/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
#include "nir.h"
/*
* Implements a simple pass that lowers vecN instructions to a series of
* moves with partial writes.
*/
static bool
src_matches_dest_reg(nir_dest *dest, nir_src *src)
{
if (dest->is_ssa || src->is_ssa)
return false;
return (dest->reg.reg == src->reg.reg &&
dest->reg.base_offset == src->reg.base_offset &&
!dest->reg.indirect &&
!src->reg.indirect);
}
/**
* For a given starting writemask channel and corresponding source index in
* the vec instruction, insert a MOV to the vec instruction's dest of all the
* writemask channels that get read from the same src reg.
*
* Returns the writemask of our MOV, so the parent loop calling this knows
* which ones have been processed.
*/
static unsigned
insert_mov(nir_alu_instr *vec, unsigned start_idx, nir_shader *shader)
{
assert(start_idx < nir_op_infos[vec->op].num_inputs);
nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
nir_alu_src_copy(&mov->src[0], &vec->src[start_idx], mov);
nir_alu_dest_copy(&mov->dest, &vec->dest, mov);
mov->dest.write_mask = (1u << start_idx);
mov->src[0].swizzle[start_idx] = vec->src[start_idx].swizzle[0];
mov->src[0].negate = vec->src[start_idx].negate;
mov->src[0].abs = vec->src[start_idx].abs;
for (unsigned i = start_idx + 1; i < 4; i++) {
if (!(vec->dest.write_mask & (1 << i)))
continue;
if (nir_srcs_equal(vec->src[i].src, vec->src[start_idx].src) &&
vec->src[i].negate == vec->src[start_idx].negate &&
vec->src[i].abs == vec->src[start_idx].abs) {
mov->dest.write_mask |= (1 << i);
mov->src[0].swizzle[i] = vec->src[i].swizzle[0];
}
}
unsigned channels_handled = mov->dest.write_mask;
/* In some situations (if the vecN is involved in a phi-web), we can end
* up with a mov from a register to itself. Some of those channels may end
* up doing nothing and there's no reason to have them as part of the mov.
*/
if (src_matches_dest_reg(&mov->dest.dest, &mov->src[0].src) &&
!mov->src[0].abs && !mov->src[0].negate) {
for (unsigned i = 0; i < 4; i++) {
if (mov->src[0].swizzle[i] == i) {
mov->dest.write_mask &= ~(1 << i);
}
}
}
/* Only emit the instruction if it actually does something */
if (mov->dest.write_mask) {
nir_instr_insert_before(&vec->instr, &mov->instr);
} else {
ralloc_free(mov);
}
return channels_handled;
}
static bool
has_replicated_dest(nir_alu_instr *alu)
{
return alu->op == nir_op_fdot_replicated2 ||
alu->op == nir_op_fdot_replicated3 ||
alu->op == nir_op_fdot_replicated4 ||
alu->op == nir_op_fdph_replicated;
}
/* Attempts to coalesce the "move" from the given source of the vec to the
* destination of the instruction generating the value. If, for whatever
* reason, we cannot coalesce the mmove, it does nothing and returns 0. We
* can then call insert_mov as normal.
*/
static unsigned
try_coalesce(nir_alu_instr *vec, unsigned start_idx)
{
assert(start_idx < nir_op_infos[vec->op].num_inputs);
/* We will only even try if the source is SSA */
if (!vec->src[start_idx].src.is_ssa)
return 0;
assert(vec->src[start_idx].src.ssa);
/* If we are going to do a reswizzle, then the vecN operation must be the
* only use of the source value. We also can't have any source modifiers.
*/
nir_foreach_use(src, vec->src[start_idx].src.ssa) {
if (src->parent_instr != &vec->instr)
return 0;
nir_alu_src *alu_src = exec_node_data(nir_alu_src, src, src);
if (alu_src->abs || alu_src->negate)
return 0;
}
if (!list_empty(&vec->src[start_idx].src.ssa->if_uses))
return 0;
if (vec->src[start_idx].src.ssa->parent_instr->type != nir_instr_type_alu)
return 0;
nir_alu_instr *src_alu =
nir_instr_as_alu(vec->src[start_idx].src.ssa->parent_instr);
if (has_replicated_dest(src_alu)) {
/* The fdot instruction is special: It replicates its result to all
* components. This means that we can always rewrite its destination
* and we don't need to swizzle anything.
