/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
#include "vtn_private.h"
#include "spirv_info.h"
static struct vtn_access_chain *
vtn_access_chain_create(struct vtn_builder *b, unsigned length)
{
struct vtn_access_chain *chain;
/* Subtract 1 from the length since there's already one built in */
size_t size = sizeof(*chain) +
(MAX2(length, 1) - 1) * sizeof(chain->link[0]);
chain = rzalloc_size(b, size);
chain->length = length;
return chain;
}
static struct vtn_access_chain *
vtn_access_chain_extend(struct vtn_builder *b, struct vtn_access_chain *old,
unsigned new_ids)
{
struct vtn_access_chain *chain;
unsigned old_len = old ? old->length : 0;
chain = vtn_access_chain_create(b, old_len + new_ids);
for (unsigned i = 0; i < old_len; i++)
chain->link[i] = old->link[i];
return chain;
}
static bool
vtn_pointer_uses_ssa_offset(struct vtn_builder *b,
struct vtn_pointer *ptr)
{
return ptr->mode == vtn_variable_mode_ubo ||
ptr->mode == vtn_variable_mode_ssbo ||
(ptr->mode == vtn_variable_mode_workgroup &&
b->options->lower_workgroup_access_to_offsets);
}
static bool
vtn_pointer_is_external_block(struct vtn_builder *b,
struct vtn_pointer *ptr)
{
return ptr->mode == vtn_variable_mode_ssbo ||
ptr->mode == vtn_variable_mode_ubo ||
ptr->mode == vtn_variable_mode_push_constant ||
(ptr->mode == vtn_variable_mode_workgroup &&
b->options->lower_workgroup_access_to_offsets);
}
/* Dereference the given base pointer by the access chain */
static struct vtn_pointer *
vtn_access_chain_pointer_dereference(struct vtn_builder *b,
struct vtn_pointer *base,
struct vtn_access_chain *deref_chain)
{
struct vtn_access_chain *chain =
vtn_access_chain_extend(b, base->chain, deref_chain->length);
struct vtn_type *type = base->type;
/* OpPtrAccessChain is only allowed on things which support variable
* pointers. For everything else, the client is expected to just pass us
* the right access chain.
*/
vtn_assert(!deref_chain->ptr_as_array);
unsigned start = base->chain ? base->chain->length : 0;
for (unsigned i = 0; i < deref_chain->length; i++) {
chain->link[start + i] = deref_chain->link[i];
if (glsl_type_is_struct(type->type)) {
vtn_assert(deref_chain->link[i].mode == vtn_access_mode_literal);
type = type->members[deref_chain->link[i].id];
} else {
type = type->array_element;
}
}
struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
ptr->mode = base->mode;
ptr->type = type;
ptr->var = base->var;
ptr->chain = chain;
return ptr;
}
static nir_ssa_def *
vtn_access_link_as_ssa(struct vtn_builder *b, struct vtn_access_link link,
unsigned stride)
{
vtn_assert(stride > 0);
if (link.mode == vtn_access_mode_literal) {
return nir_imm_int(&b->nb, link.id * stride);
} else if (stride == 1) {
nir_ssa_def *ssa = vtn_ssa_value(b, link.id)->def;
if (ssa->bit_size != 32)
ssa = nir_u2u32(&b->nb, ssa);
return ssa;
} else {
nir_ssa_def *src0 = vtn_ssa_value(b, link.id)->def;
if (src0->bit_size != 32)
src0 = nir_u2u32(&b->nb, src0);
return nir_imul(&b->nb, src0, nir_imm_int(&b->nb, stride));
}
}
static nir_ssa_def *
vtn_variable_resource_index(struct vtn_builder *b, struct vtn_variable *var,
nir_ssa_def *desc_array_index)
{
if (!desc_array_index) {
vtn_assert(glsl_type_is_struct(var->type->type));
desc_array_index = nir_imm_int(&b->nb, 0);
}
nir_intrinsic_instr *instr =
nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_vulkan_resource_index);
instr->src[0] = nir_src_for_ssa(desc_array_index);
nir_intrinsic_set_desc_set(instr, var->descriptor_set);
nir_intrinsic_set_binding(instr, var->binding);
nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
nir_builder_instr_insert(&b->nb, &instr->instr);
return &instr->dest.ssa;
}
static nir_ssa_def *
vtn_resource_reindex(struct vtn_builder *b, nir_ssa_def *base_index,
nir_ssa_def *offset_index)
{
nir_intrinsic_instr *instr =
nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_vulkan_resource_reindex);
instr->src[0] = nir_src_for_ssa(base_index);
instr->src[1] = nir_src_for_ssa(offset_index);
nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
nir_builder_instr_insert(&b->nb, &instr->instr);
return &instr->dest.ssa;
}
static struct vtn_pointer *
vtn_ssa_offset_pointer_dereference(struct vtn_builder *b,
struct vtn_pointer *base,
struct vtn_access_chain *deref_chain)
{
nir_ssa_def *block_index = base->block_index;
nir_ssa_def *offset = base->offset;
struct vtn_type *type = base->type;
unsigned idx = 0;
if (base->mode == vtn_variable_mode_ubo ||
base->mode == vtn_variable_mode_ssbo) {
if (!block_index) {
vtn_assert(base->var && base->type);
nir_ssa_def *desc_arr_idx;
if (glsl_type_is_array(type->type)) {
if (deref_chain->length >= 1) {
desc_arr_idx =
vtn_access_link_as_ssa(b, deref_chain->link[0], 1);
idx++;
/* This consumes a level of type */
type = type->array_element;
} else {
/* This is annoying. We've been asked for a pointer to the
* array of UBOs/SSBOs and not a specifc buffer. Return a
* pointer with a descriptor index of 0 and we'll have to do
* a reindex later to adjust it to the right thing.
*/
desc_arr_idx = nir_imm_int(&b->nb, 0);
}
} else if (deref_chain->ptr_as_array) {
/* You can't have a zero-length OpPtrAccessChain */
vtn_assert(deref_chain->length >= 1);
desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[0], 1);
} else {
/* We have a regular non-array SSBO. */
desc_arr_idx = NULL;
}
block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx);
} else if (deref_chain->ptr_as_array &&
type->base_type == vtn_base_type_struct && type->block) {
/* We are doing an OpPtrAccessChain on a pointer to a struct that is
* decorated block. This is an interesting corner in the SPIR-V
* spec. One interpretation would be that they client is clearly
* trying to treat that block as if it's an implicit array of blocks
* repeated in the buffer. However, the SPIR-V spec for the
* OpPtrAccessChain says:
*
* "Base is treated as the address of the first element of an
* array, and the Element element’s address is computed to be the
* base for the Indexes, as per OpAccessChain."
*
* Taken literally, that would mean that your struct type is supposed
* to be treated as an array of such a struct and, since it's
* decorated block, that means an array of blocks which corresponds
* to an array descriptor. Therefore, we need to do a reindex
* operation to add the index from the first link in the access chain
* to the index we recieved.
*
* The downside to this interpretation (there always is one) is that
* this might be somewhat surprising behavior to apps if they expect
* the implicit array behavior described above.
*/
vtn_assert(deref_chain->length >= 1);
nir_ssa_def *offset_index =
vtn_access_link_as_ssa(b, deref_chain->link[0], 1);
idx++;
block_index = vtn_resource_reindex(b, block_index, offset_index);
}
}
if (!offset) {
if (base->mode == vtn_variable_mode_workgroup) {
/* SLM doesn't need nor have a block index */
vtn_assert(!block_index);
/* We need the variable for the base offset */
vtn_assert(base->var);
/* We need ptr_type for size and alignment */
vtn_assert(base->ptr_type);
/* Assign location on first use so that we don't end up bloating SLM
* address space for variables which are never statically used.
