#
# Copyright (C) 2014 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
# Authors:
# Jason Ekstrand (jason@jlekstrand.net)
from __future__ import print_function
import ast
import itertools
import struct
import sys
import mako.template
import re
import traceback
from nir_opcodes import opcodes
_type_re = re.compile(r"(?P<type>int|uint|bool|float)?(?P<bits>\d+)?")
def type_bits(type_str):
m = _type_re.match(type_str)
assert m.group('type')
if m.group('bits') is None:
return 0
else:
return int(m.group('bits'))
# Represents a set of variables, each with a unique id
class VarSet(object):
def __init__(self):
self.names = {}
self.ids = itertools.count()
self.immutable = False;
def __getitem__(self, name):
if name not in self.names:
assert not self.immutable, "Unknown replacement variable: " + name
self.names[name] = self.ids.next()
return self.names[name]
def lock(self):
self.immutable = True
class Value(object):
@staticmethod
def create(val, name_base, varset):
if isinstance(val, tuple):
return Expression(val, name_base, varset)
elif isinstance(val, Expression):
return val
elif isinstance(val, (str, unicode)):
return Variable(val, name_base, varset)
elif isinstance(val, (bool, int, long, float)):
return Constant(val, name_base)
__template = mako.template.Template("""
static const ${val.c_type} ${val.name} = {
{ ${val.type_enum}, ${val.bit_size} },
% if isinstance(val, Constant):
${val.type()}, { ${hex(val)} /* ${val.value} */ },
% elif isinstance(val, Variable):
${val.index}, /* ${val.var_name} */
${'true' if val.is_constant else 'false'},
${val.type() or 'nir_type_invalid' },
${val.cond if val.cond else 'NULL'},
% elif isinstance(val, Expression):
${'true' if val.inexact else 'false'},
nir_op_${val.opcode},
{ ${', '.join(src.c_ptr for src in val.sources)} },
${val.cond if val.cond else 'NULL'},
% endif
};""")
def __init__(self, name, type_str):
self.name = name
self.type_str = type_str
@property
def type_enum(self):
return "nir_search_value_" + self.type_str
@property
def c_type(self):
return "nir_search_" + self.type_str
@property
def c_ptr(self):
return "&{0}.value".format(self.name)
def render(self):
return self.__template.render(val=self,
Constant=Constant,
Variable=Variable,
Expression=Expression)
_constant_re = re.compile(r"(?P<value>[^@\(]+)(?:@(?P<bits>\d+))?")
class Constant(Value):
def __init__(self, val, name):
Value.__init__(self, name, "constant")
if isinstance(val, (str)):
m = _constant_re.match(val)
self.value = ast.literal_eval(m.group('value'))
self.bit_size = int(m.group('bits')) if m.group('bits') else 0
else:
self.value = val
self.bit_size = 0
if isinstance(self.value, bool):
assert self.bit_size == 0 or self.bit_size == 32
self.bit_size = 32
def __hex__(self):
if isinstance(self.value, (bool)):
return 'NIR_TRUE' if self.value else 'NIR_FALSE'
if isinstance(self.value, (int, long)):
return hex(self.value)
elif isinstance(self.value, float):
return hex(struct.unpack('Q', struct.pack('d', self.value))[0])
else:
assert False
def type(self):
if isinstance(self.value, (bool)):
return "nir_type_bool32"
elif isinstance(self.value, (int, long)):
return "nir_type_int"
elif isinstance(self.value, float):
return "nir_type_float"
_var_name_re = re.compile(r"(?P<const>#)?(?P<name>\w+)"
r"(?:@(?P<type>int|uint|bool|float)?(?P<bits>\d+)?)?"
r"(?P<cond>\([^\)]+\))?")
class Variable(Value):
def __init__(self, val, name, varset):
Value.__init__(self, name, "variable")
m = _var_name_re.match(val)
assert m and m.group('name') is not None
self.var_name = m.group('name')
self.is_constant = m.group('const') is not None
self.cond = m.group('cond')
self.required_type = m.group('type')
self.bit_size = int(m.group('bits')) if m.group('bits') else 0
if self.required_type == 'bool':
assert self.bit_size == 0 or self.bit_size == 32
self.bit_size = 32
if self.required_type is not None:
assert self.required_type in ('float', 'bool', 'int', 'uint')
self.index = varset[self.var_name]
def type(self):
if self.required_type == 'bool':
return "nir_type_bool32"
elif self.required_type in ('int', 'uint'):
return "nir_type_int"
elif self.required_type == 'float':
return "nir_type_float"
_opcode_re = re.compile(r"(?P<inexact>~)?(?P<opcode>\w+)(?:@(?P<bits>\d+))?"
