/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "draw_gs.h"
#include "draw_private.h"
#include "draw_context.h"
#ifdef HAVE_LLVM
#include "draw_llvm.h"
#endif
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_exec.h"
#include "pipe/p_shader_tokens.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/u_prim.h"
/* fixme: move it from here */
#define MAX_PRIMITIVES 64
static inline int
draw_gs_get_input_index(int semantic, int index,
const struct tgsi_shader_info *input_info)
{
int i;
const ubyte *input_semantic_names = input_info->output_semantic_name;
const ubyte *input_semantic_indices = input_info->output_semantic_index;
for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
if (input_semantic_names[i] == semantic &&
input_semantic_indices[i] == index)
return i;
}
return -1;
}
/**
* We execute geometry shaders in the SOA mode, so ideally we want to
* flush when the number of currently fetched primitives is equal to
* the number of elements in the SOA vector. This ensures that the
* throughput is optimized for the given vector instruction set.
*/
static inline boolean
draw_gs_should_flush(struct draw_geometry_shader *shader)
{
return (shader->fetched_prim_count == shader->vector_length);
}
/*#define DEBUG_OUTPUTS 1*/
static void
tgsi_fetch_gs_outputs(struct draw_geometry_shader *shader,
unsigned num_primitives,
float (**p_output)[4])
{
struct tgsi_exec_machine *machine = shader->machine;
unsigned prim_idx, j, slot;
unsigned current_idx = 0;
float (*output)[4];
output = *p_output;
/* Unswizzle all output results.
*/
for (prim_idx = 0; prim_idx < num_primitives; ++prim_idx) {
unsigned num_verts_per_prim = machine->Primitives[prim_idx];
shader->primitive_lengths[prim_idx + shader->emitted_primitives] =
machine->Primitives[prim_idx];
shader->emitted_vertices += num_verts_per_prim;
for (j = 0; j < num_verts_per_prim; j++, current_idx++) {
int idx = current_idx * shader->info.num_outputs;
#ifdef DEBUG_OUTPUTS
debug_printf("%d) Output vert:\n", idx / shader->info.num_outputs);
#endif
for (slot = 0; slot < shader->info.num_outputs; slot++) {
output[slot][0] = machine->Outputs[idx + slot].xyzw[0].f[0];
output[slot][1] = machine->Outputs[idx + slot].xyzw[1].f[0];
output[slot][2] = machine->Outputs[idx + slot].xyzw[2].f[0];
output[slot][3] = machine->Outputs[idx + slot].xyzw[3].f[0];
#ifdef DEBUG_OUTPUTS
debug_printf("\t%d: %f %f %f %f\n", slot,
output[slot][0],
output[slot][1],
output[slot][2],
output[slot][3]);
#endif
}
output = (float (*)[4])((char *)output + shader->vertex_size);
}
}
*p_output = output;
shader->emitted_primitives += num_primitives;
}
/*#define DEBUG_INPUTS 1*/
static void tgsi_fetch_gs_input(struct draw_geometry_shader *shader,
unsigned *indices,
unsigned num_vertices,
unsigned prim_idx)
{
struct tgsi_exec_machine *machine = shader->machine;
unsigned slot, i;
int vs_slot;
unsigned input_vertex_stride = shader->input_vertex_stride;
const float (*input_ptr)[4];
input_ptr = shader->input;
for (i = 0; i < num_vertices; ++i) {
const float (*input)[4];
#if DEBUG_INPUTS
debug_printf("%d) vertex index = %d (prim idx = %d)\n",
i, indices[i], prim_idx);
#endif
input = (const float (*)[4])(
(const char *)input_ptr + (indices[i] * input_vertex_stride));
for (slot = 0, vs_slot = 0; slot < shader->info.num_inputs; ++slot) {
unsigned idx = i * TGSI_EXEC_MAX_INPUT_ATTRIBS + slot;
if (shader->info.input_semantic_name[slot] == TGSI_SEMANTIC_PRIMID) {