*/
if (base->var->shared_location < 0) {
vtn_assert(base->ptr_type->length > 0 && base->ptr_type->align > 0);
b->shader->num_shared = vtn_align_u32(b->shader->num_shared,
base->ptr_type->align);
base->var->shared_location = b->shader->num_shared;
b->shader->num_shared += base->ptr_type->length;
}
offset = nir_imm_int(&b->nb, base->var->shared_location);
} else {
/* The code above should have ensured a block_index when needed. */
vtn_assert(block_index);
/* Start off with at the start of the buffer. */
offset = nir_imm_int(&b->nb, 0);
}
}
if (deref_chain->ptr_as_array && idx == 0) {
/* We need ptr_type for the stride */
vtn_assert(base->ptr_type);
/* We need at least one element in the chain */
vtn_assert(deref_chain->length >= 1);
nir_ssa_def *elem_offset =
vtn_access_link_as_ssa(b, deref_chain->link[idx],
base->ptr_type->stride);
offset = nir_iadd(&b->nb, offset, elem_offset);
idx++;
}
for (; idx < deref_chain->length; idx++) {
switch (glsl_get_base_type(type->type)) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_ARRAY: {
nir_ssa_def *elem_offset =
vtn_access_link_as_ssa(b, deref_chain->link[idx], type->stride);
offset = nir_iadd(&b->nb, offset, elem_offset);
type = type->array_element;
break;
}
case GLSL_TYPE_STRUCT: {
vtn_assert(deref_chain->link[idx].mode == vtn_access_mode_literal);
unsigned member = deref_chain->link[idx].id;
nir_ssa_def *mem_offset = nir_imm_int(&b->nb, type->offsets[member]);
offset = nir_iadd(&b->nb, offset, mem_offset);
type = type->members[member];
break;
}
default:
vtn_fail("Invalid type for deref");
}
}
struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
ptr->mode = base->mode;
ptr->type = type;
ptr->block_index = block_index;
ptr->offset = offset;
return ptr;
}
/* Dereference the given base pointer by the access chain */
static struct vtn_pointer *
vtn_pointer_dereference(struct vtn_builder *b,
struct vtn_pointer *base,
struct vtn_access_chain *deref_chain)
{
if (vtn_pointer_uses_ssa_offset(b, base)) {
return vtn_ssa_offset_pointer_dereference(b, base, deref_chain);
} else {
return vtn_access_chain_pointer_dereference(b, base, deref_chain);
}
}
/* Crawls a chain of array derefs and rewrites the types so that the
* lengths stay the same but the terminal type is the one given by
* tail_type. This is useful for split structures.
*/
static void
rewrite_deref_types(struct vtn_builder *b, nir_deref *deref,
const struct glsl_type *type)
{
deref->type = type;
if (deref->child) {
vtn_assert(deref->child->deref_type == nir_deref_type_array);
vtn_assert(glsl_type_is_array(deref->type));
rewrite_deref_types(b, deref->child, glsl_get_array_element(type));
}
}
struct vtn_pointer *
vtn_pointer_for_variable(struct vtn_builder *b,
struct vtn_variable *var, struct vtn_type *ptr_type)
{
struct vtn_pointer *pointer = rzalloc(b, struct vtn_pointer);
pointer->mode = var->mode;
pointer->type = var->type;
vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
vtn_assert(ptr_type->deref->type == var->type->type);
pointer->ptr_type = ptr_type;
pointer->var = var;
return pointer;
}
nir_deref_var *
vtn_pointer_to_deref(struct vtn_builder *b, struct vtn_pointer *ptr)
{
/* Do on-the-fly copy propagation for samplers. */
if (ptr->var->copy_prop_sampler)
return vtn_pointer_to_deref(b, ptr->var->copy_prop_sampler);
nir_deref_var *deref_var;
if (ptr->var->var) {
deref_var = nir_deref_var_create(b, ptr->var->var);
/* Raw variable access */
if (!ptr->chain)
return deref_var;
} else {
vtn_assert(ptr->var->members);
/* Create the deref_var manually. It will get filled out later. */
deref_var = rzalloc(b, nir_deref_var);
deref_var->deref.deref_type = nir_deref_type_var;
}
struct vtn_access_chain *chain = ptr->chain;
vtn_assert(chain);
struct vtn_type *deref_type = ptr->var->type;
nir_deref *tail = &deref_var->deref;
nir_variable **members = ptr->var->members;
for (unsigned i = 0; i < chain->length; i++) {
enum glsl_base_type base_type = glsl_get_base_type(deref_type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_ARRAY: {
deref_type = deref_type->array_element;
nir_deref_array *deref_arr = nir_deref_array_create(b);
deref_arr->deref.type = deref_type->type;
if (chain->link[i].mode == vtn_access_mode_literal) {
deref_arr->deref_array_type = nir_deref_array_type_direct;
deref_arr->base_offset = chain->link[i].id;
} else {
vtn_assert(chain->link[i].mode == vtn_access_mode_id);
deref_arr->deref_array_type = nir_deref_array_type_indirect;
deref_arr->base_offset = 0;
deref_arr->indirect =
nir_src_for_ssa(vtn_ssa_value(b, chain->link[i].id)->def);
}
tail->child = &deref_arr->deref;
tail = tail->child;
break;
}
case GLSL_TYPE_STRUCT: {
vtn_assert(chain->link[i].mode == vtn_access_mode_literal);
unsigned idx = chain->link[i].id;
deref_type = deref_type->members[idx];
if (members) {
/* This is a pre-split structure. */
deref_var->var = members[idx];
rewrite_deref_types(b, &deref_var->deref, members[idx]->type);
vtn_assert(tail->type == deref_type->type);
members = NULL;
} else {
nir_deref_struct *deref_struct = nir_deref_struct_create(b, idx);
deref_struct->deref.type = deref_type->type;
tail->child = &deref_struct->deref;
tail = tail->child;
}
break;
}
default:
vtn_fail("Invalid type for deref");
}
}
vtn_assert(members == NULL);
return deref_var;
}
static void
_vtn_local_load_store(struct vtn_builder *b, bool load, nir_deref_var *deref,
nir_deref *tail, struct vtn_ssa_value *inout)
{
/* The deref tail may contain a deref to select a component of a vector (in
* other words, it might not be an actual tail) so we have to save it away
* here since we overwrite it later.
*/
nir_deref *old_child = tail->child;
if (glsl_type_is_vector_or_scalar(tail->type)) {
/* Terminate the deref chain in case there is one more link to pick
* off a component of the vector.
*/
tail->child = NULL;
nir_intrinsic_op op = load ? nir_intrinsic_load_var :
nir_intrinsic_store_var;
nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
intrin->variables[0] = nir_deref_var_clone(deref, intrin);
intrin->num_components = glsl_get_vector_elements(tail->type);
if (load) {
nir_ssa_dest_init(&intrin->instr, &intrin->dest,
intrin->num_components,
glsl_get_bit_size(tail->type),
NULL);
inout->def = &intrin->dest.ssa;
} else {
nir_intrinsic_set_write_mask(intrin, (1 << intrin->num_components) - 1);
intrin->src[0] = nir_src_for_ssa(inout->def);
}
nir_builder_instr_insert(&b->nb, &intrin->instr);
} else if (glsl_get_base_type(tail->type) == GLSL_TYPE_ARRAY ||
glsl_type_is_matrix(tail->type)) {
unsigned elems = glsl_get_length(tail->type);
nir_deref_array *deref_arr = nir_deref_array_create(b);
deref_arr->deref_array_type = nir_deref_array_type_direct;
deref_arr->deref.type = glsl_get_array_element(tail->type);
tail->child = &deref_arr->deref;
for (unsigned i = 0; i < elems; i++) {
deref_arr->base_offset = i;
_vtn_local_load_store(b, load, deref, tail->child, inout->elems[i]);
}
} else {
vtn_assert(glsl_get_base_type(tail->type) == GLSL_TYPE_STRUCT);
unsigned elems = glsl_get_length(tail->type);
nir_deref_struct *deref_struct = nir_deref_struct_create(b, 0);
tail->child = &deref_struct->deref;
for (unsigned i = 0; i < elems; i++) {
deref_struct->index = i;
deref_struct->deref.type = glsl_get_struct_field(tail->type, i);
_vtn_local_load_store(b, load, deref, tail->child, inout->elems[i]);
}
}
tail->child = old_child;
}
nir_deref_var *
vtn_nir_deref(struct vtn_builder *b, uint32_t id)
{
struct vtn_pointer *ptr = vtn_value(b, id, vtn_value_type_pointer)->pointer;
return vtn_pointer_to_deref(b, ptr);
}
/*
* Gets the NIR-level deref tail, which may have as a child an array deref
* selecting which component due to OpAccessChain supporting per-component
* indexing in SPIR-V.
