/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
#include <inttypes.h>
#include "nir_search.h"
struct match_state {
bool inexact_match;
bool has_exact_alu;
unsigned variables_seen;
nir_alu_src variables[NIR_SEARCH_MAX_VARIABLES];
};
static bool
match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
unsigned num_components, const uint8_t *swizzle,
struct match_state *state);
static const uint8_t identity_swizzle[] = { 0, 1, 2, 3 };
/**
* Check if a source produces a value of the given type.
*
* Used for satisfying 'a@type' constraints.
*/
static bool
src_is_type(nir_src src, nir_alu_type type)
{
assert(type != nir_type_invalid);
if (!src.is_ssa)
return false;
/* Turn nir_type_bool32 into nir_type_bool...they're the same thing. */
if (nir_alu_type_get_base_type(type) == nir_type_bool)
type = nir_type_bool;
if (src.ssa->parent_instr->type == nir_instr_type_alu) {
nir_alu_instr *src_alu = nir_instr_as_alu(src.ssa->parent_instr);
nir_alu_type output_type = nir_op_infos[src_alu->op].output_type;
if (type == nir_type_bool) {
switch (src_alu->op) {
case nir_op_iand:
case nir_op_ior:
case nir_op_ixor:
return src_is_type(src_alu->src[0].src, nir_type_bool) &&
src_is_type(src_alu->src[1].src, nir_type_bool);
case nir_op_inot:
return src_is_type(src_alu->src[0].src, nir_type_bool);
default:
break;
}
}
return nir_alu_type_get_base_type(output_type) == type;
} else if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr);
if (type == nir_type_bool) {
return intr->intrinsic == nir_intrinsic_load_front_face ||
intr->intrinsic == nir_intrinsic_load_helper_invocation;
}
}
/* don't know */
return false;
}
static bool
match_value(const nir_search_value *value, nir_alu_instr *instr, unsigned src,
unsigned num_components, const uint8_t *swizzle,
struct match_state *state)
{
uint8_t new_swizzle[4];
/* Searching only works on SSA values because, if it's not SSA, we can't
* know if the value changed between one instance of that value in the
* expression and another. Also, the replace operation will place reads of
* that value right before the last instruction in the expression we're
* replacing so those reads will happen after the original reads and may
* not be valid if they're register reads.
*/
if (!instr->src[src].src.is_ssa)
return false;
/* If the source is an explicitly sized source, then we need to reset
* both the number of components and the swizzle.
*/
if (nir_op_infos[instr->op].input_sizes[src] != 0) {
num_components = nir_op_infos[instr->op].input_sizes[src];
swizzle = identity_swizzle;
}
for (unsigned i = 0; i < num_components; ++i)
new_swizzle[i] = instr->src[src].swizzle[swizzle[i]];
/* If the value has a specific bit size and it doesn't match, bail */
if (value->bit_size &&
nir_src_bit_size(instr->src[src].src) != value->bit_size)
return false;
switch (value->type) {
case nir_search_value_expression:
if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_alu)
return false;
return match_expression(nir_search_value_as_expression(value),
nir_instr_as_alu(instr->src[src].src.ssa->parent_instr),
num_components, new_swizzle, state);
case nir_search_value_variable: {
nir_search_variable *var = nir_search_value_as_variable(value);
assert(var->variable < NIR_SEARCH_MAX_VARIABLES);
if (state->variables_seen & (1 << var->variable)) {
if (state->variables[var->variable].src.ssa != instr->src[src].src.ssa)
return false;
assert(!instr->src[src].abs && !instr->src[src].negate);
for (unsigned i = 0; i < num_components; ++i) {
if (state->variables[var->variable].swizzle[i] != new_swizzle[i])
return false;
}
return true;
} else {
if (var->is_constant &&