machine->Inputs[idx].xyzw[0].u[prim_idx] = shader->in_prim_idx;
machine->Inputs[idx].xyzw[1].u[prim_idx] = shader->in_prim_idx;
machine->Inputs[idx].xyzw[2].u[prim_idx] = shader->in_prim_idx;
machine->Inputs[idx].xyzw[3].u[prim_idx] = shader->in_prim_idx;
} else {
vs_slot = draw_gs_get_input_index(
shader->info.input_semantic_name[slot],
shader->info.input_semantic_index[slot],
shader->input_info);
if (vs_slot < 0) {
debug_printf("VS/GS signature mismatch!\n");
machine->Inputs[idx].xyzw[0].f[prim_idx] = 0;
machine->Inputs[idx].xyzw[1].f[prim_idx] = 0;
machine->Inputs[idx].xyzw[2].f[prim_idx] = 0;
machine->Inputs[idx].xyzw[3].f[prim_idx] = 0;
} else {
#if DEBUG_INPUTS
debug_printf("\tSlot = %d, vs_slot = %d, idx = %d:\n",
slot, vs_slot, idx);
assert(!util_is_inf_or_nan(input[vs_slot][0]));
assert(!util_is_inf_or_nan(input[vs_slot][1]));
assert(!util_is_inf_or_nan(input[vs_slot][2]));
assert(!util_is_inf_or_nan(input[vs_slot][3]));
#endif
machine->Inputs[idx].xyzw[0].f[prim_idx] = input[vs_slot][0];
machine->Inputs[idx].xyzw[1].f[prim_idx] = input[vs_slot][1];
machine->Inputs[idx].xyzw[2].f[prim_idx] = input[vs_slot][2];
machine->Inputs[idx].xyzw[3].f[prim_idx] = input[vs_slot][3];
#if DEBUG_INPUTS
debug_printf("\t\t%f %f %f %f\n",
machine->Inputs[idx].xyzw[0].f[prim_idx],
machine->Inputs[idx].xyzw[1].f[prim_idx],
machine->Inputs[idx].xyzw[2].f[prim_idx],
machine->Inputs[idx].xyzw[3].f[prim_idx]);
#endif
++vs_slot;
}
}
}
}
}
static void tgsi_gs_prepare(struct draw_geometry_shader *shader,
const void *constants[PIPE_MAX_CONSTANT_BUFFERS],
const unsigned constants_size[PIPE_MAX_CONSTANT_BUFFERS])
{
struct tgsi_exec_machine *machine = shader->machine;
int j;
tgsi_exec_set_constant_buffers(machine, PIPE_MAX_CONSTANT_BUFFERS,
constants, constants_size);
if (shader->info.uses_invocationid) {
unsigned i = machine->SysSemanticToIndex[TGSI_SEMANTIC_INVOCATIONID];
for (j = 0; j < TGSI_QUAD_SIZE; j++)
machine->SystemValue[i].xyzw[0].i[j] = shader->invocation_id;
}
}
static unsigned tgsi_gs_run(struct draw_geometry_shader *shader,
unsigned input_primitives)
{
struct tgsi_exec_machine *machine = shader->machine;
/* run interpreter */
tgsi_exec_machine_run(machine, 0);
return
machine->Temps[TGSI_EXEC_TEMP_PRIMITIVE_I].xyzw[TGSI_EXEC_TEMP_PRIMITIVE_C].u[0];
}
#ifdef HAVE_LLVM
static void
llvm_fetch_gs_input(struct draw_geometry_shader *shader,
unsigned *indices,
unsigned num_vertices,
unsigned prim_idx)
{
unsigned slot, i;
int vs_slot;
unsigned input_vertex_stride = shader->input_vertex_stride;
const float (*input_ptr)[4];
float (*input_data)[6][PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS][TGSI_NUM_CHANNELS] = &shader->gs_input->data;
shader->llvm_prim_ids[shader->fetched_prim_count] = shader->in_prim_idx;
input_ptr = shader->input;
for (i = 0; i < num_vertices; ++i) {
const float (*input)[4];
#if DEBUG_INPUTS
debug_printf("%d) vertex index = %d (prim idx = %d)\n",
i, indices[i], prim_idx);
#endif
input = (const float (*)[4])(
(const char *)input_ptr + (indices[i] * input_vertex_stride));
for (slot = 0, vs_slot = 0; slot < shader->info.num_inputs; ++slot) {
if (shader->info.input_semantic_name[slot] == TGSI_SEMANTIC_PRIMID) {
/* skip. we handle system values through gallivm */
/* NOTE: If we hit this case here it's an ordinary input not a sv,
* even though it probably should be a sv.
* Not sure how to set it up as regular input however if that even,
* would make sense so hack around this later in gallivm.