*/
static nir_deref *
get_deref_tail(nir_deref_var *deref)
{
nir_deref *cur = &deref->deref;
while (!glsl_type_is_vector_or_scalar(cur->type) && cur->child)
cur = cur->child;
return cur;
}
struct vtn_ssa_value *
vtn_local_load(struct vtn_builder *b, nir_deref_var *src)
{
nir_deref *src_tail = get_deref_tail(src);
struct vtn_ssa_value *val = vtn_create_ssa_value(b, src_tail->type);
_vtn_local_load_store(b, true, src, src_tail, val);
if (src_tail->child) {
nir_deref_array *vec_deref = nir_deref_as_array(src_tail->child);
vtn_assert(vec_deref->deref.child == NULL);
val->type = vec_deref->deref.type;
if (vec_deref->deref_array_type == nir_deref_array_type_direct)
val->def = vtn_vector_extract(b, val->def, vec_deref->base_offset);
else
val->def = vtn_vector_extract_dynamic(b, val->def,
vec_deref->indirect.ssa);
}
return val;
}
void
vtn_local_store(struct vtn_builder *b, struct vtn_ssa_value *src,
nir_deref_var *dest)
{
nir_deref *dest_tail = get_deref_tail(dest);
if (dest_tail->child) {
struct vtn_ssa_value *val = vtn_create_ssa_value(b, dest_tail->type);
_vtn_local_load_store(b, true, dest, dest_tail, val);
nir_deref_array *deref = nir_deref_as_array(dest_tail->child);
vtn_assert(deref->deref.child == NULL);
if (deref->deref_array_type == nir_deref_array_type_direct)
val->def = vtn_vector_insert(b, val->def, src->def,
deref->base_offset);
else
val->def = vtn_vector_insert_dynamic(b, val->def, src->def,
deref->indirect.ssa);
_vtn_local_load_store(b, false, dest, dest_tail, val);
} else {
_vtn_local_load_store(b, false, dest, dest_tail, src);
}
}
nir_ssa_def *
vtn_pointer_to_offset(struct vtn_builder *b, struct vtn_pointer *ptr,
nir_ssa_def **index_out, unsigned *end_idx_out)
{
if (vtn_pointer_uses_ssa_offset(b, ptr)) {
if (!ptr->offset) {
struct vtn_access_chain chain = {
.length = 0,
};
ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
}
*index_out = ptr->block_index;
return ptr->offset;
}
vtn_assert(ptr->mode == vtn_variable_mode_push_constant);
*index_out = NULL;
unsigned idx = 0;
struct vtn_type *type = ptr->var->type;
nir_ssa_def *offset = nir_imm_int(&b->nb, 0);
if (ptr->chain) {
for (; idx < ptr->chain->length; idx++) {
enum glsl_base_type base_type = glsl_get_base_type(type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_ARRAY:
offset = nir_iadd(&b->nb, offset,
vtn_access_link_as_ssa(b, ptr->chain->link[idx],
type->stride));
type = type->array_element;
break;
case GLSL_TYPE_STRUCT: {
vtn_assert(ptr->chain->link[idx].mode == vtn_access_mode_literal);
unsigned member = ptr->chain->link[idx].id;
offset = nir_iadd(&b->nb, offset,
nir_imm_int(&b->nb, type->offsets[member]));
type = type->members[member];
break;
}
default:
vtn_fail("Invalid type for deref");
}
}
}
vtn_assert(type == ptr->type);
if (end_idx_out)
*end_idx_out = idx;
return offset;
}
/* Tries to compute the size of an interface block based on the strides and
* offsets that are provided to us in the SPIR-V source.
*/
static unsigned
vtn_type_block_size(struct vtn_builder *b, struct vtn_type *type)
{
enum glsl_base_type base_type = glsl_get_base_type(type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE: {
unsigned cols = type->row_major ? glsl_get_vector_elements(type->type) :
glsl_get_matrix_columns(type->type);
if (cols > 1) {
vtn_assert(type->stride > 0);
return type->stride * cols;
} else if (base_type == GLSL_TYPE_DOUBLE ||
base_type == GLSL_TYPE_UINT64 ||
base_type == GLSL_TYPE_INT64) {
return glsl_get_vector_elements(type->type) * 8;
} else {
return glsl_get_vector_elements(type->type) * 4;
}
}
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE: {
unsigned size = 0;
unsigned num_fields = glsl_get_length(type->type);
for (unsigned f = 0; f < num_fields; f++) {
unsigned field_end = type->offsets[f] +
vtn_type_block_size(b, type->members[f]);
size = MAX2(size, field_end);
}
return size;
}
case GLSL_TYPE_ARRAY:
vtn_assert(type->stride > 0);
vtn_assert(glsl_get_length(type->type) > 0);
return type->stride * glsl_get_length(type->type);
default:
vtn_fail("Invalid block type");
return 0;
}
}
static void
vtn_access_chain_get_offset_size(struct vtn_builder *b,
struct vtn_access_chain *chain,
struct vtn_type *type,
unsigned *access_offset,
unsigned *access_size)
{
*access_offset = 0;
for (unsigned i = 0; i < chain->length; i++) {
if (chain->link[i].mode != vtn_access_mode_literal)
break;
if (glsl_type_is_struct(type->type)) {
*access_offset += type->offsets[chain->link[i].id];
type = type->members[chain->link[i].id];
} else {
*access_offset += type->stride * chain->link[i].id;
type = type->array_element;
}
}
*access_size = vtn_type_block_size(b, type);
}
static void
_vtn_load_store_tail(struct vtn_builder *b, nir_intrinsic_op op, bool load,
nir_ssa_def *index, nir_ssa_def *offset,
unsigned access_offset, unsigned access_size,
struct vtn_ssa_value **inout, const struct glsl_type *type)
{
nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, op);
instr->num_components = glsl_get_vector_elements(type);
int src = 0;
if (!load) {
nir_intrinsic_set_write_mask(instr, (1 << instr->num_components) - 1);
instr->src[src++] = nir_src_for_ssa((*inout)->def);
}
if (op == nir_intrinsic_load_push_constant) {
vtn_assert(access_offset % 4 == 0);
nir_intrinsic_set_base(instr, access_offset);
nir_intrinsic_set_range(instr, access_size);
}
if (index)
instr->src[src++] = nir_src_for_ssa(index);
if (op == nir_intrinsic_load_push_constant) {
/* We need to subtract the offset from where the intrinsic will load the
* data. */
instr->src[src++] =
nir_src_for_ssa(nir_isub(&b->nb, offset,
nir_imm_int(&b->nb, access_offset)));
} else {
instr->src[src++] = nir_src_for_ssa(offset);
}
if (load) {
nir_ssa_dest_init(&instr->instr, &instr->dest,
instr->num_components,
glsl_get_bit_size(type), NULL);
(*inout)->def = &instr->dest.ssa;
}
nir_builder_instr_insert(&b->nb, &instr->instr);
if (load && glsl_get_base_type(type) == GLSL_TYPE_BOOL)
(*inout)->def = nir_ine(&b->nb, (*inout)->def, nir_imm_int(&b->nb, 0));
}
static void
_vtn_block_load_store(struct vtn_builder *b, nir_intrinsic_op op, bool load,
nir_ssa_def *index, nir_ssa_def *offset,
unsigned access_offset, unsigned access_size,
struct vtn_access_chain *chain, unsigned chain_idx,
struct vtn_type *type, struct vtn_ssa_value **inout)
{
if (chain && chain_idx >= chain->length)
chain = NULL;
if (load && chain == NULL && *inout == NULL)
*inout = vtn_create_ssa_value(b, type->type);
enum glsl_base_type base_type = glsl_get_base_type(type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
/* This is where things get interesting. At this point, we've hit
* a vector, a scalar, or a matrix.