r"(?P<cond>\([^\)]+\))?")
class Expression(Value):
def __init__(self, expr, name_base, varset):
Value.__init__(self, name_base, "expression")
assert isinstance(expr, tuple)
m = _opcode_re.match(expr[0])
assert m and m.group('opcode') is not None
self.opcode = m.group('opcode')
self.bit_size = int(m.group('bits')) if m.group('bits') else 0
self.inexact = m.group('inexact') is not None
self.cond = m.group('cond')
self.sources = [ Value.create(src, "{0}_{1}".format(name_base, i), varset)
for (i, src) in enumerate(expr[1:]) ]
def render(self):
srcs = "\n".join(src.render() for src in self.sources)
return srcs + super(Expression, self).render()
class IntEquivalenceRelation(object):
"""A class representing an equivalence relation on integers.
Each integer has a canonical form which is the maximum integer to which it
is equivalent. Two integers are equivalent precisely when they have the
same canonical form.
The convention of maximum is explicitly chosen to make using it in
BitSizeValidator easier because it means that an actual bit_size (if any)
will always be the canonical form.
"""
def __init__(self):
self._remap = {}
def get_canonical(self, x):
"""Get the canonical integer corresponding to x."""
if x in self._remap:
return self.get_canonical(self._remap[x])
else:
return x
def add_equiv(self, a, b):
"""Add an equivalence and return the canonical form."""
c = max(self.get_canonical(a), self.get_canonical(b))
if a != c:
assert a < c
self._remap[a] = c
if b != c:
assert b < c
self._remap[b] = c
return c
class BitSizeValidator(object):
"""A class for validating bit sizes of expressions.
NIR supports multiple bit-sizes on expressions in order to handle things
such as fp64. The source and destination of every ALU operation is
assigned a type and that type may or may not specify a bit size. Sources
and destinations whose type does not specify a bit size are considered
"unsized" and automatically take on the bit size of the corresponding
register or SSA value. NIR has two simple rules for bit sizes that are
validated by nir_validator:
1) A given SSA def or register has a single bit size that is respected by
everything that reads from it or writes to it.
2) The bit sizes of all unsized inputs/outputs on any given ALU
instruction must match. They need not match the sized inputs or
outputs but they must match each other.
In order to keep nir_algebraic relatively simple and easy-to-use,
nir_search supports a type of bit-size inference based on the two rules
above. This is similar to type inference in many common programming
languages. If, for instance, you are constructing an add operation and you
know the second source is 16-bit, then you know that the other source and
the destination must also be 16-bit. There are, however, cases where this
inference can be ambiguous or contradictory. Consider, for instance, the
following transformation:
(('usub_borrow', a, b), ('b2i', ('ult', a, b)))
This transformation can potentially cause a problem because usub_borrow is
well-defined for any bit-size of integer. However, b2i always generates a
32-bit result so it could end up replacing a 64-bit expression with one
that takes two 64-bit values and produces a 32-bit value. As another
example, consider this expression:
(('bcsel', a, b, 0), ('iand', a, b))
In this case, in the search expression a must be 32-bit but b can
potentially have any bit size. If we had a 64-bit b value, we would end up
trying to and a 32-bit value with a 64-bit value which would be invalid
This class solves that problem by providing a validation layer that proves
that a given search-and-replace operation is 100% well-defined before we
generate any code. This ensures that bugs are caught at compile time
rather than at run time.
The basic operation of the validator is very similar to the bitsize_tree in
nir_search only a little more subtle. Instead of simply tracking bit
sizes, it tracks "bit classes" where each class is represented by an
integer. A value of 0 means we don't know anything yet, positive values
are actual bit-sizes, and negative values are used to track equivalence
classes of sizes that must be the same but have yet to receive an actual
size. The first stage uses the bitsize_tree algorithm to assign bit
classes to each variable. If it ever comes across an inconsistency, it
assert-fails. Then the second stage uses that information to prove that
the resulting expression can always validly be constructed.
