: does *not* take ownership of 'name' */
void
nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
unsigned num_components,
unsigned bit_size, const char *name)
{
def->name = ralloc_strdup(instr, name);
def->parent_instr = instr;
list_inithead(&def->uses);
list_inithead(&def->if_uses);
def->num_components = num_components;
def->bit_size = bit_size;
if (instr->block) {
nir_function_impl *impl =
nir_cf_node_get_function(&instr->block->cf_node);
def->index = impl->ssa_alloc++;
} else {
def->index = UINT_MAX;
}
}
/* note: does *not* take ownership of 'name' */
void
nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
unsigned num_components, unsigned bit_size,
const char *name)
{
dest->is_ssa = true;
nir_ssa_def_init(instr, &dest->ssa, num_components, bit_size, name);
}
void
nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src)
{
assert(!new_src.is_ssa || def != new_src.ssa);
nir_foreach_use_safe(use_src, def)
nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src);
nir_foreach_if_use_safe(use_src, def)
nir_if_rewrite_condition(use_src->parent_if, new_src);
}
static bool
is_instr_between(nir_instr *start, nir_instr *end, nir_instr *between)
{
assert(start->block == end->block);
if (between->block != start->block)
return false;
/* Search backwards looking for "between" */
while (start != end) {
if (between == end)
return true;
end = nir_instr_prev(end);
assert(end);
}
return false;
}
/* Replaces all uses of the given SSA def with the given source but only if
* the use comes after the after_me instruction. This can be useful if you
* are emitting code to fix up the result of some instruction: you can freely
* use the result in that code and then call rewrite_uses_after and pass the
* last fixup instruction as after_me and it will replace all of the uses you
* want without touching the fixup code.
*
* This function assumes that after_me is in the same block as
* def->parent_instr and that after_me comes after def->parent_instr.
*/
void
nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
nir_instr *after_me)
{
assert(!new_src.is_ssa || def != new_src.ssa);
nir_foreach_use_safe(use_src, def) {
assert(use_src->parent_instr != def->parent_instr);
/* Since def already dominates all of its uses, the only way a use can
* not be dominated by after_me is if it is between def and after_me in
* the instruction list.
*/
if (!is_instr_between(def->parent_instr, after_me, use_src->parent_instr))
nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src);
}
nir_foreach_if_use_safe(use_src, def)
nir_if_rewrite_condition(use_src->parent_if, new_src);
}
uint8_t
nir_ssa_def_components_read(const nir_ssa_def *def)
{
uint8_t read_mask = 0;
nir_foreach_use(use, def) {
if (use->parent_instr->type == nir_instr_type_alu) {
nir_alu_instr *alu = nir_instr_as_alu(use->parent_instr);
nir_alu_src *alu_src = exec_node_data(nir_alu_src, use, src);
int src_idx = alu_src - &alu->src[0];
assert(src_idx >= 0 && src_idx < nir_op_infos[alu->op].num_inputs);
for (unsigned c = 0; c < 4; c++) {
if (!nir_alu_instr_channel_used(alu, src_idx, c))
continue;
read_mask |= (1 << alu_src->swizzle[c]);
}
} else {
return (1 << def->num_components) - 1;
}
}
return read_mask;
}
nir_block *
nir_block_cf_tree_next(nir_block *block)
{
if (block == NULL) {
/* nir_foreach_block_safe() will call this function on a NULL block
* after the last iteration, but it won't use the result so just return
* NULL here.