*/
if (glsl_type_is_matrix(type->type)) {
/* Loading the whole matrix */
struct vtn_ssa_value *transpose;
unsigned num_ops, vec_width, col_stride;
if (type->row_major) {
num_ops = glsl_get_vector_elements(type->type);
vec_width = glsl_get_matrix_columns(type->type);
col_stride = type->array_element->stride;
if (load) {
const struct glsl_type *transpose_type =
glsl_matrix_type(base_type, vec_width, num_ops);
*inout = vtn_create_ssa_value(b, transpose_type);
} else {
transpose = vtn_ssa_transpose(b, *inout);
inout = &transpose;
}
} else {
num_ops = glsl_get_matrix_columns(type->type);
vec_width = glsl_get_vector_elements(type->type);
col_stride = type->stride;
}
for (unsigned i = 0; i < num_ops; i++) {
nir_ssa_def *elem_offset =
nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * col_stride));
_vtn_load_store_tail(b, op, load, index, elem_offset,
access_offset, access_size,
&(*inout)->elems[i],
glsl_vector_type(base_type, vec_width));
}
if (load && type->row_major)
*inout = vtn_ssa_transpose(b, *inout);
} else {
unsigned elems = glsl_get_vector_elements(type->type);
unsigned type_size = glsl_get_bit_size(type->type) / 8;
if (elems == 1 || type->stride == type_size) {
/* This is a tightly-packed normal scalar or vector load */
vtn_assert(glsl_type_is_vector_or_scalar(type->type));
_vtn_load_store_tail(b, op, load, index, offset,
access_offset, access_size,
inout, type->type);
} else {
/* This is a strided load. We have to load N things separately.
* This is the single column of a row-major matrix case.
*/
vtn_assert(type->stride > type_size);
vtn_assert(type->stride % type_size == 0);
nir_ssa_def *per_comp[4];
for (unsigned i = 0; i < elems; i++) {
nir_ssa_def *elem_offset =
nir_iadd(&b->nb, offset,
nir_imm_int(&b->nb, i * type->stride));
struct vtn_ssa_value *comp, temp_val;
if (!load) {
temp_val.def = nir_channel(&b->nb, (*inout)->def, i);
temp_val.type = glsl_scalar_type(base_type);
}
comp = &temp_val;
_vtn_load_store_tail(b, op, load, index, elem_offset,
access_offset, access_size,
&comp, glsl_scalar_type(base_type));
per_comp[i] = comp->def;
}
if (load) {
if (*inout == NULL)
*inout = vtn_create_ssa_value(b, type->type);
(*inout)->def = nir_vec(&b->nb, per_comp, elems);
}
}
}
return;
case GLSL_TYPE_ARRAY: {
unsigned elems = glsl_get_length(type->type);
for (unsigned i = 0; i < elems; i++) {
nir_ssa_def *elem_off =
nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * type->stride));
_vtn_block_load_store(b, op, load, index, elem_off,
access_offset, access_size,
NULL, 0,
type->array_element, &(*inout)->elems[i]);
}
return;
}
case GLSL_TYPE_STRUCT: {
unsigned elems = glsl_get_length(type->type);
for (unsigned i = 0; i < elems; i++) {
nir_ssa_def *elem_off =
nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, type->offsets[i]));
_vtn_block_load_store(b, op, load, index, elem_off,
access_offset, access_size,
NULL, 0,
type->members[i], &(*inout)->elems[i]);
}
return;
}
default:
vtn_fail("Invalid block member type");
}
}
static struct vtn_ssa_value *
vtn_block_load(struct vtn_builder *b, struct vtn_pointer *src)
{
nir_intrinsic_op op;
unsigned access_offset = 0, access_size = 0;
switch (src->mode) {
case vtn_variable_mode_ubo:
op = nir_intrinsic_load_ubo;
break;
case vtn_variable_mode_ssbo:
op = nir_intrinsic_load_ssbo;
break;
case vtn_variable_mode_push_constant:
op = nir_intrinsic_load_push_constant;
vtn_access_chain_get_offset_size(b, src->chain, src->var->type,
&access_offset, &access_size);
break;
case vtn_variable_mode_workgroup:
op = nir_intrinsic_load_shared;
break;
default:
vtn_fail("Invalid block variable mode");
}
nir_ssa_def *offset, *index = NULL;
unsigned chain_idx;
offset = vtn_pointer_to_offset(b, src, &index, &chain_idx);
struct vtn_ssa_value *value = NULL;
_vtn_block_load_store(b, op, true, index, offset,
access_offset, access_size,
src->chain, chain_idx, src->type, &value);
return value;
}
static void
vtn_block_store(struct vtn_builder *b, struct vtn_ssa_value *src,
struct vtn_pointer *dst)
{
nir_intrinsic_op op;
switch (dst->mode) {
case vtn_variable_mode_ssbo:
op = nir_intrinsic_store_ssbo;
break;
case vtn_variable_mode_workgroup:
op = nir_intrinsic_store_shared;
break;
default:
vtn_fail("Invalid block variable mode");
}
nir_ssa_def *offset, *index = NULL;
unsigned chain_idx;
offset = vtn_pointer_to_offset(b, dst, &index, &chain_idx);
_vtn_block_load_store(b, op, false, index, offset,
0, 0, dst->chain, chain_idx, dst->type, &src);
}
static void
_vtn_variable_load_store(struct vtn_builder *b, bool load,
struct vtn_pointer *ptr,
struct vtn_ssa_value **inout)
{
enum glsl_base_type base_type = glsl_get_base_type(ptr->type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE:
/* At this point, we have a scalar, vector, or matrix so we know that
* there cannot be any structure splitting still in the way. By
* stopping at the matrix level rather than the vector level, we
* ensure that matrices get loaded in the optimal way even if they
* are storred row-major in a UBO.
*/
if (load) {
*inout = vtn_local_load(b, vtn_pointer_to_deref(b, ptr));
} else {
vtn_local_store(b, *inout, vtn_pointer_to_deref(b, ptr));
}
return;
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_STRUCT: {
unsigned elems = glsl_get_length(ptr->type->type);
if (load) {
vtn_assert(*inout == NULL);
*inout = rzalloc(b, struct vtn_ssa_value);
(*inout)->type = ptr->type->type;
(*inout)->elems = rzalloc_array(b, struct vtn_ssa_value *, elems);
}
struct vtn_access_chain chain = {
.length = 1,
.link = {
{ .mode = vtn_access_mode_literal, },
}
};
for (unsigned i = 0; i < elems; i++) {
chain.link[0].id = i;
struct vtn_pointer *elem = vtn_pointer_dereference(b, ptr, &chain);
_vtn_variable_load_store(b, load, elem, &(*inout)->elems[i]);
}
return;
}
default:
vtn_fail("Invalid access chain type");
}
}
struct vtn_ssa_value *
vtn_variable_load(struct vtn_builder *b, struct vtn_pointer *src)
{
if (vtn_pointer_is_external_block(b, src)) {
return vtn_block_load(b, src);
} else {
struct vtn_ssa_value *val = NULL;
_vtn_variable_load_store(b, true, src, &val);
return val;
}
}
void
vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src,
struct vtn_pointer *dest)
{
if (vtn_pointer_is_external_block(b, dest)) {
vtn_assert(dest->mode == vtn_variable_mode_ssbo ||
dest->mode == vtn_variable_mode_workgroup);
vtn_block_store(b, src, dest);
} else {
_vtn_variable_load_store(b, false, dest, &src);
}
}
static void
_vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
struct vtn_pointer *src)
{
vtn_assert(src->type->type == dest->type->type);
enum glsl_base_type base_type = glsl_get_base_type(src->type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
/* At this point, we have a scalar, vector, or matrix so we know that
* there cannot be any structure splitting still in the way. By
* stopping at the matrix level rather than the vector level, we
* ensure that matrices get loaded in the optimal way even if they
* are storred row-major in a UBO.