*/
} else {
/* We only care about being able to re-swizzle the instruction if it is
* something that we can reswizzle. It must be per-component. The one
* exception to this is the fdotN instructions which implicitly splat
* their result out to all channels.
*/
if (nir_op_infos[src_alu->op].output_size != 0)
return 0;
/* If we are going to reswizzle the instruction, we can't have any
* non-per-component sources either.
*/
for (unsigned j = 0; j < nir_op_infos[src_alu->op].num_inputs; j++)
if (nir_op_infos[src_alu->op].input_sizes[j] != 0)
return 0;
}
/* Stash off all of the ALU instruction's swizzles. */
uint8_t swizzles[4][4];
for (unsigned j = 0; j < nir_op_infos[src_alu->op].num_inputs; j++)
for (unsigned i = 0; i < 4; i++)
swizzles[j][i] = src_alu->src[j].swizzle[i];
unsigned write_mask = 0;
for (unsigned i = start_idx; i < 4; i++) {
if (!(vec->dest.write_mask & (1 << i)))
continue;
if (!vec->src[i].src.is_ssa ||
vec->src[i].src.ssa != &src_alu->dest.dest.ssa)
continue;
/* At this point, the give vec source matchese up with the ALU
* instruction so we can re-swizzle that component to match.
*/
write_mask |= 1 << i;
if (has_replicated_dest(src_alu)) {
/* Since the destination is a single replicated value, we don't need
* to do any reswizzling
*/
} else {
for (unsigned j = 0; j < nir_op_infos[src_alu->op].num_inputs; j++)
src_alu->src[j].swizzle[i] = swizzles[j][vec->src[i].swizzle[0]];
}
/* Clear the no longer needed vec source */
nir_instr_rewrite_src(&vec->instr, &vec->src[i].src, NIR_SRC_INIT);
}
nir_instr_rewrite_dest(&src_alu->instr, &src_alu->dest.dest, vec->dest.dest);
src_alu->dest.write_mask = write_mask;
return write_mask;
}
static bool
lower_vec_to_movs_block(nir_block *block, nir_function_impl *impl)
{
bool progress = false;
nir_shader *shader = impl->function->shader;
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_alu)
continue;
nir_alu_instr *vec = nir_instr_as_alu(instr);
switch (vec->op) {
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
break;
default:
continue; /* The loop */
}
bool vec_had_ssa_dest = vec->dest.dest.is_ssa;
if (vec->dest.dest.is_ssa) {
/* Since we insert multiple MOVs, we have a register destination. */
nir_register *reg = nir_local_reg_create(impl);
reg->num_components = vec->dest.dest.ssa.num_components;
reg->bit_size = vec->dest.dest.ssa.bit_size;
nir_ssa_def_rewrite_uses(&vec->dest.dest.ssa, nir_src_for_reg(reg));
nir_instr_rewrite_dest(&vec->instr, &vec->dest.dest,
nir_dest_for_reg(reg));
}
unsigned finished_write_mask = 0;
/* First, emit a MOV for all the src channels that are in the
* destination reg, in case other values we're populating in the dest
* might overwrite them.
*/
for (unsigned i = 0; i < 4; i++) {
if (!(vec->dest.write_mask & (1 << i)))
continue;
if (src_matches_dest_reg(&vec->dest.dest, &vec->src[i].src)) {
finished_write_mask |= insert_mov(vec, i, shader);
break;
}
}
/* Now, emit MOVs for all the other src channels. */
for (unsigned i = 0; i < 4; i++) {
if (!(vec->dest.write_mask & (1 << i)))
continue;
/* Coalescing moves the register writes from the vec up to the ALU
* instruction in the source. We can only do this if the original
* vecN had an SSA destination.
*/
if (vec_had_ssa_dest && !(finished_write_mask & (1 << i)))
finished_write_mask |= try_coalesce(vec, i);
if (!(finished_write_mask & (1 << i)))
finished_write_mask |= insert_mov(vec, i, shader);
}
nir_instr_remove(&vec->instr);
ralloc_free(vec);
progress = true;
}
return progress;
}
static bool
nir_lower_vec_to_movs_impl(nir_function_impl *impl)
{
bool progress = false;
nir_foreach_block(block, impl) {
progress |= lower_vec_to_movs_block(block, impl);
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
}
return progress;
}
bool
nir_lower_vec_to_movs(nir_shader *shader)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl)
progress = nir_lower_vec_to_movs_impl(function->impl) || progress;
}
return progress;
}