*/
} else {
vs_slot = draw_gs_get_input_index(
shader->info.input_semantic_name[slot],
shader->info.input_semantic_index[slot],
shader->input_info);
if (vs_slot < 0) {
debug_printf("VS/GS signature mismatch!\n");
(*input_data)[i][slot][0][prim_idx] = 0;
(*input_data)[i][slot][1][prim_idx] = 0;
(*input_data)[i][slot][2][prim_idx] = 0;
(*input_data)[i][slot][3][prim_idx] = 0;
} else {
#if DEBUG_INPUTS
debug_printf("\tSlot = %d, vs_slot = %d, i = %d:\n",
slot, vs_slot, i);
assert(!util_is_inf_or_nan(input[vs_slot][0]));
assert(!util_is_inf_or_nan(input[vs_slot][1]));
assert(!util_is_inf_or_nan(input[vs_slot][2]));
assert(!util_is_inf_or_nan(input[vs_slot][3]));
#endif
(*input_data)[i][slot][0][prim_idx] = input[vs_slot][0];
(*input_data)[i][slot][1][prim_idx] = input[vs_slot][1];
(*input_data)[i][slot][2][prim_idx] = input[vs_slot][2];
(*input_data)[i][slot][3][prim_idx] = input[vs_slot][3];
#if DEBUG_INPUTS
debug_printf("\t\t%f %f %f %f\n",
(*input_data)[i][slot][0][prim_idx],
(*input_data)[i][slot][1][prim_idx],
(*input_data)[i][slot][2][prim_idx],
(*input_data)[i][slot][3][prim_idx]);
#endif
++vs_slot;
}
}
}
}
}
static void
llvm_fetch_gs_outputs(struct draw_geometry_shader *shader,
unsigned num_primitives,
float (**p_output)[4])
{
int total_verts = 0;
int vertex_count = 0;
int total_prims = 0;
int max_prims_per_invocation = 0;
char *output_ptr = (char*)shader->gs_output;
int i, j, prim_idx;
unsigned next_prim_boundary = shader->primitive_boundary;
for (i = 0; i < shader->vector_length; ++i) {
int prims = shader->llvm_emitted_primitives[i];
total_prims += prims;
max_prims_per_invocation = MAX2(max_prims_per_invocation, prims);
}
for (i = 0; i < shader->vector_length; ++i) {
total_verts += shader->llvm_emitted_vertices[i];
}
output_ptr += shader->emitted_vertices * shader->vertex_size;
for (i = 0; i < shader->vector_length - 1; ++i) {
int current_verts = shader->llvm_emitted_vertices[i];
int next_verts = shader->llvm_emitted_vertices[i + 1];
#if 0
int j;
for (j = 0; j < current_verts; ++j) {
struct vertex_header *vh = (struct vertex_header *)
(output_ptr + shader->vertex_size * (i * next_prim_boundary + j));
debug_printf("--- %d) [%f, %f, %f, %f]\n", j + vertex_count,
vh->data[0][0], vh->data[0][1], vh->data[0][2], vh->data[0][3]);
}
#endif
debug_assert(current_verts <= shader->max_output_vertices);
debug_assert(next_verts <= shader->max_output_vertices);
if (next_verts) {
memmove(output_ptr + (vertex_count + current_verts) * shader->vertex_size,
output_ptr + ((i + 1) * next_prim_boundary) * shader->vertex_size,
shader->vertex_size * next_verts);
}
vertex_count += current_verts;
}
#if 0
{
int i;
for (i = 0; i < total_verts; ++i) {
struct vertex_header *vh = (struct vertex_header *)(output_ptr + shader->vertex_size * i);
debug_printf("%d) Vertex:\n", i);
for (j = 0; j < shader->info.num_outputs; ++j) {
unsigned *udata = (unsigned*)vh->data[j];
debug_printf(" %d) [%f, %f, %f, %f] [%d, %d, %d, %d]\n", j,
vh->data[j][0], vh->data[j][1], vh->data[j][2], vh->data[j][3],
udata[0], udata[1], udata[2], udata[3]);
}
}
}
#endif
prim_idx = 0;
for (i = 0; i < shader->vector_length; ++i) {
int num_prims = shader->llvm_emitted_primitives[i];
for (j = 0; j < num_prims; ++j) {
int prim_length =
shader->llvm_prim_lengths[j][i];
shader->primitive_lengths[shader->emitted_primitives + prim_idx] =