*/
return NULL;
}
nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node);
if (cf_next)
return nir_cf_node_cf_tree_first(cf_next);
nir_cf_node *parent = block->cf_node.parent;
switch (parent->type) {
case nir_cf_node_if: {
/* Are we at the end of the if? Go to the beginning of the else */
nir_if *if_stmt = nir_cf_node_as_if(parent);
if (block == nir_if_last_then_block(if_stmt))
return nir_if_first_else_block(if_stmt);
assert(block == nir_if_last_else_block(if_stmt));
/* fall through */
}
case nir_cf_node_loop:
return nir_cf_node_as_block(nir_cf_node_next(parent));
case nir_cf_node_function:
return NULL;
default:
unreachable("unknown cf node type");
}
}
nir_block *
nir_block_cf_tree_prev(nir_block *block)
{
if (block == NULL) {
/* do this for consistency with nir_block_cf_tree_next() */
return NULL;
}
nir_cf_node *cf_prev = nir_cf_node_prev(&block->cf_node);
if (cf_prev)
return nir_cf_node_cf_tree_last(cf_prev);
nir_cf_node *parent = block->cf_node.parent;
switch (parent->type) {
case nir_cf_node_if: {
/* Are we at the beginning of the else? Go to the end of the if */
nir_if *if_stmt = nir_cf_node_as_if(parent);
if (block == nir_if_first_else_block(if_stmt))
return nir_if_last_then_block(if_stmt);
assert(block == nir_if_first_then_block(if_stmt));
/* fall through */
}
case nir_cf_node_loop:
return nir_cf_node_as_block(nir_cf_node_prev(parent));
case nir_cf_node_function:
return NULL;
default:
unreachable("unknown cf node type");
}
}
nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node)
{
switch (node->type) {
case nir_cf_node_function: {
nir_function_impl *impl = nir_cf_node_as_function(node);
return nir_start_block(impl);
}
case nir_cf_node_if: {
nir_if *if_stmt = nir_cf_node_as_if(node);
return nir_if_first_then_block(if_stmt);
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(node);
return nir_loop_first_block(loop);
}
case nir_cf_node_block: {
return nir_cf_node_as_block(node);
}
default:
unreachable("unknown node type");
}
}
nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node)
{
switch (node->type) {
case nir_cf_node_function: {
nir_function_impl *impl = nir_cf_node_as_function(node);
return nir_impl_last_block(impl);
}
case nir_cf_node_if: {
nir_if *if_stmt = nir_cf_node_as_if(node);
return nir_if_last_else_block(if_stmt);
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(node);
return nir_loop_last_block(loop);
}
case nir_cf_node_block: {
return nir_cf_node_as_block(node);
}
default:
unreachable("unknown node type");
}
}
nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node)
{
if (node->type == nir_cf_node_block)
return nir_block_cf_tree_next(nir_cf_node_as_block(node));
else if (node->type == nir_cf_node_function)
return NULL;
else
return nir_cf_node_as_block(nir_cf_node_next(node));
}
nir_if *
nir_block_get_following_if(nir_block *block)
{
if (exec_node_is_tail_sentinel(&block->cf_node.node))
return NULL;
if (nir_cf_node_is_last(&block->cf_node))
return NULL;
nir_cf_node *next_node = nir_cf_node_next(&block->cf_node);
if (next_node->type != nir_cf_node_if)
return NULL;
return nir_cf_node_as_if(next_node);
}
nir_loop *
nir_block_get_following_loop(nir_block *block)
{
if (exec_node_is_tail_sentinel(&block->cf_node.node))
return NULL;
if (nir_cf_node_is_last(&block->cf_node))
return NULL;
nir_cf_node *next_node = nir_cf_node_next(&block->cf_node);
if (next_node->type != nir_cf_node_loop)
return NULL;
return nir_cf_node_as_loop(next_node);
}
void
nir_index_blocks(nir_function_impl *impl)
{
unsigned index = 0;
if (impl->valid_metadata & nir_metadata_block_index)
return;
nir_foreach_block(block, impl) {
block->index = index++;
}
impl->num_blocks = index;
}
static bool
index_ssa_def_cb(nir_ssa_def *def, void *state)
{
unsigned *index = (unsigned *) state;
def->index = (*index)++;
return true;
}
/**
* The indices are applied top-to-bottom which has the very nice property
* that, if A dominates B, then A->index <= B->index.