instr->src[src].src.ssa->parent_instr->type != nir_instr_type_load_const)
return false;
if (var->cond && !var->cond(instr, src, num_components, new_swizzle))
return false;
if (var->type != nir_type_invalid &&
!src_is_type(instr->src[src].src, var->type))
return false;
state->variables_seen |= (1 << var->variable);
state->variables[var->variable].src = instr->src[src].src;
state->variables[var->variable].abs = false;
state->variables[var->variable].negate = false;
for (unsigned i = 0; i < 4; ++i) {
if (i < num_components)
state->variables[var->variable].swizzle[i] = new_swizzle[i];
else
state->variables[var->variable].swizzle[i] = 0;
}
return true;
}
}
case nir_search_value_constant: {
nir_search_constant *const_val = nir_search_value_as_constant(value);
if (!instr->src[src].src.is_ssa)
return false;
if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_load_const)
return false;
nir_load_const_instr *load =
nir_instr_as_load_const(instr->src[src].src.ssa->parent_instr);
switch (const_val->type) {
case nir_type_float:
for (unsigned i = 0; i < num_components; ++i) {
double val;
switch (load->def.bit_size) {
case 32:
val = load->value.f32[new_swizzle[i]];
break;
case 64:
val = load->value.f64[new_swizzle[i]];
break;
default:
unreachable("unknown bit size");
}
if (val != const_val->data.d)
return false;
}
return true;
case nir_type_int:
case nir_type_uint:
case nir_type_bool32:
switch (load->def.bit_size) {
case 32:
for (unsigned i = 0; i < num_components; ++i) {
if (load->value.u32[new_swizzle[i]] !=
(uint32_t)const_val->data.u)
return false;
}
return true;
case 64:
for (unsigned i = 0; i < num_components; ++i) {
if (load->value.u64[new_swizzle[i]] != const_val->data.u)
return false;
}
return true;
default:
unreachable("unknown bit size");
}
default:
unreachable("Invalid alu source type");
}
}
default:
unreachable("Invalid search value type");
}
}
static bool
match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
unsigned num_components, const uint8_t *swizzle,
struct match_state *state)
{
if (expr->cond && !expr->cond(instr))
return false;
if (instr->op != expr->opcode)
return false;
assert(instr->dest.dest.is_ssa);
if (expr->value.bit_size &&
instr->dest.dest.ssa.bit_size != expr->value.bit_size)
return false;
state->inexact_match = expr->inexact || state->inexact_match;
state->has_exact_alu = instr->exact || state->has_exact_alu;
if (state->inexact_match && state->has_exact_alu)
return false;
assert(!instr->dest.saturate);
assert(nir_op_infos[instr->op].num_inputs > 0);
/* If we have an explicitly sized destination, we can only handle the
* identity swizzle. While dot(vec3(a, b, c).zxy) is a valid
* expression, we don't have the information right now to propagate that
* swizzle through. We can only properly propagate swizzles if the
* instruction is vectorized.
*/
if (nir_op_infos[instr->op].output_size != 0) {
for (unsigned i = 0; i < num_components; i++) {
if (swizzle[i] != i)
return false;
}
}
/* Stash off the current variables_seen bitmask. This way we can
* restore it prior to matching in the commutative case below.
*/
unsigned variables_seen_stash = state->variables_seen;
bool matched = true;
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
if (!match_value(expr->srcs[i], instr, i, num_components,
swizzle, state)) {
matched = false;
break;
}
}
if (matched)
return true;
if (nir_op_infos[instr->op].algebraic_properties & NIR_OP_IS_COMMUTATIVE) {
assert(nir_op_infos[instr->op].num_inputs == 2);
/* Restore the variables_seen bitmask. If we don't do this, then we
* could end up with an erroneous failure due to variables found in the
* first match attempt above not matching those in the second.