"""
def __init__(self, varset):
self._num_classes = 0
self._var_classes = [0] * len(varset.names)
self._class_relation = IntEquivalenceRelation()
def validate(self, search, replace):
dst_class = self._propagate_bit_size_up(search)
if dst_class == 0:
dst_class = self._new_class()
self._propagate_bit_class_down(search, dst_class)
validate_dst_class = self._validate_bit_class_up(replace)
assert validate_dst_class == 0 or validate_dst_class == dst_class
self._validate_bit_class_down(replace, dst_class)
def _new_class(self):
self._num_classes += 1
return -self._num_classes
def _set_var_bit_class(self, var_id, bit_class):
assert bit_class != 0
var_class = self._var_classes[var_id]
if var_class == 0:
self._var_classes[var_id] = bit_class
else:
canon_class = self._class_relation.get_canonical(var_class)
assert canon_class < 0 or canon_class == bit_class
var_class = self._class_relation.add_equiv(var_class, bit_class)
self._var_classes[var_id] = var_class
def _get_var_bit_class(self, var_id):
return self._class_relation.get_canonical(self._var_classes[var_id])
def _propagate_bit_size_up(self, val):
if isinstance(val, (Constant, Variable)):
return val.bit_size
elif isinstance(val, Expression):
nir_op = opcodes[val.opcode]
val.common_size = 0
for i in range(nir_op.num_inputs):
src_bits = self._propagate_bit_size_up(val.sources[i])
if src_bits == 0:
continue
src_type_bits = type_bits(nir_op.input_types[i])
if src_type_bits != 0:
assert src_bits == src_type_bits
else:
assert val.common_size == 0 or src_bits == val.common_size
val.common_size = src_bits
dst_type_bits = type_bits(nir_op.output_type)
if dst_type_bits != 0:
assert val.bit_size == 0 or val.bit_size == dst_type_bits
return dst_type_bits
else:
if val.common_size != 0:
assert val.bit_size == 0 or val.bit_size == val.common_size
else:
val.common_size = val.bit_size
return val.common_size
def _propagate_bit_class_down(self, val, bit_class):
if isinstance(val, Constant):
assert val.bit_size == 0 or val.bit_size == bit_class
elif isinstance(val, Variable):
assert val.bit_size == 0 or val.bit_size == bit_class
self._set_var_bit_class(val.index, bit_class)
elif isinstance(val, Expression):
nir_op = opcodes[val.opcode]
dst_type_bits = type_bits(nir_op.output_type)
if dst_type_bits != 0:
assert bit_class == 0 or bit_class == dst_type_bits
else:
assert val.common_size == 0 or val.common_size == bit_class
val.common_size = bit_class
if val.common_size:
common_class = val.common_size
elif nir_op.num_inputs:
# If we got here then we have no idea what the actual size is.
# Instead, we use a generic class
common_class = self._new_class()
for i in range(nir_op.num_inputs):
src_type_bits = type_bits(nir_op.input_types[i])
if src_type_bits != 0:
self._propagate_bit_class_down(val.sources[i], src_type_bits)
else:
self._propagate_bit_class_down(val.sources[i], common_class)
def _validate_bit_class_up(self, val):
if isinstance(val, Constant):
return val.bit_size
elif isinstance(val, Variable):
var_class = self._get_var_bit_class(val.index)
# By the time we get to validation, every variable should have a class
assert var_class != 0
# If we have an explicit size provided by the user, the variable
# *must* exactly match the search. It cannot be implicitly sized
# because otherwise we could end up with a conflict at runtime.
assert val.bit_size == 0 or val.bit_size == var_class
return var_class
elif isinstance(val, Expression):
nir_op = opcodes[val.opcode]
val.common_class = 0
for i in range(nir_op.num_inputs):
src_class = self._validate_bit_class_up(val.sources[i])
if src_class == 0:
continue
src_type_bits = type_bits(nir_op.input_types[i])
if src_type_bits != 0:
assert src_class == src_type_bits
else:
assert val.common_class == 0 or src_class == val.common_class
val.common_class = src_class
dst_type_bits = type_bits(nir_op.output_type)
if dst_type_bits != 0:
assert val.bit_size == 0 or val.bit_size == dst_type_bits
return dst_type_bits
else:
if val.common_class != 0:
assert val.bit_size == 0 or val.bit_size == val.common_class
else:
val.common_class = val.bit_size
return val.common_class
def _validate_bit_class_down(self, val, bit_class):