prim_length;
++prim_idx;
}
}
shader->emitted_primitives += total_prims;
shader->emitted_vertices += total_verts;
}
static void
llvm_gs_prepare(struct draw_geometry_shader *shader,
const void *constants[PIPE_MAX_CONSTANT_BUFFERS],
const unsigned constants_size[PIPE_MAX_CONSTANT_BUFFERS])
{
}
static unsigned
llvm_gs_run(struct draw_geometry_shader *shader,
unsigned input_primitives)
{
unsigned ret;
char *input = (char*)shader->gs_output;
input += (shader->emitted_vertices * shader->vertex_size);
ret = shader->current_variant->jit_func(
shader->jit_context, shader->gs_input->data,
(struct vertex_header*)input,
input_primitives,
shader->draw->instance_id,
shader->llvm_prim_ids,
shader->invocation_id);
return ret;
}
#endif
static void gs_flush(struct draw_geometry_shader *shader)
{
unsigned out_prim_count;
unsigned input_primitives = shader->fetched_prim_count;
if (shader->draw->collect_statistics) {
shader->draw->statistics.gs_invocations += input_primitives;
}
debug_assert(input_primitives > 0 &&
input_primitives <= 4);
out_prim_count = shader->run(shader, input_primitives);
shader->fetch_outputs(shader, out_prim_count,
&shader->tmp_output);
#if 0
debug_printf("PRIM emitted prims = %d (verts=%d), cur prim count = %d\n",
shader->emitted_primitives, shader->emitted_vertices,
out_prim_count);
#endif
shader->fetched_prim_count = 0;
}
static void gs_point(struct draw_geometry_shader *shader,
int idx)
{
unsigned indices[1];
indices[0] = idx;
shader->fetch_inputs(shader, indices, 1,
shader->fetched_prim_count);
++shader->in_prim_idx;
++shader->fetched_prim_count;
if (draw_gs_should_flush(shader))
gs_flush(shader);
}
static void gs_line(struct draw_geometry_shader *shader,
int i0, int i1)
{
unsigned indices[2];
indices[0] = i0;
indices[1] = i1;
shader->fetch_inputs(shader, indices, 2,
shader->fetched_prim_count);
++shader->in_prim_idx;
++shader->fetched_prim_count;
if (draw_gs_should_flush(shader))
gs_flush(shader);
}
static void gs_line_adj(struct draw_geometry_shader *shader,
int i0, int i1, int i2, int i3)
{
unsigned indices[4];
indices[0] = i0;
indices[1] = i1;
indices[2] = i2;
indices[3] = i3;
shader->fetch_inputs(shader, indices, 4,
shader->fetched_prim_count);
++shader->in_prim_idx;
++shader->fetched_prim_count;
if (draw_gs_should_flush(shader))
gs_flush(shader);
}
static void gs_tri(struct draw_geometry_shader *shader,
int i0, int i1, int i2)
{
unsigned indices[3];
indices[0] = i0;
indices[1] = i1;
indices[2] = i2;
shader->fetch_inputs(shader, indices, 3,
shader->fetched_prim_count);
++shader->in_prim_idx;
++shader->fetched_prim_count;
if (draw_gs_should_flush(shader))
gs_flush(shader);
}
static void gs_tri_adj(struct draw_geometry_shader *shader,
int i0, int i1, int i2,
int i3, int i4, int i5)
{
unsigned indices[6];
indices[0] = i0;
indices[1] = i1;
indices[2] = i2;
indices[3] = i3;
indices[4] = i4;
indices[5] = i5;
shader->fetch_inputs(shader, indices, 6,
shader->fetched_prim_count);
++shader->in_prim_idx;
++shader->fetched_prim_count;
if (draw_gs_should_flush(shader))
gs_flush(shader);
}
#define FUNC gs_run
#define GET_ELT(idx) (idx)
#include "draw_gs_tmp.h"
#define FUNC gs_run_elts
#define LOCAL_VARS const ushort *elts = input_prims->elts;
#define GET_ELT(idx) (elts[idx])
#include "draw_gs_tmp.h"
/**
* Execute geometry shader.