*/
vtn_variable_store(b, vtn_variable_load(b, src), dest);
return;
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_STRUCT: {
struct vtn_access_chain chain = {
.length = 1,
.link = {
{ .mode = vtn_access_mode_literal, },
}
};
unsigned elems = glsl_get_length(src->type->type);
for (unsigned i = 0; i < elems; i++) {
chain.link[0].id = i;
struct vtn_pointer *src_elem =
vtn_pointer_dereference(b, src, &chain);
struct vtn_pointer *dest_elem =
vtn_pointer_dereference(b, dest, &chain);
_vtn_variable_copy(b, dest_elem, src_elem);
}
return;
}
default:
vtn_fail("Invalid access chain type");
}
}
static void
vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
struct vtn_pointer *src)
{
/* TODO: At some point, we should add a special-case for when we can
* just emit a copy_var intrinsic.
*/
_vtn_variable_copy(b, dest, src);
}
static void
set_mode_system_value(struct vtn_builder *b, nir_variable_mode *mode)
{
vtn_assert(*mode == nir_var_system_value || *mode == nir_var_shader_in);
*mode = nir_var_system_value;
}
static void
vtn_get_builtin_location(struct vtn_builder *b,
SpvBuiltIn builtin, int *location,
nir_variable_mode *mode)
{
switch (builtin) {
case SpvBuiltInPosition:
*location = VARYING_SLOT_POS;
break;
case SpvBuiltInPointSize:
*location = VARYING_SLOT_PSIZ;
break;
case SpvBuiltInClipDistance:
*location = VARYING_SLOT_CLIP_DIST0; /* XXX CLIP_DIST1? */
break;
case SpvBuiltInCullDistance:
*location = VARYING_SLOT_CULL_DIST0;
break;
case SpvBuiltInVertexIndex:
*location = SYSTEM_VALUE_VERTEX_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInVertexId:
/* Vulkan defines VertexID to be zero-based and reserves the new
* builtin keyword VertexIndex to indicate the non-zero-based value.
*/
*location = SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInInstanceIndex:
*location = SYSTEM_VALUE_INSTANCE_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInInstanceId:
*location = SYSTEM_VALUE_INSTANCE_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInPrimitiveId:
if (b->shader->info.stage == MESA_SHADER_FRAGMENT) {
vtn_assert(*mode == nir_var_shader_in);
*location = VARYING_SLOT_PRIMITIVE_ID;
} else if (*mode == nir_var_shader_out) {
*location = VARYING_SLOT_PRIMITIVE_ID;
} else {
*location = SYSTEM_VALUE_PRIMITIVE_ID;
set_mode_system_value(b, mode);
}
break;
case SpvBuiltInInvocationId:
*location = SYSTEM_VALUE_INVOCATION_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInLayer:
*location = VARYING_SLOT_LAYER;
if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
*mode = nir_var_shader_in;
else if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
*mode = nir_var_shader_out;
else
vtn_fail("invalid stage for SpvBuiltInLayer");
break;
case SpvBuiltInViewportIndex:
*location = VARYING_SLOT_VIEWPORT;
if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
*mode = nir_var_shader_out;
else if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
*mode = nir_var_shader_in;
else
vtn_fail("invalid stage for SpvBuiltInViewportIndex");
break;
case SpvBuiltInTessLevelOuter:
*location = VARYING_SLOT_TESS_LEVEL_OUTER;
break;
case SpvBuiltInTessLevelInner:
*location = VARYING_SLOT_TESS_LEVEL_INNER;
break;
case SpvBuiltInTessCoord:
*location = SYSTEM_VALUE_TESS_COORD;
set_mode_system_value(b, mode);
break;
case SpvBuiltInPatchVertices:
*location = SYSTEM_VALUE_VERTICES_IN;
set_mode_system_value(b, mode);
break;
case SpvBuiltInFragCoord:
*location = VARYING_SLOT_POS;
vtn_assert(*mode == nir_var_shader_in);
break;
case SpvBuiltInPointCoord:
*location = VARYING_SLOT_PNTC;
vtn_assert(*mode == nir_var_shader_in);
break;
case SpvBuiltInFrontFacing:
*location = SYSTEM_VALUE_FRONT_FACE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSampleId:
*location = SYSTEM_VALUE_SAMPLE_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSamplePosition:
*location = SYSTEM_VALUE_SAMPLE_POS;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSampleMask:
if (*mode == nir_var_shader_out) {
*location = FRAG_RESULT_SAMPLE_MASK;
} else {
*location = SYSTEM_VALUE_SAMPLE_MASK_IN;
set_mode_system_value(b, mode);
}
break;
case SpvBuiltInFragDepth:
*location = FRAG_RESULT_DEPTH;
vtn_assert(*mode == nir_var_shader_out);
break;
case SpvBuiltInHelperInvocation:
*location = SYSTEM_VALUE_HELPER_INVOCATION;
set_mode_system_value(b, mode);
break;
case SpvBuiltInNumWorkgroups:
*location = SYSTEM_VALUE_NUM_WORK_GROUPS;
set_mode_system_value(b, mode);
break;
case SpvBuiltInWorkgroupSize:
/* This should already be handled */
vtn_fail("unsupported builtin");
break;
case SpvBuiltInWorkgroupId:
*location = SYSTEM_VALUE_WORK_GROUP_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInLocalInvocationId:
*location = SYSTEM_VALUE_LOCAL_INVOCATION_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInLocalInvocationIndex:
*location = SYSTEM_VALUE_LOCAL_INVOCATION_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInGlobalInvocationId:
*location = SYSTEM_VALUE_GLOBAL_INVOCATION_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaseVertex:
*location = SYSTEM_VALUE_BASE_VERTEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaseInstance:
*location = SYSTEM_VALUE_BASE_INSTANCE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInDrawIndex:
*location = SYSTEM_VALUE_DRAW_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInViewIndex:
*location = SYSTEM_VALUE_VIEW_INDEX;
set_mode_system_value(b, mode);
break;
default:
vtn_fail("unsupported builtin");
}
}
static void
apply_var_decoration(struct vtn_builder *b, nir_variable *nir_var,
const struct vtn_decoration *dec)
{
switch (dec->decoration) {
case SpvDecorationRelaxedPrecision:
break; /* FIXME: Do nothing with this for now. */
case SpvDecorationNoPerspective:
nir_var->data.interpolation = INTERP_MODE_NOPERSPECTIVE;
break;
case SpvDecorationFlat:
nir_var->data.interpolation = INTERP_MODE_FLAT;
break;
case SpvDecorationCentroid:
nir_var->data.centroid = true;
break;
case SpvDecorationSample:
nir_var->data.sample = true;
break;
case SpvDecorationInvariant:
nir_var->data.invariant = true;
break;
case SpvDecorationConstant:
vtn_assert(nir_var->constant_initializer != NULL);
nir_var->data.read_only = true;
break;
case SpvDecorationNonReadable:
nir_var->data.image.write_only = true;
break;
case SpvDecorationNonWritable:
nir_var->data.read_only = true;
nir_var->data.image.read_only = true;
break;
case SpvDecorationComponent:
nir_var->data.location_frac = dec->literals[0];
break;
case SpvDecorationIndex:
nir_var->data.index = dec->literals[0];
break;
case SpvDecorationBuiltIn: {
SpvBuiltIn builtin = dec->literals[0];
if (builtin == SpvBuiltInWorkgroupSize) {
/* This shouldn't be a builtin. It's actually a constant. */
nir_var->data.mode = nir_var_global;
nir_var->data.read_only = true;
nir_constant *c = rzalloc(nir_var, nir_constant);
c->values[0].u32[0] = b->shader->info.cs.local_size[0];
c->values[0].u32[1] = b->shader->info.cs.local_size[1];
c->values[0].u32[2] = b->shader->info.cs.local_size[2];
nir_var->constant_initializer = c;
break;
}
nir_variable_mode mode = nir_var->data.mode;
vtn_get_builtin_location(b, builtin, &nir_var->data.location, &mode);
