/**************************************************************************
*
* Copyright 2009-2010 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Helper
*
* LLVM IR doesn't support all basic arithmetic operations we care about (most
* notably min/max and saturated operations), and it is often necessary to
* resort machine-specific intrinsics directly. The functions here hide all
* these implementation details from the other modules.
*
* We also do simple expressions simplification here. Reasons are:
* - it is very easy given we have all necessary information readily available
* - LLVM optimization passes fail to simplify several vector expressions
* - We often know value constraints which the optimization passes have no way
* of knowing, such as when source arguments are known to be in [0, 1] range.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include <float.h>
#include "util/u_memory.h"
#include "util/u_debug.h"
#include "util/u_math.h"
#include "util/u_cpu_detect.h"
#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_init.h"
#include "lp_bld_intr.h"
#include "lp_bld_logic.h"
#include "lp_bld_pack.h"
#include "lp_bld_debug.h"
#include "lp_bld_bitarit.h"
#include "lp_bld_arit.h"
#include "lp_bld_flow.h"
#if defined(PIPE_ARCH_SSE)
#include <xmmintrin.h>
#endif
#ifndef _MM_DENORMALS_ZERO_MASK
#define _MM_DENORMALS_ZERO_MASK 0x0040
#endif
#ifndef _MM_FLUSH_ZERO_MASK
#define _MM_FLUSH_ZERO_MASK 0x8000
#endif
#define EXP_POLY_DEGREE 5
#define LOG_POLY_DEGREE 4
/**
* Generate min(a, b)
* No checks for special case values of a or b = 1 or 0 are done.
* NaN's are handled according to the behavior specified by the
* nan_behavior argument.
*/
static LLVMValueRef
lp_build_min_simple(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b,
enum gallivm_nan_behavior nan_behavior)
{
const struct lp_type type = bld->type;
const char *intrinsic = NULL;
unsigned intr_size = 0;
LLVMValueRef cond;
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
/* TODO: optimize the constant case */
if (type.floating && util_cpu_caps.has_sse) {
if (type.width == 32) {
if (type.length == 1) {
intrinsic = "llvm.x86.sse.min.ss";
intr_size = 128;
}
else if (type.length <= 4 || !util_cpu_caps.has_avx) {
intrinsic = "llvm.x86.sse.min.ps";
intr_size = 128;
}
else {
intrinsic = "llvm.x86.avx.min.ps.256";
intr_size = 256;
}
}
if (type.width == 64 && util_cpu_caps.has_sse2) {
if (type.length == 1) {
intrinsic = "llvm.x86.sse2.min.sd";
intr_size = 128;
}
else if (type.length == 2 || !util_cpu_caps.has_avx) {
intrinsic = "llvm.x86.sse2.min.pd";
intr_size = 128;
}
else {
intrinsic = "llvm.x86.avx.min.pd.256";
intr_size = 256;
}
}
}
else if (type.floating && util_cpu_caps.has_altivec) {
if (nan_behavior == GALLIVM_NAN_RETURN_NAN ||
nan_behavior == GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
debug_printf("%s: altivec doesn't support nan return nan behavior\n",
__FUNCTION__);
}
if (type.width == 32 && type.length == 4) {
intrinsic = "llvm.ppc.altivec.vminfp";
intr_size = 128;
}
} else if (HAVE_LLVM < 0x0309 &&
util_cpu_caps.has_avx2 && type.length > 4) {
intr_size = 256;
switch (type.width) {
case 8:
intrinsic = type.sign ? "llvm.x86.avx2.pmins.b" : "llvm.x86.avx2.pminu.b";
break;
case 16:
intrinsic = type.sign ? "llvm.x86.avx2.pmins.w" : "llvm.x86.avx2.pminu.w";
break;
case 32:
intrinsic = type.sign ? "llvm.x86.avx2.pmins.d" : "llvm.x86.avx2.pminu.d";
break;
}
} else if (HAVE_LLVM < 0x0309 &&
util_cpu_caps.has_sse2 && type.length >= 2) {
intr_size = 128;
if ((type.width == 8 || type.width == 16) &&
(type.width * type.length <= 64) &&
(gallivm_debug & GALLIVM_DEBUG_PERF)) {
debug_printf("%s: inefficient code, bogus shuffle due to packing\n",
__FUNCTION__);
}
if (type.width == 8 && !type.sign) {