*/
state->variables_seen = variables_seen_stash;
if (!match_value(expr->srcs[0], instr, 1, num_components,
swizzle, state))
return false;
return match_value(expr->srcs[1], instr, 0, num_components,
swizzle, state);
} else {
return false;
}
}
typedef struct bitsize_tree {
unsigned num_srcs;
struct bitsize_tree *srcs[4];
unsigned common_size;
bool is_src_sized[4];
bool is_dest_sized;
unsigned dest_size;
unsigned src_size[4];
} bitsize_tree;
static bitsize_tree *
build_bitsize_tree(void *mem_ctx, struct match_state *state,
const nir_search_value *value)
{
bitsize_tree *tree = rzalloc(mem_ctx, bitsize_tree);
switch (value->type) {
case nir_search_value_expression: {
nir_search_expression *expr = nir_search_value_as_expression(value);
nir_op_info info = nir_op_infos[expr->opcode];
tree->num_srcs = info.num_inputs;
tree->common_size = 0;
for (unsigned i = 0; i < info.num_inputs; i++) {
tree->is_src_sized[i] = !!nir_alu_type_get_type_size(info.input_types[i]);
if (tree->is_src_sized[i])
tree->src_size[i] = nir_alu_type_get_type_size(info.input_types[i]);
tree->srcs[i] = build_bitsize_tree(mem_ctx, state, expr->srcs[i]);
}
tree->is_dest_sized = !!nir_alu_type_get_type_size(info.output_type);
if (tree->is_dest_sized)
tree->dest_size = nir_alu_type_get_type_size(info.output_type);
break;
}
case nir_search_value_variable: {
nir_search_variable *var = nir_search_value_as_variable(value);
tree->num_srcs = 0;
tree->is_dest_sized = true;
tree->dest_size = nir_src_bit_size(state->variables[var->variable].src);
break;
}
case nir_search_value_constant: {
tree->num_srcs = 0;
tree->is_dest_sized = false;
tree->common_size = 0;
break;
}
}
if (value->bit_size) {
assert(!tree->is_dest_sized || tree->dest_size == value->bit_size);
tree->common_size = value->bit_size;
}
return tree;
}
static unsigned
bitsize_tree_filter_up(bitsize_tree *tree)
{
for (unsigned i = 0; i < tree->num_srcs; i++) {
unsigned src_size = bitsize_tree_filter_up(tree->srcs[i]);
if (src_size == 0)
continue;
if (tree->is_src_sized[i]) {
assert(src_size == tree->src_size[i]);
} else if (tree->common_size != 0) {
assert(src_size == tree->common_size);
tree->src_size[i] = src_size;
} else {
tree->common_size = src_size;
tree->src_size[i] = src_size;
}
}
if (tree->num_srcs && tree->common_size) {
if (tree->dest_size == 0)
tree->dest_size = tree->common_size;
else if (!tree->is_dest_sized)
assert(tree->dest_size == tree->common_size);
for (unsigned i = 0; i < tree->num_srcs; i++) {
if (!tree->src_size[i])
tree->src_size[i] = tree->common_size;
}
}
return tree->dest_size;
}
static void
bitsize_tree_filter_down(bitsize_tree *tree, unsigned size)
{
if (tree->dest_size)
assert(tree->dest_size == size);
else
tree->dest_size = size;
if (!tree->is_dest_sized) {
if (tree->common_size)
assert(tree->common_size == size);
else
tree->common_size = size;
}
for (unsigned i = 0; i < tree->num_srcs; i++) {
if (!tree->src_size[i]) {
assert(tree->common_size);
tree->src_size[i] = tree->common_size;
}
bitsize_tree_filter_down(tree->srcs[i], tree->src_size[i]);
}
}
static nir_alu_src
construct_value(const nir_search_value *value,
unsigned num_components, bitsize_tree *bitsize,
struct match_state *state,
nir_instr *instr, void *mem_ctx)
{
switch (value->type) {
case nir_search_value_expression: {
const nir_search_expression *expr = nir_search_value_as_expression(value);
if (nir_op_infos[expr->opcode].output_size != 0)
num_components = nir_op_infos[expr->opcode].output_size;
nir_alu_instr *alu = nir_alu_instr_create(mem_ctx, expr->opcode);
nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components,
bitsize->dest_size, NULL);
alu->dest.write_mask = (1 << num_components) - 1;
alu->dest.saturate = false;
/* We have no way of knowing what values in a given search expression
* map to a particular replacement value. Therefore, if the
* expression we are replacing has any exact values, the entire
* replacement should be exact.
*/
alu->exact = state->has_exact_alu;
for (unsigned i = 0; i < nir_op_infos[expr->opcode].num_inputs; i++) {
/* If the source is an explicitly sized source, then we need to reset
* the number of components to match.