*/
int draw_geometry_shader_run(struct draw_geometry_shader *shader,
const void *constants[PIPE_MAX_CONSTANT_BUFFERS],
const unsigned constants_size[PIPE_MAX_CONSTANT_BUFFERS],
const struct draw_vertex_info *input_verts,
const struct draw_prim_info *input_prim,
const struct tgsi_shader_info *input_info,
struct draw_vertex_info *output_verts,
struct draw_prim_info *output_prims )
{
const float (*input)[4] = (const float (*)[4])input_verts->verts->data;
unsigned input_stride = input_verts->vertex_size;
unsigned num_outputs = draw_total_gs_outputs(shader->draw);
unsigned vertex_size = sizeof(struct vertex_header) + num_outputs * 4 * sizeof(float);
unsigned num_input_verts = input_prim->linear ?
input_verts->count :
input_prim->count;
unsigned num_in_primitives =
align(
MAX2(u_decomposed_prims_for_vertices(input_prim->prim,
num_input_verts),
u_decomposed_prims_for_vertices(shader->input_primitive,
num_input_verts)),
shader->vector_length);
unsigned max_out_prims =
u_decomposed_prims_for_vertices(shader->output_primitive,
shader->max_output_vertices)
* num_in_primitives;
/* we allocate exactly one extra vertex per primitive to allow the GS to emit
* overflown vertices into some area where they won't harm anyone */
unsigned total_verts_per_buffer = shader->primitive_boundary *
num_in_primitives;
unsigned invocation;
//Assume at least one primitive
max_out_prims = MAX2(max_out_prims, 1);
output_verts->vertex_size = vertex_size;
output_verts->stride = output_verts->vertex_size;
output_verts->verts =
(struct vertex_header *)MALLOC(output_verts->vertex_size *
total_verts_per_buffer * shader->num_invocations);
debug_assert(output_verts->verts);
#if 0
debug_printf("%s count = %d (in prims # = %d)\n",
__FUNCTION__, num_input_verts, num_in_primitives);
debug_printf("\tlinear = %d, prim_info->count = %d\n",
input_prim->linear, input_prim->count);
debug_printf("\tprim pipe = %s, shader in = %s, shader out = %s\n"
u_prim_name(input_prim->prim),
u_prim_name(shader->input_primitive),
u_prim_name(shader->output_primitive));
debug_printf("\tmaxv = %d, maxp = %d, primitive_boundary = %d, "
"vertex_size = %d, tverts = %d\n",
shader->max_output_vertices, max_out_prims,
shader->primitive_boundary, output_verts->vertex_size,
total_verts_per_buffer);
#endif
shader->emitted_vertices = 0;
shader->emitted_primitives = 0;
shader->vertex_size = vertex_size;
shader->tmp_output = (float (*)[4])output_verts->verts->data;
shader->fetched_prim_count = 0;
shader->input_vertex_stride = input_stride;
shader->input = input;
shader->input_info = input_info;
FREE(shader->primitive_lengths);
shader->primitive_lengths = MALLOC(max_out_prims * sizeof(unsigned) * shader->num_invocations);
#ifdef HAVE_LLVM
if (shader->draw->llvm) {
shader->gs_output = output_verts->verts;
if (max_out_prims > shader->max_out_prims) {
unsigned i;
if (shader->llvm_prim_lengths) {
for (i = 0; i < shader->max_out_prims; ++i) {
align_free(shader->llvm_prim_lengths[i]);
}
FREE(shader->llvm_prim_lengths);
}
shader->llvm_prim_lengths = MALLOC(max_out_prims * sizeof(unsigned*));
for (i = 0; i < max_out_prims; ++i) {
int vector_size = shader->vector_length * sizeof(unsigned);
shader->llvm_prim_lengths[i] =
align_malloc(vector_size, vector_size);
}
shader->max_out_prims = max_out_prims;
}
shader->jit_context->prim_lengths = shader->llvm_prim_lengths;
shader->jit_context->emitted_vertices = shader->llvm_emitted_vertices;
shader->jit_context->emitted_prims = shader->llvm_emitted_primitives;
}
#endif
for (invocation = 0; invocation < shader->num_invocations; invocation++) {
shader->invocation_id = invocation;
shader->prepare(shader, constants, constants_size);
if (input_prim->linear)
gs_run(shader, input_prim, input_verts,
output_prims, output_verts);
else
gs_run_elts(shader, input_prim, input_verts,