intrinsic = "llvm.x86.sse2.pminu.b";
}
else if (type.width == 16 && type.sign) {
intrinsic = "llvm.x86.sse2.pmins.w";
}
if (util_cpu_caps.has_sse4_1) {
if (type.width == 8 && type.sign) {
intrinsic = "llvm.x86.sse41.pminsb";
}
if (type.width == 16 && !type.sign) {
intrinsic = "llvm.x86.sse41.pminuw";
}
if (type.width == 32 && !type.sign) {
intrinsic = "llvm.x86.sse41.pminud";
}
if (type.width == 32 && type.sign) {
intrinsic = "llvm.x86.sse41.pminsd";
}
}
} else if (util_cpu_caps.has_altivec) {
intr_size = 128;
if (type.width == 8) {
if (!type.sign) {
intrinsic = "llvm.ppc.altivec.vminub";
} else {
intrinsic = "llvm.ppc.altivec.vminsb";
}
} else if (type.width == 16) {
if (!type.sign) {
intrinsic = "llvm.ppc.altivec.vminuh";
} else {
intrinsic = "llvm.ppc.altivec.vminsh";
}
} else if (type.width == 32) {
if (!type.sign) {
intrinsic = "llvm.ppc.altivec.vminuw";
} else {
intrinsic = "llvm.ppc.altivec.vminsw";
}
}
}
if (intrinsic) {
/* We need to handle nan's for floating point numbers. If one of the
* inputs is nan the other should be returned (required by both D3D10+
* and OpenCL).
* The sse intrinsics return the second operator in case of nan by
* default so we need to special code to handle those.
*/
if (util_cpu_caps.has_sse && type.floating &&
nan_behavior != GALLIVM_NAN_BEHAVIOR_UNDEFINED &&
nan_behavior != GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN &&
nan_behavior != GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
LLVMValueRef isnan, min;
min = lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
type,
intr_size, a, b);
if (nan_behavior == GALLIVM_NAN_RETURN_OTHER) {
isnan = lp_build_isnan(bld, b);
return lp_build_select(bld, isnan, a, min);
} else {
assert(nan_behavior == GALLIVM_NAN_RETURN_NAN);
isnan = lp_build_isnan(bld, a);
return lp_build_select(bld, isnan, a, min);
}
} else {
return lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
type,
intr_size, a, b);
}
}
if (type.floating) {
switch (nan_behavior) {
case GALLIVM_NAN_RETURN_NAN: {
LLVMValueRef isnan = lp_build_isnan(bld, b);
cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
return lp_build_select(bld, cond, a, b);
}
break;
case GALLIVM_NAN_RETURN_OTHER: {
LLVMValueRef isnan = lp_build_isnan(bld, a);
cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
return lp_build_select(bld, cond, a, b);
}
break;
case GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN:
cond = lp_build_cmp_ordered(bld, PIPE_FUNC_LESS, a, b);
return lp_build_select(bld, cond, a, b);
case GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN:
cond = lp_build_cmp(bld, PIPE_FUNC_LESS, b, a);
return lp_build_select(bld, cond, b, a);
case GALLIVM_NAN_BEHAVIOR_UNDEFINED:
cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
return lp_build_select(bld, cond, a, b);
break;
default:
assert(0);
cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
return lp_build_select(bld, cond, a, b);
}
} else {
cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
return lp_build_select(bld, cond, a, b);
}
}
LLVMValueRef
lp_build_fmuladd(LLVMBuilderRef builder,
LLVMValueRef a,
LLVMValueRef b,
LLVMValueRef c)
{
LLVMTypeRef type = LLVMTypeOf(a);
assert(type == LLVMTypeOf(b));
assert(type == LLVMTypeOf(c));
if (HAVE_LLVM < 0x0304) {
/* XXX: LLVM 3.3 does not breakdown llvm.fmuladd into mul+add when FMA is
* not supported, and instead it falls-back to a C function.
*/
return LLVMBuildFAdd(builder, LLVMBuildFMul(builder, a, b, ""), c, "");
}
char intrinsic[32];
lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.fmuladd", type);
LLVMValueRef args[] = { a, b, c };
return lp_build_intrinsic(builder, intrinsic, type, args, 3, 0);
}
/**
* Generate max(a, b)
* No checks for special case values of a or b = 1 or 0 are done.