nir_var->data.mode = mode;
switch (builtin) {
case SpvBuiltInTessLevelOuter:
case SpvBuiltInTessLevelInner:
nir_var->data.compact = true;
break;
case SpvBuiltInSamplePosition:
nir_var->data.origin_upper_left = b->origin_upper_left;
/* fallthrough */
case SpvBuiltInFragCoord:
nir_var->data.pixel_center_integer = b->pixel_center_integer;
break;
default:
break;
}
}
case SpvDecorationSpecId:
case SpvDecorationRowMajor:
case SpvDecorationColMajor:
case SpvDecorationMatrixStride:
case SpvDecorationRestrict:
case SpvDecorationAliased:
case SpvDecorationVolatile:
case SpvDecorationCoherent:
case SpvDecorationUniform:
case SpvDecorationStream:
case SpvDecorationOffset:
case SpvDecorationLinkageAttributes:
break; /* Do nothing with these here */
case SpvDecorationPatch:
nir_var->data.patch = true;
break;
case SpvDecorationLocation:
vtn_fail("Handled above");
case SpvDecorationBlock:
case SpvDecorationBufferBlock:
case SpvDecorationArrayStride:
case SpvDecorationGLSLShared:
case SpvDecorationGLSLPacked:
break; /* These can apply to a type but we don't care about them */
case SpvDecorationBinding:
case SpvDecorationDescriptorSet:
case SpvDecorationNoContraction:
case SpvDecorationInputAttachmentIndex:
vtn_warn("Decoration not allowed for variable or structure member: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationXfbBuffer:
case SpvDecorationXfbStride:
vtn_warn("Vulkan does not have transform feedback: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationCPacked:
case SpvDecorationSaturatedConversion:
case SpvDecorationFuncParamAttr:
case SpvDecorationFPRoundingMode:
case SpvDecorationFPFastMathMode:
case SpvDecorationAlignment:
vtn_warn("Decoration only allowed for CL-style kernels: %s",
spirv_decoration_to_string(dec->decoration));
break;
default:
vtn_fail("Unhandled decoration");
}
}
static void
var_is_patch_cb(struct vtn_builder *b, struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *out_is_patch)
{
if (dec->decoration == SpvDecorationPatch) {
*((bool *) out_is_patch) = true;
}
}
static void
var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_var)
{
struct vtn_variable *vtn_var = void_var;
/* Handle decorations that apply to a vtn_variable as a whole */
switch (dec->decoration) {
case SpvDecorationBinding:
vtn_var->binding = dec->literals[0];
return;
case SpvDecorationDescriptorSet:
vtn_var->descriptor_set = dec->literals[0];
return;
case SpvDecorationInputAttachmentIndex:
vtn_var->input_attachment_index = dec->literals[0];
return;
case SpvDecorationPatch:
vtn_var->patch = true;
break;
default:
break;
}
if (val->value_type == vtn_value_type_pointer) {
assert(val->pointer->var == void_var);
assert(val->pointer->chain == NULL);
assert(member == -1);
} else {
assert(val->value_type == vtn_value_type_type);
}
/* Location is odd. If applied to a split structure, we have to walk the
* whole thing and accumulate the location. It's easier to handle as a
* special case.
*/
if (dec->decoration == SpvDecorationLocation) {
unsigned location = dec->literals[0];
bool is_vertex_input;
if (b->shader->info.stage == MESA_SHADER_FRAGMENT &&
vtn_var->mode == vtn_variable_mode_output) {
is_vertex_input = false;
location += FRAG_RESULT_DATA0;
} else if (b->shader->info.stage == MESA_SHADER_VERTEX &&
vtn_var->mode == vtn_variable_mode_input) {
is_vertex_input = true;
location += VERT_ATTRIB_GENERIC0;
} else if (vtn_var->mode == vtn_variable_mode_input ||
vtn_var->mode == vtn_variable_mode_output) {
is_vertex_input = false;
location += vtn_var->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0;
} else {
vtn_warn("Location must be on input or output variable");
return;
}
if (vtn_var->var) {
/* This handles the member and lone variable cases */
vtn_var->var->data.location = location;
} else {
/* This handles the structure member case */
assert(vtn_var->members);
unsigned length =
glsl_get_length(glsl_without_array(vtn_var->type->type));
for (unsigned i = 0; i < length; i++) {
vtn_var->members[i]->data.location = location;
location +=
glsl_count_attribute_slots(vtn_var->members[i]->interface_type,
is_vertex_input);
}
}
return;
} else {
if (vtn_var->var) {
assert(member == -1);
apply_var_decoration(b, vtn_var->var, dec);
} else if (vtn_var->members) {
if (member >= 0) {
/* Member decorations must come from a type */
assert(val->value_type == vtn_value_type_type);
apply_var_decoration(b, vtn_var->members[member], dec);
} else {
unsigned length =
glsl_get_length(glsl_without_array(vtn_var->type->type));
for (unsigned i = 0; i < length; i++)
apply_var_decoration(b, vtn_var->members[i], dec);
}
} else {
/* A few variables, those with external storage, have no actual
* nir_variables associated with them. Fortunately, all decorations
* we care about for those variables are on the type only.
*/
vtn_assert(vtn_var->mode == vtn_variable_mode_ubo ||
vtn_var->mode == vtn_variable_mode_ssbo ||
vtn_var->mode == vtn_variable_mode_push_constant ||
(vtn_var->mode == vtn_variable_mode_workgroup &&
b->options->lower_workgroup_access_to_offsets));
}
}
}
static enum vtn_variable_mode
vtn_storage_class_to_mode(struct vtn_builder *b,
SpvStorageClass class,
struct vtn_type *interface_type,
nir_variable_mode *nir_mode_out)
{
enum vtn_variable_mode mode;
nir_variable_mode nir_mode;
switch (class) {
case SpvStorageClassUniform:
if (interface_type->block) {
mode = vtn_variable_mode_ubo;
nir_mode = 0;
} else if (interface_type->buffer_block) {
mode = vtn_variable_mode_ssbo;
nir_mode = 0;
} else {
vtn_fail("Invalid uniform variable type");
}
break;
case SpvStorageClassStorageBuffer:
mode = vtn_variable_mode_ssbo;
nir_mode = 0;
break;
case SpvStorageClassUniformConstant:
if (glsl_type_is_image(interface_type->type)) {
mode = vtn_variable_mode_image;
nir_mode = nir_var_uniform;
} else if (glsl_type_is_sampler(interface_type->type)) {
mode = vtn_variable_mode_sampler;
nir_mode = nir_var_uniform;
} else {
vtn_fail("Invalid uniform constant variable type");
}
break;
case SpvStorageClassPushConstant:
mode = vtn_variable_mode_push_constant;
nir_mode = nir_var_uniform;
break;
case SpvStorageClassInput:
mode = vtn_variable_mode_input;
nir_mode = nir_var_shader_in;
break;
case SpvStorageClassOutput:
mode = vtn_variable_mode_output;
nir_mode = nir_var_shader_out;
break;
case SpvStorageClassPrivate:
mode = vtn_variable_mode_global;
nir_mode = nir_var_global;
break;
case SpvStorageClassFunction:
mode = vtn_variable_mode_local;
nir_mode = nir_var_local;
break;
case SpvStorageClassWorkgroup:
mode = vtn_variable_mode_workgroup;
nir_mode = nir_var_shared;
break;
case SpvStorageClassCrossWorkgroup:
case SpvStorageClassGeneric:
case SpvStorageClassAtomicCounter:
default:
vtn_fail("Unhandled variable storage class");
}
if (nir_mode_out)
*nir_mode_out = nir_mode;
return mode;
}
nir_ssa_def *
vtn_pointer_to_ssa(struct vtn_builder *b, struct vtn_pointer *ptr)
{
/* This pointer needs to have a pointer type with actual storage */
vtn_assert(ptr->ptr_type);
vtn_assert(ptr->ptr_type->type);
if (!ptr->offset) {
/* If we don't have an offset then we must be a pointer to the variable
* itself.