output_prims, output_verts);
/* Flush the remaining primitives. Will happen if
* num_input_primitives % 4 != 0
*/
if (shader->fetched_prim_count > 0) {
gs_flush(shader);
}
debug_assert(shader->fetched_prim_count == 0);
}
/* Update prim_info:
*/
output_prims->linear = TRUE;
output_prims->elts = NULL;
output_prims->start = 0;
output_prims->count = shader->emitted_vertices;
output_prims->prim = shader->output_primitive;
output_prims->flags = 0x0;
output_prims->primitive_lengths = shader->primitive_lengths;
output_prims->primitive_count = shader->emitted_primitives;
output_verts->count = shader->emitted_vertices;
if (shader->draw->collect_statistics) {
unsigned i;
for (i = 0; i < shader->emitted_primitives; ++i) {
shader->draw->statistics.gs_primitives +=
u_decomposed_prims_for_vertices(shader->output_primitive,
shader->primitive_lengths[i]);
}
}
#if 0
debug_printf("GS finished, prims = %d, verts = %d\n",
output_prims->primitive_count,
output_verts->count);
#endif
return shader->emitted_vertices;
}
void draw_geometry_shader_prepare(struct draw_geometry_shader *shader,
struct draw_context *draw)
{
boolean use_llvm = draw->llvm != NULL;
if (!use_llvm && shader && shader->machine->Tokens != shader->state.tokens) {
tgsi_exec_machine_bind_shader(shader->machine,
shader->state.tokens,
draw->gs.tgsi.sampler,
draw->gs.tgsi.image,
draw->gs.tgsi.buffer);
}
}
boolean
draw_gs_init( struct draw_context *draw )
{
if (!draw->llvm) {
draw->gs.tgsi.machine = tgsi_exec_machine_create(PIPE_SHADER_GEOMETRY);
if (!draw->gs.tgsi.machine)
return FALSE;
draw->gs.tgsi.machine->Primitives = align_malloc(
MAX_PRIMITIVES * sizeof(struct tgsi_exec_vector), 16);
if (!draw->gs.tgsi.machine->Primitives)
return FALSE;
memset(draw->gs.tgsi.machine->Primitives, 0,
MAX_PRIMITIVES * sizeof(struct tgsi_exec_vector));
}
return TRUE;
}
void draw_gs_destroy( struct draw_context *draw )
{
if (draw->gs.tgsi.machine) {
align_free(draw->gs.tgsi.machine->Primitives);
tgsi_exec_machine_destroy(draw->gs.tgsi.machine);
}
}
struct draw_geometry_shader *
draw_create_geometry_shader(struct draw_context *draw,
const struct pipe_shader_state *state)
{
#ifdef HAVE_LLVM
boolean use_llvm = draw->llvm != NULL;
struct llvm_geometry_shader *llvm_gs = NULL;
#endif
struct draw_geometry_shader *gs;
unsigned i;
#ifdef HAVE_LLVM
if (use_llvm) {
llvm_gs = CALLOC_STRUCT(llvm_geometry_shader);
if (!llvm_gs)
return NULL;
gs = &llvm_gs->base;
make_empty_list(&llvm_gs->variants);
} else
#endif
{
gs = CALLOC_STRUCT(draw_geometry_shader);
}
if (!gs)
return NULL;
gs->draw = draw;
gs->state = *state;
gs->state.tokens = tgsi_dup_tokens(state->tokens);
if (!gs->state.tokens) {
FREE(gs);
return NULL;
}
tgsi_scan_shader(state->tokens, &gs->info);
/* setup the defaults */
gs->max_out_prims = 0;
#ifdef HAVE_LLVM
if (use_llvm) {
/* TODO: change the input array to handle the following
vector length, instead of the currently hardcoded
TGSI_NUM_CHANNELS
gs->vector_length = lp_native_vector_width / 32;*/
gs->vector_length = TGSI_NUM_CHANNELS;
} else
#endif
{
gs->vector_length = 1;
}
gs->input_primitive =
gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
gs->output_primitive =
gs->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
gs->max_output_vertices =
gs->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
gs->num_invocations =
gs->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
if (!gs->max_output_vertices)
gs->max_output_vertices = 32;
/* Primitive boundary is bigger than max_output_vertices by one, because
* the specification says that the geometry shader should exit if the
* number of emitted vertices is bigger or equal to max_output_vertices and
* we can't do that because we're running in the SoA mode, which means that
* our storing routines will keep getting called on channels that have
* overflown.