* NaN's are handled according to the behavior specified by the
* nan_behavior argument.
*/
static LLVMValueRef
lp_build_max_simple(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b,
enum gallivm_nan_behavior nan_behavior)
{
const struct lp_type type = bld->type;
const char *intrinsic = NULL;
unsigned intr_size = 0;
LLVMValueRef cond;
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
/* TODO: optimize the constant case */
if (type.floating && util_cpu_caps.has_sse) {
if (type.width == 32) {
if (type.length == 1) {
intrinsic = "llvm.x86.sse.max.ss";
intr_size = 128;
}
else if (type.length <= 4 || !util_cpu_caps.has_avx) {
intrinsic = "llvm.x86.sse.max.ps";
intr_size = 128;
}
else {
intrinsic = "llvm.x86.avx.max.ps.256";
intr_size = 256;
}
}
if (type.width == 64 && util_cpu_caps.has_sse2) {
if (type.length == 1) {
intrinsic = "llvm.x86.sse2.max.sd";
intr_size = 128;
}
else if (type.length == 2 || !util_cpu_caps.has_avx) {
intrinsic = "llvm.x86.sse2.max.pd";
intr_size = 128;
}
else {
intrinsic = "llvm.x86.avx.max.pd.256";
intr_size = 256;
}
}
}
else if (type.floating && util_cpu_caps.has_altivec) {
if (nan_behavior == GALLIVM_NAN_RETURN_NAN ||
nan_behavior == GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
debug_printf("%s: altivec doesn't support nan return nan behavior\n",
__FUNCTION__);
}
if (type.width == 32 || type.length == 4) {
intrinsic = "llvm.ppc.altivec.vmaxfp";
intr_size = 128;
}
} else if (HAVE_LLVM < 0x0309 &&
util_cpu_caps.has_avx2 && type.length > 4) {
intr_size = 256;
switch (type.width) {
case 8:
intrinsic = type.sign ? "llvm.x86.avx2.pmaxs.b" : "llvm.x86.avx2.pmaxu.b";
break;
case 16:
intrinsic = type.sign ? "llvm.x86.avx2.pmaxs.w" : "llvm.x86.avx2.pmaxu.w";
break;
case 32:
intrinsic = type.sign ? "llvm.x86.avx2.pmaxs.d" : "llvm.x86.avx2.pmaxu.d";
break;
}
} else if (HAVE_LLVM < 0x0309 &&
util_cpu_caps.has_sse2 && type.length >= 2) {
intr_size = 128;
if ((type.width == 8 || type.width == 16) &&
(type.width * type.length <= 64) &&
(gallivm_debug & GALLIVM_DEBUG_PERF)) {
debug_printf("%s: inefficient code, bogus shuffle due to packing\n",
__FUNCTION__);
}
if (type.width == 8 && !type.sign) {
intrinsic = "llvm.x86.sse2.pmaxu.b";
intr_size = 128;
}
else if (type.width == 16 && type.sign) {
intrinsic = "llvm.x86.sse2.pmaxs.w";
}
if (util_cpu_caps.has_sse4_1) {
if (type.width == 8 && type.sign) {
intrinsic = "llvm.x86.sse41.pmaxsb";
}
if (type.width == 16 && !type.sign) {
intrinsic = "llvm.x86.sse41.pmaxuw";
}
if (type.width == 32 && !type.sign) {
intrinsic = "llvm.x86.sse41.pmaxud";
}
if (type.width == 32 && type.sign) {
intrinsic = "llvm.x86.sse41.pmaxsd";
}
}
} else if (util_cpu_caps.has_altivec) {
intr_size = 128;
if (type.width == 8) {
if (!type.sign) {
intrinsic = "llvm.ppc.altivec.vmaxub";
} else {
intrinsic = "llvm.ppc.altivec.vmaxsb";
}
} else if (type.width == 16) {
if (!type.sign) {
intrinsic = "llvm.ppc.altivec.vmaxuh";
} else {
intrinsic = "llvm.ppc.altivec.vmaxsh";
}
} else if (type.width == 32) {
if (!type.sign) {
intrinsic = "llvm.ppc.altivec.vmaxuw";
} else {
intrinsic = "llvm.ppc.altivec.vmaxsw";
}
}
}
if (intrinsic) {
if (util_cpu_caps.has_sse && type.floating &&
nan_behavior != GALLIVM_NAN_BEHAVIOR_UNDEFINED &&
nan_behavior != GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN &&
nan_behavior != GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