*/
vtn_assert(!ptr->offset && !ptr->block_index);
struct vtn_access_chain chain = {
.length = 0,
};
ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
}
vtn_assert(ptr->offset);
if (ptr->block_index) {
vtn_assert(ptr->mode == vtn_variable_mode_ubo ||
ptr->mode == vtn_variable_mode_ssbo);
return nir_vec2(&b->nb, ptr->block_index, ptr->offset);
} else {
vtn_assert(ptr->mode == vtn_variable_mode_workgroup);
return ptr->offset;
}
}
struct vtn_pointer *
vtn_pointer_from_ssa(struct vtn_builder *b, nir_ssa_def *ssa,
struct vtn_type *ptr_type)
{
vtn_assert(ssa->num_components <= 2 && ssa->bit_size == 32);
vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
vtn_assert(ptr_type->deref->base_type != vtn_base_type_pointer);
/* This pointer type needs to have actual storage */
vtn_assert(ptr_type->type);
struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
ptr->mode = vtn_storage_class_to_mode(b, ptr_type->storage_class,
ptr_type, NULL);
ptr->type = ptr_type->deref;
ptr->ptr_type = ptr_type;
if (ssa->num_components > 1) {
vtn_assert(ssa->num_components == 2);
vtn_assert(ptr->mode == vtn_variable_mode_ubo ||
ptr->mode == vtn_variable_mode_ssbo);
ptr->block_index = nir_channel(&b->nb, ssa, 0);
ptr->offset = nir_channel(&b->nb, ssa, 1);
} else {
vtn_assert(ssa->num_components == 1);
vtn_assert(ptr->mode == vtn_variable_mode_workgroup);
ptr->block_index = NULL;
ptr->offset = ssa;
}
return ptr;
}
static bool
is_per_vertex_inout(const struct vtn_variable *var, gl_shader_stage stage)
{
if (var->patch || !glsl_type_is_array(var->type->type))
return false;
if (var->mode == vtn_variable_mode_input) {
return stage == MESA_SHADER_TESS_CTRL ||
stage == MESA_SHADER_TESS_EVAL ||
stage == MESA_SHADER_GEOMETRY;
}
if (var->mode == vtn_variable_mode_output)
return stage == MESA_SHADER_TESS_CTRL;
return false;
}
static void
vtn_create_variable(struct vtn_builder *b, struct vtn_value *val,
struct vtn_type *ptr_type, SpvStorageClass storage_class,
nir_constant *initializer)
{
vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
struct vtn_type *type = ptr_type->deref;
struct vtn_type *without_array = type;
while(glsl_type_is_array(without_array->type))
without_array = without_array->array_element;
enum vtn_variable_mode mode;
nir_variable_mode nir_mode;
mode = vtn_storage_class_to_mode(b, storage_class, without_array, &nir_mode);
switch (mode) {
case vtn_variable_mode_ubo:
b->shader->info.num_ubos++;
break;
case vtn_variable_mode_ssbo:
b->shader->info.num_ssbos++;
break;
case vtn_variable_mode_image:
b->shader->info.num_images++;
break;
case vtn_variable_mode_sampler:
b->shader->info.num_textures++;
break;
case vtn_variable_mode_push_constant:
b->shader->num_uniforms = vtn_type_block_size(b, type);
break;
default:
/* No tallying is needed */
break;
}
struct vtn_variable *var = rzalloc(b, struct vtn_variable);
var->type = type;
var->mode = mode;
vtn_assert(val->value_type == vtn_value_type_pointer);
val->pointer = vtn_pointer_for_variable(b, var, ptr_type);
switch (var->mode) {
case vtn_variable_mode_local:
case vtn_variable_mode_global:
case vtn_variable_mode_image:
case vtn_variable_mode_sampler:
/* For these, we create the variable normally */
var->var = rzalloc(b->shader, nir_variable);
var->var->name = ralloc_strdup(var->var, val->name);
var->var->type = var->type->type;
var->var->data.mode = nir_mode;
switch (var->mode) {
case vtn_variable_mode_image:
case vtn_variable_mode_sampler:
var->var->interface_type = without_array->type;
break;
default:
var->var->interface_type = NULL;
break;
}
break;
case vtn_variable_mode_workgroup:
if (b->options->lower_workgroup_access_to_offsets) {
var->shared_location = -1;
} else {
/* Create the variable normally */
var->var = rzalloc(b->shader, nir_variable);
var->var->name = ralloc_strdup(var->var, val->name);
var->var->type = var->type->type;
var->var->data.mode = nir_var_shared;
}
break;
case vtn_variable_mode_input:
case vtn_variable_mode_output: {
/* In order to know whether or not we're a per-vertex inout, we need
* the patch qualifier. This means walking the variable decorations
* early before we actually create any variables. Not a big deal.
*
* GLSLang really likes to place decorations in the most interior
* thing it possibly can. In particular, if you have a struct, it
* will place the patch decorations on the struct members. This
* should be handled by the variable splitting below just fine.
*
* If you have an array-of-struct, things get even more weird as it
* will place the patch decorations on the struct even though it's
* inside an array and some of the members being patch and others not
* makes no sense whatsoever. Since the only sensible thing is for
* it to be all or nothing, we'll call it patch if any of the members
* are declared patch.
*/
var->patch = false;
vtn_foreach_decoration(b, val, var_is_patch_cb, &var->patch);
if (glsl_type_is_array(var->type->type) &&
glsl_type_is_struct(without_array->type)) {
vtn_foreach_decoration(b, vtn_value(b, without_array->id,
vtn_value_type_type),
var_is_patch_cb, &var->patch);
}
/* For inputs and outputs, we immediately split structures. This
* is for a couple of reasons. For one, builtins may all come in
* a struct and we really want those split out into separate
* variables. For another, interpolation qualifiers can be
* applied to members of the top-level struct ane we need to be
* able to preserve that information.
*/
int array_length = -1;
struct vtn_type *interface_type = var->type;
if (is_per_vertex_inout(var, b->shader->info.stage)) {
/* In Geometry shaders (and some tessellation), inputs come
* in per-vertex arrays. However, some builtins come in
* non-per-vertex, hence the need for the is_array check. In
* any case, there are no non-builtin arrays allowed so this
* check should be sufficient.
*/
interface_type = var->type->array_element;
array_length = glsl_get_length(var->type->type);
}
if (glsl_type_is_struct(interface_type->type)) {
/* It's a struct. Split it. */
unsigned num_members = glsl_get_length(interface_type->type);
var->members = ralloc_array(b, nir_variable *, num_members);
for (unsigned i = 0; i < num_members; i++) {
const struct glsl_type *mtype = interface_type->members[i]->type;
if (array_length >= 0)
mtype = glsl_array_type(mtype, array_length);
var->members[i] = rzalloc(b->shader, nir_variable);
var->members[i]->name =
ralloc_asprintf(var->members[i], "%s.%d", val->name, i);
var->members[i]->type = mtype;
var->members[i]->interface_type =
interface_type->members[i]->type;
var->members[i]->data.mode = nir_mode;
var->members[i]->data.patch = var->patch;
}
} else {
var->var = rzalloc(b->shader, nir_variable);
var->var->name = ralloc_strdup(var->var, val->name);
var->var->type = var->type->type;
var->var->interface_type = interface_type->type;
var->var->data.mode = nir_mode;
var->var->data.patch = var->patch;
}
/* For inputs and outputs, we need to grab locations and builtin
* information from the interface type.
*/
vtn_foreach_decoration(b, vtn_value(b, interface_type->id,
vtn_value_type_type),
var_decoration_cb, var);
break;
}
case vtn_variable_mode_param:
vtn_fail("Not created through OpVariable");
case vtn_variable_mode_ubo:
case vtn_variable_mode_ssbo:
case vtn_variable_mode_push_constant:
/* These don't need actual variables. */
break;
}
if (initializer) {
var->var->constant_initializer =
nir_constant_clone(initializer, var->var);
}
vtn_foreach_decoration(b, val, var_decoration_cb, var);
if (var->mode == vtn_variable_mode_image ||
var->mode == vtn_variable_mode_sampler) {
/* XXX: We still need the binding information in the nir_variable
* for these. We should fix that.