* So we need some scratch area where we can keep writing the overflown
* vertices without overwriting anything important or crashing.
*/
gs->primitive_boundary = gs->max_output_vertices + 1;
gs->position_output = -1;
for (i = 0; i < gs->info.num_outputs; i++) {
if (gs->info.output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
gs->info.output_semantic_index[i] == 0)
gs->position_output = i;
if (gs->info.output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX)
gs->viewport_index_output = i;
if (gs->info.output_semantic_name[i] == TGSI_SEMANTIC_CLIPDIST) {
debug_assert(gs->info.output_semantic_index[i] <
PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT);
gs->ccdistance_output[gs->info.output_semantic_index[i]] = i;
}
}
gs->machine = draw->gs.tgsi.machine;
#ifdef HAVE_LLVM
if (use_llvm) {
int vector_size = gs->vector_length * sizeof(float);
gs->gs_input = align_malloc(sizeof(struct draw_gs_inputs), 16);
memset(gs->gs_input, 0, sizeof(struct draw_gs_inputs));
gs->llvm_prim_lengths = 0;
gs->llvm_emitted_primitives = align_malloc(vector_size, vector_size);
gs->llvm_emitted_vertices = align_malloc(vector_size, vector_size);
gs->llvm_prim_ids = align_malloc(vector_size, vector_size);
gs->fetch_outputs = llvm_fetch_gs_outputs;
gs->fetch_inputs = llvm_fetch_gs_input;
gs->prepare = llvm_gs_prepare;
gs->run = llvm_gs_run;
gs->jit_context = &draw->llvm->gs_jit_context;
llvm_gs->variant_key_size =
draw_gs_llvm_variant_key_size(
MAX2(gs->info.file_max[TGSI_FILE_SAMPLER]+1,
gs->info.file_max[TGSI_FILE_SAMPLER_VIEW]+1));
} else
#endif
{
gs->fetch_outputs = tgsi_fetch_gs_outputs;
gs->fetch_inputs = tgsi_fetch_gs_input;
gs->prepare = tgsi_gs_prepare;
gs->run = tgsi_gs_run;
}
return gs;
}
void draw_bind_geometry_shader(struct draw_context *draw,
struct draw_geometry_shader *dgs)
{
draw_do_flush(draw, DRAW_FLUSH_STATE_CHANGE);
if (dgs) {
draw->gs.geometry_shader = dgs;
draw->gs.num_gs_outputs = dgs->info.num_outputs;
draw->gs.position_output = dgs->position_output;
draw_geometry_shader_prepare(dgs, draw);
}
else {
draw->gs.geometry_shader = NULL;
draw->gs.num_gs_outputs = 0;
}
}
void draw_delete_geometry_shader(struct draw_context *draw,
struct draw_geometry_shader *dgs)
{
if (!dgs) {
return;
}
#ifdef HAVE_LLVM
if (draw->llvm) {
struct llvm_geometry_shader *shader = llvm_geometry_shader(dgs);
struct draw_gs_llvm_variant_list_item *li;
li = first_elem(&shader->variants);
while(!at_end(&shader->variants, li)) {
struct draw_gs_llvm_variant_list_item *next = next_elem(li);
draw_gs_llvm_destroy_variant(li->base);
li = next;
}
assert(shader->variants_cached == 0);
if (dgs->llvm_prim_lengths) {
unsigned i;
for (i = 0; i < dgs->max_out_prims; ++i) {
align_free(dgs->llvm_prim_lengths[i]);
}
FREE(dgs->llvm_prim_lengths);
}
align_free(dgs->llvm_emitted_primitives);
align_free(dgs->llvm_emitted_vertices);
align_free(dgs->llvm_prim_ids);
align_free(dgs->gs_input);
}
#endif
FREE(dgs->primitive_lengths);
FREE((void*) dgs->state.tokens);
FREE(dgs);
}
#ifdef HAVE_LLVM
void draw_gs_set_current_variant(struct draw_geometry_shader *shader,
struct draw_gs_llvm_variant *variant)
{
shader->current_variant = variant;
}
#endif
/*
* Called at the very begin of the draw call with a new instance
* Used to reset state that should persist between primitive restart.
*/
void
draw_geometry_shader_new_instance(struct draw_geometry_shader *gs)
{
if (!gs)
return;
gs->in_prim_idx = 0;
}