*/
void
nir_index_ssa_defs(nir_function_impl *impl)
{
unsigned index = 0;
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block)
nir_foreach_ssa_def(instr, index_ssa_def_cb, &index);
}
impl->ssa_alloc = index;
}
/**
* The indices are applied top-to-bottom which has the very nice property
* that, if A dominates B, then A->index <= B->index.
*/
unsigned
nir_index_instrs(nir_function_impl *impl)
{
unsigned index = 0;
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block)
instr->index = index++;
}
return index;
}
nir_intrinsic_op
nir_intrinsic_from_system_value(gl_system_value val)
{
switch (val) {
case SYSTEM_VALUE_VERTEX_ID:
return nir_intrinsic_load_vertex_id;
case SYSTEM_VALUE_INSTANCE_ID:
return nir_intrinsic_load_instance_id;
case SYSTEM_VALUE_DRAW_ID:
return nir_intrinsic_load_draw_id;
case SYSTEM_VALUE_BASE_INSTANCE:
return nir_intrinsic_load_base_instance;
case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
return nir_intrinsic_load_vertex_id_zero_base;
case SYSTEM_VALUE_BASE_VERTEX:
return nir_intrinsic_load_base_vertex;
case SYSTEM_VALUE_INVOCATION_ID:
return nir_intrinsic_load_invocation_id;
case SYSTEM_VALUE_FRAG_COORD:
return nir_intrinsic_load_frag_coord;
case SYSTEM_VALUE_FRONT_FACE:
return nir_intrinsic_load_front_face;
case SYSTEM_VALUE_SAMPLE_ID:
return nir_intrinsic_load_sample_id;
case SYSTEM_VALUE_SAMPLE_POS:
return nir_intrinsic_load_sample_pos;
case SYSTEM_VALUE_SAMPLE_MASK_IN:
return nir_intrinsic_load_sample_mask_in;
case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
return nir_intrinsic_load_local_invocation_id;
case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
return nir_intrinsic_load_local_invocation_index;
case SYSTEM_VALUE_WORK_GROUP_ID:
return nir_intrinsic_load_work_group_id;
case SYSTEM_VALUE_NUM_WORK_GROUPS:
return nir_intrinsic_load_num_work_groups;
case SYSTEM_VALUE_PRIMITIVE_ID:
return nir_intrinsic_load_primitive_id;
case SYSTEM_VALUE_TESS_COORD:
return nir_intrinsic_load_tess_coord;
case SYSTEM_VALUE_TESS_LEVEL_OUTER:
return nir_intrinsic_load_tess_level_outer;
case SYSTEM_VALUE_TESS_LEVEL_INNER:
return nir_intrinsic_load_tess_level_inner;
case SYSTEM_VALUE_VERTICES_IN:
return nir_intrinsic_load_patch_vertices_in;
case SYSTEM_VALUE_HELPER_INVOCATION:
return nir_intrinsic_load_helper_invocation;
case SYSTEM_VALUE_VIEW_INDEX:
return nir_intrinsic_load_view_index;
case SYSTEM_VALUE_SUBGROUP_SIZE:
return nir_intrinsic_load_subgroup_size;
case SYSTEM_VALUE_SUBGROUP_INVOCATION:
return nir_intrinsic_load_subgroup_invocation;
case SYSTEM_VALUE_SUBGROUP_EQ_MASK:
return nir_intrinsic_load_subgroup_eq_mask;
case SYSTEM_VALUE_SUBGROUP_GE_MASK:
return nir_intrinsic_load_subgroup_ge_mask;
case SYSTEM_VALUE_SUBGROUP_GT_MASK:
return nir_intrinsic_load_subgroup_gt_mask;
case SYSTEM_VALUE_SUBGROUP_LE_MASK:
return nir_intrinsic_load_subgroup_le_mask;
case SYSTEM_VALUE_SUBGROUP_LT_MASK:
return nir_intrinsic_load_subgroup_lt_mask;
case SYSTEM_VALUE_LOCAL_GROUP_SIZE:
return nir_intrinsic_load_local_group_size;
default:
unreachable("system value does not directly correspond to intrinsic");
}
}
gl_system_value
nir_system_value_from_intrinsic(nir_intrinsic_op intrin)
{
switch (intrin) {
case nir_intrinsic_load_vertex_id:
return SYSTEM_VALUE_VERTEX_ID;
case nir_intrinsic_load_instance_id:
return SYSTEM_VALUE_INSTANCE_ID;
case nir_intrinsic_load_draw_id:
return SYSTEM_VALUE_DRAW_ID;
case nir_intrinsic_load_base_instance:
return SYSTEM_VALUE_BASE_INSTANCE;
case nir_intrinsic_load_vertex_id_zero_base:
return SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
case nir_intrinsic_load_base_vertex:
return SYSTEM_VALUE_BASE_VERTEX;
case nir_intrinsic_load_invocation_id:
return SYSTEM_VALUE_INVOCATION_ID;
case nir_intrinsic_load_frag_coord:
return SYSTEM_VALUE_FRAG_COORD;
case nir_intrinsic_load_front_face:
return SYSTEM_VALUE_FRONT_FACE;
case nir_intrinsic_load_sample_id:
return SYSTEM_VALUE_SAMPLE_ID;
case nir_intrinsic_load_sample_pos:
return SYSTEM_VALUE_SAMPLE_POS;
case nir_intrinsic_load_sample_mask_in:
return SYSTEM_VALUE_SAMPLE_MASK_IN;
case nir_intrinsic_load_local_invocation_id:
return SYSTEM_VALUE_LOCAL_INVOCATION_ID;
case nir_intrinsic_load_local_invocation_index:
return SYSTEM_VALUE_LOCAL_INVOCATION_INDEX;
case nir_intrinsic_load_num_work_groups:
return SYSTEM_VALUE_NUM_WORK_GROUPS;
case nir_intrinsic_load_work_group_id:
return SYSTEM_VALUE_WORK_GROUP_ID;
case nir_intrinsic_load_primitive_id:
return SYSTEM_VALUE_PRIMITIVE_ID;
case nir_intrinsic_load_tess_coord:
return SYSTEM_VALUE_TESS_COORD;
case nir_intrinsic_load_tess_level_outer:
return SYSTEM_VALUE_TESS_LEVEL_OUTER;
case nir_intrinsic_load_tess_level_inner:
return SYSTEM_VALUE_TESS_LEVEL_INNER;
case nir_intrinsic_load_patch_vertices_in:
return SYSTEM_VALUE_VERTICES_IN;
case nir_intrinsic_load_helper_invocation:
return SYSTEM_VALUE_HELPER_INVOCATION;
case nir_intrinsic_load_view_index:
return SYSTEM_VALUE_VIEW_INDEX;
case nir_intrinsic_load_subgroup_size:
return SYSTEM_VALUE_SUBGROUP_SIZE;
case nir_intrinsic_load_subgroup_invocation:
return SYSTEM_VALUE_SUBGROUP_INVOCATION;
case nir_intrinsic_load_subgroup_eq_mask:
return SYSTEM_VALUE_SUBGROUP_EQ_MASK;
case nir_intrinsic_load_subgroup_ge_mask:
return SYSTEM_VALUE_SUBGROUP_GE_MASK;
case nir_intrinsic_load_subgroup_gt_mask:
return SYSTEM_VALUE_SUBGROUP_GT_MASK;
case nir_intrinsic_load_subgroup_le_mask:
return SYSTEM_VALUE_SUBGROUP_LE_MASK;
case nir_intrinsic_load_subgroup_lt_mask:
return SYSTEM_VALUE_SUBGROUP_LT_MASK;
case nir_intrinsic_load_local_group_size:
return SYSTEM_VALUE_LOCAL_GROUP_SIZE;
default:
unreachable("intrinsic doesn't produce a system value");
}
}