LLVMValueRef isnan, max;
max = lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
type,
intr_size, a, b);
if (nan_behavior == GALLIVM_NAN_RETURN_OTHER) {
isnan = lp_build_isnan(bld, b);
return lp_build_select(bld, isnan, a, max);
} else {
assert(nan_behavior == GALLIVM_NAN_RETURN_NAN);
isnan = lp_build_isnan(bld, a);
return lp_build_select(bld, isnan, a, max);
}
} else {
return lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
type,
intr_size, a, b);
}
}
if (type.floating) {
switch (nan_behavior) {
case GALLIVM_NAN_RETURN_NAN: {
LLVMValueRef isnan = lp_build_isnan(bld, b);
cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
return lp_build_select(bld, cond, a, b);
}
break;
case GALLIVM_NAN_RETURN_OTHER: {
LLVMValueRef isnan = lp_build_isnan(bld, a);
cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
return lp_build_select(bld, cond, a, b);
}
break;
case GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN:
cond = lp_build_cmp_ordered(bld, PIPE_FUNC_GREATER, a, b);
return lp_build_select(bld, cond, a, b);
case GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN:
cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, b, a);
return lp_build_select(bld, cond, b, a);
case GALLIVM_NAN_BEHAVIOR_UNDEFINED:
cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
return lp_build_select(bld, cond, a, b);
break;
default:
assert(0);
cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
return lp_build_select(bld, cond, a, b);
}
} else {
cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
return lp_build_select(bld, cond, a, b);
}
}
/**
* Generate 1 - a, or ~a depending on bld->type.
*/
LLVMValueRef
lp_build_comp(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
assert(lp_check_value(type, a));
if(a == bld->one)
return bld->zero;
if(a == bld->zero)
return bld->one;
if(type.norm && !type.floating && !type.fixed && !type.sign) {
if(LLVMIsConstant(a))
return LLVMConstNot(a);
else
return LLVMBuildNot(builder, a, "");
}
if(LLVMIsConstant(a))
if (type.floating)
return LLVMConstFSub(bld->one, a);
else
return LLVMConstSub(bld->one, a);
else
if (type.floating)
return LLVMBuildFSub(builder, bld->one, a, "");
else
return LLVMBuildSub(builder, bld->one, a, "");
}
/**
* Generate a + b
*/
LLVMValueRef
lp_build_add(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMValueRef res;
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
if (a == bld->zero)
return b;
if (b == bld->zero)
return a;
if (a == bld->undef || b == bld->undef)
return bld->undef;
if (type.norm) {
const char *intrinsic = NULL;
if (!type.sign && (a == bld->one || b == bld->one))
return bld->one;
if (!type.floating && !type.fixed) {
if (type.width * type.length == 128) {
if (util_cpu_caps.has_sse2) {
if (type.width == 8)
intrinsic = type.sign ? "llvm.x86.sse2.padds.b" : "llvm.x86.sse2.paddus.b";
if (type.width == 16)
intrinsic = type.sign ? "llvm.x86.sse2.padds.w" : "llvm.x86.sse2.paddus.w";
} else if (util_cpu_caps.has_altivec) {
if (type.width == 8)
intrinsic = type.sign ? "llvm.ppc.altivec.vaddsbs" : "llvm.ppc.altivec.vaddubs";
if (type.width == 16)
intrinsic = type.sign ? "llvm.ppc.altivec.vaddshs" : "llvm.ppc.altivec.vadduhs";
}
}
if (type.width * type.length == 256) {
if (util_cpu_caps.has_avx2) {
if (type.width == 8)
intrinsic = type.sign ? "llvm.x86.avx2.padds.b" : "llvm.x86.avx2.paddus.b";
if (type.width == 16)