# At this point, everything *must* have a bit class. Otherwise, we have
# a value we don't know how to define.
assert bit_class != 0
if isinstance(val, Constant):
assert val.bit_size == 0 or val.bit_size == bit_class
elif isinstance(val, Variable):
assert val.bit_size == 0 or val.bit_size == bit_class
elif isinstance(val, Expression):
nir_op = opcodes[val.opcode]
dst_type_bits = type_bits(nir_op.output_type)
if dst_type_bits != 0:
assert bit_class == dst_type_bits
else:
assert val.common_class == 0 or val.common_class == bit_class
val.common_class = bit_class
for i in range(nir_op.num_inputs):
src_type_bits = type_bits(nir_op.input_types[i])
if src_type_bits != 0:
self._validate_bit_class_down(val.sources[i], src_type_bits)
else:
self._validate_bit_class_down(val.sources[i], val.common_class)
_optimization_ids = itertools.count()
condition_list = ['true']
class SearchAndReplace(object):
def __init__(self, transform):
self.id = _optimization_ids.next()
search = transform[0]
replace = transform[1]
if len(transform) > 2:
self.condition = transform[2]
else:
self.condition = 'true'
if self.condition not in condition_list:
condition_list.append(self.condition)
self.condition_index = condition_list.index(self.condition)
varset = VarSet()
if isinstance(search, Expression):
self.search = search
else:
self.search = Expression(search, "search{0}".format(self.id), varset)
varset.lock()
if isinstance(replace, Value):
self.replace = replace
else:
self.replace = Value.create(replace, "replace{0}".format(self.id), varset)
BitSizeValidator(varset).validate(self.search, self.replace)
_algebraic_pass_template = mako.template.Template("""
#include "nir.h"
#include "nir_search.h"
#include "nir_search_helpers.h"
#ifndef NIR_OPT_ALGEBRAIC_STRUCT_DEFS
#define NIR_OPT_ALGEBRAIC_STRUCT_DEFS
struct transform {
const nir_search_expression *search;
const nir_search_value *replace;
unsigned condition_offset;
};
#endif
% for (opcode, xform_list) in xform_dict.iteritems():
% for xform in xform_list:
${xform.search.render()}
${xform.replace.render()}
% endfor
static const struct transform ${pass_name}_${opcode}_xforms[] = {
% for xform in xform_list:
{ &${xform.search.name}, ${xform.replace.c_ptr}, ${xform.condition_index} },
% endfor
};
% endfor
static bool
${pass_name}_block(nir_block *block, const bool *condition_flags,
void *mem_ctx)
{
bool progress = false;
nir_foreach_instr_reverse_safe(instr, block) {
if (instr->type != nir_instr_type_alu)
continue;
nir_alu_instr *alu = nir_instr_as_alu(instr);
if (!alu->dest.dest.is_ssa)
continue;
switch (alu->op) {
% for opcode in xform_dict.keys():
case nir_op_${opcode}:
for (unsigned i = 0; i < ARRAY_SIZE(${pass_name}_${opcode}_xforms); i++) {
const struct transform *xform = &${pass_name}_${opcode}_xforms[i];
if (condition_flags[xform->condition_offset] &&
nir_replace_instr(alu, xform->search, xform->replace,
mem_ctx)) {
progress = true;
break;
}
}
break;
% endfor
default:
break;
}
}
return progress;
}
static bool
${pass_name}_impl(nir_function_impl *impl, const bool *condition_flags)
{
void *mem_ctx = ralloc_parent(impl);
bool progress = false;
nir_foreach_block_reverse(block, impl) {
progress |= ${pass_name}_block(block, condition_flags, mem_ctx);
}
if (progress)
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
return progress;
}
bool
${pass_name}(nir_shader *shader)
{
bool progress = false;
bool condition_flags[${len(condition_list)}];
const nir_shader_compiler_options *options = shader->options;
(void) options;
% for index, condition in enumerate(condition_list):
condition_flags[${index}] = ${condition};
% endfor
nir_foreach_function(function, shader) {
if (function->impl)
progress |= ${pass_name}_impl(function->impl, condition_flags);
}
return progress;
}
""")
class AlgebraicPass(object):
def __init__(self, pass_name, transforms):
self.xform_dict = {}
self.pass_name = pass_name
error = False
for xform in transforms:
if not isinstance(xform, SearchAndReplace):
try:
xform = SearchAndReplace(xform)
except:
print("Failed to parse transformation:", file=sys.stderr)
print(" " + str(xform), file=sys.stderr)
traceback.print_exc(file=sys.stderr)
print('', file=sys.stderr)
error = True
continue
if xform.search.opcode not in self.xform_dict:
self.xform_dict[xform.search.opcode] = []
self.xform_dict[xform.search.opcode].append(xform)
if error:
sys.exit(1)
def render(self):
return _algebraic_pass_template.render(pass_name=self.pass_name,
xform_dict=self.xform_dict,
condition_list=condition_list)