*/
if (nir_op_infos[alu->op].input_sizes[i] != 0)
num_components = nir_op_infos[alu->op].input_sizes[i];
alu->src[i] = construct_value(expr->srcs[i],
num_components, bitsize->srcs[i],
state, instr, mem_ctx);
}
nir_instr_insert_before(instr, &alu->instr);
nir_alu_src val;
val.src = nir_src_for_ssa(&alu->dest.dest.ssa);
val.negate = false;
val.abs = false,
memcpy(val.swizzle, identity_swizzle, sizeof val.swizzle);
return val;
}
case nir_search_value_variable: {
const nir_search_variable *var = nir_search_value_as_variable(value);
assert(state->variables_seen & (1 << var->variable));
nir_alu_src val = { NIR_SRC_INIT };
nir_alu_src_copy(&val, &state->variables[var->variable], mem_ctx);
assert(!var->is_constant);
return val;
}
case nir_search_value_constant: {
const nir_search_constant *c = nir_search_value_as_constant(value);
nir_load_const_instr *load =
nir_load_const_instr_create(mem_ctx, 1, bitsize->dest_size);
switch (c->type) {
case nir_type_float:
load->def.name = ralloc_asprintf(load, "%f", c->data.d);
switch (bitsize->dest_size) {
case 32:
load->value.f32[0] = c->data.d;
break;
case 64:
load->value.f64[0] = c->data.d;
break;
default:
unreachable("unknown bit size");
}
break;
case nir_type_int:
load->def.name = ralloc_asprintf(load, "%" PRIi64, c->data.i);
switch (bitsize->dest_size) {
case 32:
load->value.i32[0] = c->data.i;
break;
case 64:
load->value.i64[0] = c->data.i;
break;
default:
unreachable("unknown bit size");
}
break;
case nir_type_uint:
load->def.name = ralloc_asprintf(load, "%" PRIu64, c->data.u);
switch (bitsize->dest_size) {
case 32:
load->value.u32[0] = c->data.u;
break;
case 64:
load->value.u64[0] = c->data.u;
break;
default:
unreachable("unknown bit size");
}
break;
case nir_type_bool32:
load->value.u32[0] = c->data.u;
break;
default:
unreachable("Invalid alu source type");
}
nir_instr_insert_before(instr, &load->instr);
nir_alu_src val;
val.src = nir_src_for_ssa(&load->def);
val.negate = false;
val.abs = false,
memset(val.swizzle, 0, sizeof val.swizzle);
return val;
}
default:
unreachable("Invalid search value type");
}
}
nir_alu_instr *
nir_replace_instr(nir_alu_instr *instr, const nir_search_expression *search,
const nir_search_value *replace, void *mem_ctx)
{
uint8_t swizzle[4] = { 0, 0, 0, 0 };
for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i)
swizzle[i] = i;
assert(instr->dest.dest.is_ssa);
struct match_state state;
state.inexact_match = false;
state.has_exact_alu = false;
state.variables_seen = 0;
if (!match_expression(search, instr, instr->dest.dest.ssa.num_components,
swizzle, &state))
return NULL;
void *bitsize_ctx = ralloc_context(NULL);
bitsize_tree *tree = build_bitsize_tree(bitsize_ctx, &state, replace);
bitsize_tree_filter_up(tree);
bitsize_tree_filter_down(tree, instr->dest.dest.ssa.bit_size);
/* Inserting a mov may be unnecessary. However, it's much easier to
* simply let copy propagation clean this up than to try to go through
* and rewrite swizzles ourselves.
*/
nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov);
mov->dest.write_mask = instr->dest.write_mask;
nir_ssa_dest_init(&mov->instr, &mov->dest.dest,
instr->dest.dest.ssa.num_components,
instr->dest.dest.ssa.bit_size, NULL);
mov->src[0] = construct_value(replace,
instr->dest.dest.ssa.num_components, tree,
&state, &instr->instr, mem_ctx);
nir_instr_insert_before(&instr->instr, &mov->instr);
nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa,
nir_src_for_ssa(&mov->dest.dest.ssa));
/* We know this one has no more uses because we just rewrote them all,
* so we can remove it. The rest of the matched expression, however, we
* don't know so much about. We'll just let dead code clean them up.
*/
nir_instr_remove(&instr->instr);
ralloc_free(bitsize_ctx);
return mov;
}