intrinsic = type.sign ? "llvm.x86.avx2.padds.w" : "llvm.x86.avx2.paddus.w";
}
}
}
if (intrinsic)
return lp_build_intrinsic_binary(builder, intrinsic, lp_build_vec_type(bld->gallivm, bld->type), a, b);
}
if(type.norm && !type.floating && !type.fixed) {
if (type.sign) {
uint64_t sign = (uint64_t)1 << (type.width - 1);
LLVMValueRef max_val = lp_build_const_int_vec(bld->gallivm, type, sign - 1);
LLVMValueRef min_val = lp_build_const_int_vec(bld->gallivm, type, sign);
/* a_clamp_max is the maximum a for positive b,
a_clamp_min is the minimum a for negative b. */
LLVMValueRef a_clamp_max = lp_build_min_simple(bld, a, LLVMBuildSub(builder, max_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
LLVMValueRef a_clamp_min = lp_build_max_simple(bld, a, LLVMBuildSub(builder, min_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
a = lp_build_select(bld, lp_build_cmp(bld, PIPE_FUNC_GREATER, b, bld->zero), a_clamp_max, a_clamp_min);
} else {
a = lp_build_min_simple(bld, a, lp_build_comp(bld, b), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
}
}
if(LLVMIsConstant(a) && LLVMIsConstant(b))
if (type.floating)
res = LLVMConstFAdd(a, b);
else
res = LLVMConstAdd(a, b);
else
if (type.floating)
res = LLVMBuildFAdd(builder, a, b, "");
else
res = LLVMBuildAdd(builder, a, b, "");
/* clamp to ceiling of 1.0 */
if(bld->type.norm && (bld->type.floating || bld->type.fixed))
res = lp_build_min_simple(bld, res, bld->one, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
/* XXX clamp to floor of -1 or 0??? */
return res;
}
/** Return the scalar sum of the elements of a.
* Should avoid this operation whenever possible.
*/
LLVMValueRef
lp_build_horizontal_add(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMValueRef index, res;
unsigned i, length;
LLVMValueRef shuffles1[LP_MAX_VECTOR_LENGTH / 2];
LLVMValueRef shuffles2[LP_MAX_VECTOR_LENGTH / 2];
LLVMValueRef vecres, elem2;
assert(lp_check_value(type, a));
if (type.length == 1) {
return a;
}
assert(!bld->type.norm);
/*
* for byte vectors can do much better with psadbw.
* Using repeated shuffle/adds here. Note with multiple vectors
* this can be done more efficiently as outlined in the intel
* optimization manual.
* Note: could cause data rearrangement if used with smaller element
* sizes.
*/
vecres = a;
length = type.length / 2;
while (length > 1) {
LLVMValueRef vec1, vec2;
for (i = 0; i < length; i++) {
shuffles1[i] = lp_build_const_int32(bld->gallivm, i);
shuffles2[i] = lp_build_const_int32(bld->gallivm, i + length);
}
vec1 = LLVMBuildShuffleVector(builder, vecres, vecres,
LLVMConstVector(shuffles1, length), "");
vec2 = LLVMBuildShuffleVector(builder, vecres, vecres,
LLVMConstVector(shuffles2, length), "");
if (type.floating) {
vecres = LLVMBuildFAdd(builder, vec1, vec2, "");
}
else {
vecres = LLVMBuildAdd(builder, vec1, vec2, "");
}
length = length >> 1;
}
/* always have vector of size 2 here */
assert(length == 1);
index = lp_build_const_int32(bld->gallivm, 0);
res = LLVMBuildExtractElement(builder, vecres, index, "");
index = lp_build_const_int32(bld->gallivm, 1);
elem2 = LLVMBuildExtractElement(builder, vecres, index, "");
if (type.floating)
res = LLVMBuildFAdd(builder, res, elem2, "");
else
res = LLVMBuildAdd(builder, res, elem2, "");
return res;
}
/**
* Return the horizontal sums of 4 float vectors as a float4 vector.
* This uses the technique as outlined in Intel Optimization Manual.