*/
var->var->data.binding = var->binding;
var->var->data.descriptor_set = var->descriptor_set;
var->var->data.index = var->input_attachment_index;
if (var->mode == vtn_variable_mode_image)
var->var->data.image.format = without_array->image_format;
}
if (var->mode == vtn_variable_mode_local) {
vtn_assert(var->members == NULL && var->var != NULL);
nir_function_impl_add_variable(b->nb.impl, var->var);
} else if (var->var) {
nir_shader_add_variable(b->shader, var->var);
} else if (var->members) {
unsigned count = glsl_get_length(without_array->type);
for (unsigned i = 0; i < count; i++) {
vtn_assert(var->members[i]->data.mode != nir_var_local);
nir_shader_add_variable(b->shader, var->members[i]);
}
} else {
vtn_assert(vtn_pointer_is_external_block(b, val->pointer));
}
}
static void
vtn_assert_types_equal(struct vtn_builder *b, SpvOp opcode,
struct vtn_type *dst_type,
struct vtn_type *src_type)
{
if (dst_type->id == src_type->id)
return;
if (vtn_types_compatible(b, dst_type, src_type)) {
/* Early versions of GLSLang would re-emit types unnecessarily and you
* would end up with OpLoad, OpStore, or OpCopyMemory opcodes which have
* mismatched source and destination types.
*
* https://github.com/KhronosGroup/glslang/issues/304
* https://github.com/KhronosGroup/glslang/issues/307
* https://bugs.freedesktop.org/show_bug.cgi?id=104338
* https://bugs.freedesktop.org/show_bug.cgi?id=104424
*/
vtn_warn("Source and destination types of %s do not have the same "
"ID (but are compatible): %u vs %u",
spirv_op_to_string(opcode), dst_type->id, src_type->id);
return;
}
vtn_fail("Source and destination types of %s do not match: %s vs. %s",
spirv_op_to_string(opcode),
glsl_get_type_name(dst_type->type),
glsl_get_type_name(src_type->type));
}
void
vtn_handle_variables(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
switch (opcode) {
case SpvOpUndef: {
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
break;
}
case SpvOpVariable: {
struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type;
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
SpvStorageClass storage_class = w[3];
nir_constant *initializer = NULL;
if (count > 4)
initializer = vtn_value(b, w[4], vtn_value_type_constant)->constant;
vtn_create_variable(b, val, ptr_type, storage_class, initializer);
break;
}
case SpvOpAccessChain:
case SpvOpPtrAccessChain:
case SpvOpInBoundsAccessChain: {
struct vtn_access_chain *chain = vtn_access_chain_create(b, count - 4);
chain->ptr_as_array = (opcode == SpvOpPtrAccessChain);
unsigned idx = 0;
for (int i = 4; i < count; i++) {
struct vtn_value *link_val = vtn_untyped_value(b, w[i]);
if (link_val->value_type == vtn_value_type_constant) {
chain->link[idx].mode = vtn_access_mode_literal;
chain->link[idx].id = link_val->constant->values[0].u32[0];
} else {
chain->link[idx].mode = vtn_access_mode_id;
chain->link[idx].id = w[i];
}
idx++;
}
struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type;
struct vtn_value *base_val = vtn_untyped_value(b, w[3]);
if (base_val->value_type == vtn_value_type_sampled_image) {
/* This is rather insane. SPIR-V allows you to use OpSampledImage
* to combine an array of images with a single sampler to get an
* array of sampled images that all share the same sampler.
* Fortunately, this means that we can more-or-less ignore the
* sampler when crawling the access chain, but it does leave us
* with this rather awkward little special-case.
*/
struct vtn_value *val =
vtn_push_value(b, w[2], vtn_value_type_sampled_image);
val->sampled_image = ralloc(b, struct vtn_sampled_image);
val->sampled_image->type = base_val->sampled_image->type;
val->sampled_image->image =
vtn_pointer_dereference(b, base_val->sampled_image->image, chain);
val->sampled_image->sampler = base_val->sampled_image->sampler;
} else {
vtn_assert(base_val->value_type == vtn_value_type_pointer);
struct vtn_value *val =
vtn_push_value(b, w[2], vtn_value_type_pointer);
val->pointer = vtn_pointer_dereference(b, base_val->pointer, chain);
val->pointer->ptr_type = ptr_type;
}
break;
}
case SpvOpCopyMemory: {
struct vtn_value *dest = vtn_value(b, w[1], vtn_value_type_pointer);
struct vtn_value *src = vtn_value(b, w[2], vtn_value_type_pointer);
vtn_assert_types_equal(b, opcode, dest->type->deref, src->type->deref);
vtn_variable_copy(b, dest->pointer, src->pointer);
break;
}
case SpvOpLoad: {
struct vtn_type *res_type =
vtn_value(b, w[1], vtn_value_type_type)->type;
struct vtn_value *src_val = vtn_value(b, w[3], vtn_value_type_pointer);
struct vtn_pointer *src = src_val->pointer;
vtn_assert_types_equal(b, opcode, res_type, src_val->type->deref);
if (src->mode == vtn_variable_mode_image ||
src->mode == vtn_variable_mode_sampler) {
vtn_push_value(b, w[2], vtn_value_type_pointer)->pointer = src;
return;
}
vtn_push_ssa(b, w[2], res_type, vtn_variable_load(b, src));
break;
}
case SpvOpStore: {
struct vtn_value *dest_val = vtn_value(b, w[1], vtn_value_type_pointer);
struct vtn_pointer *dest = dest_val->pointer;
struct vtn_value *src_val = vtn_untyped_value(b, w[2]);
/* OpStore requires us to actually have a storage type */
vtn_fail_if(dest->type->type == NULL,
"Invalid destination type for OpStore");
if (glsl_get_base_type(dest->type->type) == GLSL_TYPE_BOOL &&
glsl_get_base_type(src_val->type->type) == GLSL_TYPE_UINT) {
/* Early versions of GLSLang would use uint types for UBOs/SSBOs but
* would then store them to a local variable as bool. Work around
* the issue by doing an implicit conversion.
*
* https://github.com/KhronosGroup/glslang/issues/170
* https://bugs.freedesktop.org/show_bug.cgi?id=104424
*/
vtn_warn("OpStore of value of type OpTypeInt to a pointer to type "
"OpTypeBool. Doing an implicit conversion to work around "
"the problem.");
struct vtn_ssa_value *bool_ssa =
vtn_create_ssa_value(b, dest->type->type);
bool_ssa->def = nir_i2b(&b->nb, vtn_ssa_value(b, w[2])->def);
vtn_variable_store(b, bool_ssa, dest);
break;
}
vtn_assert_types_equal(b, opcode, dest_val->type->deref, src_val->type);
if (glsl_type_is_sampler(dest->type->type)) {
vtn_warn("OpStore of a sampler detected. Doing on-the-fly copy "
"propagation to workaround the problem.");
vtn_assert(dest->var->copy_prop_sampler == NULL);
dest->var->copy_prop_sampler =
vtn_value(b, w[2], vtn_value_type_pointer)->pointer;
break;
}
struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]);
vtn_variable_store(b, src, dest);
break;
}
case SpvOpArrayLength: {
struct vtn_pointer *ptr =
vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
const uint32_t offset = ptr->var->type->offsets[w[4]];
const uint32_t stride = ptr->var->type->members[w[4]]->stride;
if (!ptr->block_index) {
struct vtn_access_chain chain = {
.length = 0,
};
ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
vtn_assert(ptr->block_index);
}
nir_intrinsic_instr *instr =
nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_get_buffer_size);
instr->src[0] = nir_src_for_ssa(ptr->block_index);
nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
nir_builder_instr_insert(&b->nb, &instr->instr);
nir_ssa_def *buf_size = &instr->dest.ssa;
/* array_length = max(buffer_size - offset, 0) / stride */
nir_ssa_def *array_length =
nir_idiv(&b->nb,
nir_imax(&b->nb,
nir_isub(&b->nb,
buf_size,
nir_imm_int(&b->nb, offset)),
nir_imm_int(&b->nb, 0u)),
nir_imm_int(&b->nb, stride));
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
val->ssa = vtn_create_ssa_value(b, glsl_uint_type());
val->ssa->def = array_length;
break;
}
case SpvOpCopyMemorySized:
default:
vtn_fail("Unhandled opcode");
}
}