*/
static LLVMValueRef
lp_build_horizontal_add4x4f(struct lp_build_context *bld,
LLVMValueRef src[4])
{
struct gallivm_state *gallivm = bld->gallivm;
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef shuffles[4];
LLVMValueRef tmp[4];
LLVMValueRef sumtmp[2], shuftmp[2];
/* lower half of regs */
shuffles[0] = lp_build_const_int32(gallivm, 0);
shuffles[1] = lp_build_const_int32(gallivm, 1);
shuffles[2] = lp_build_const_int32(gallivm, 4);
shuffles[3] = lp_build_const_int32(gallivm, 5);
tmp[0] = LLVMBuildShuffleVector(builder, src[0], src[1],
LLVMConstVector(shuffles, 4), "");
tmp[2] = LLVMBuildShuffleVector(builder, src[2], src[3],
LLVMConstVector(shuffles, 4), "");
/* upper half of regs */
shuffles[0] = lp_build_const_int32(gallivm, 2);
shuffles[1] = lp_build_const_int32(gallivm, 3);
shuffles[2] = lp_build_const_int32(gallivm, 6);
shuffles[3] = lp_build_const_int32(gallivm, 7);
tmp[1] = LLVMBuildShuffleVector(builder, src[0], src[1],
LLVMConstVector(shuffles, 4), "");
tmp[3] = LLVMBuildShuffleVector(builder, src[2], src[3],
LLVMConstVector(shuffles, 4), "");
sumtmp[0] = LLVMBuildFAdd(builder, tmp[0], tmp[1], "");
sumtmp[1] = LLVMBuildFAdd(builder, tmp[2], tmp[3], "");
shuffles[0] = lp_build_const_int32(gallivm, 0);
shuffles[1] = lp_build_const_int32(gallivm, 2);
shuffles[2] = lp_build_const_int32(gallivm, 4);
shuffles[3] = lp_build_const_int32(gallivm, 6);
shuftmp[0] = LLVMBuildShuffleVector(builder, sumtmp[0], sumtmp[1],
LLVMConstVector(shuffles, 4), "");
shuffles[0] = lp_build_const_int32(gallivm, 1);
shuffles[1] = lp_build_const_int32(gallivm, 3);
shuffles[2] = lp_build_const_int32(gallivm, 5);
shuffles[3] = lp_build_const_int32(gallivm, 7);
shuftmp[1] = LLVMBuildShuffleVector(builder, sumtmp[0], sumtmp[1],
LLVMConstVector(shuffles, 4), "");
return LLVMBuildFAdd(builder, shuftmp[0], shuftmp[1], "");
}
/*
* partially horizontally add 2-4 float vectors with length nx4,
* i.e. only four adjacent values in each vector will be added,
* assuming values are really grouped in 4 which also determines
* output order.
*
* Return a vector of the same length as the initial vectors,
* with the excess elements (if any) being undefined.
* The element order is independent of number of input vectors.
* For 3 vectors x0x1x2x3x4x5x6x7, y0y1y2y3y4y5y6y7, z0z1z2z3z4z5z6z7
* the output order thus will be
* sumx0-x3,sumy0-y3,sumz0-z3,undef,sumx4-x7,sumy4-y7,sumz4z7,undef
*/
LLVMValueRef
lp_build_hadd_partial4(struct lp_build_context *bld,
LLVMValueRef vectors[],
unsigned num_vecs)
{
struct gallivm_state *gallivm = bld->gallivm;
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef ret_vec;
LLVMValueRef tmp[4];
const char *intrinsic = NULL;
assert(num_vecs >= 2 && num_vecs <= 4);
assert(bld->type.floating);
/* only use this with at least 2 vectors, as it is sort of expensive
* (depending on cpu) and we always need two horizontal adds anyway,
* so a shuffle/add approach might be better.
*/
tmp[0] = vectors[0];
tmp[1] = vectors[1];
tmp[2] = num_vecs > 2 ? vectors[2] : vectors[0];
tmp[3] = num_vecs > 3 ? vectors[3] : vectors[0];
if (util_cpu_caps.has_sse3 && bld->type.width == 32 &&
bld->type.length == 4) {
intrinsic = "llvm.x86.sse3.hadd.ps";
}
else if (util_cpu_caps.has_avx && bld->type.width == 32 &&
bld->type.length == 8) {
intrinsic = "llvm.x86.avx.hadd.ps.256";
}
if (intrinsic) {
tmp[0] = lp_build_intrinsic_binary(builder, intrinsic,
lp_build_vec_type(gallivm, bld->type),
tmp[0], tmp[1]);
if (num_vecs > 2) {
tmp[1] = lp_build_intrinsic_binary(builder, intrinsic,
lp_build_vec_type(gallivm, bld->type),
tmp[2], tmp[3]);
}
else {
tmp[1] = tmp[0];
}
return lp_build_intrinsic_binary(builder, intrinsic,
lp_build_vec_type(gallivm, bld->type),
tmp[0], tmp[1]);
}
if (bld->type.length == 4) {
ret_vec = lp_build_horizontal_add4x4f(bld, tmp);
}
else {
LLVMValueRef partres[LP_MAX_VECTOR_LENGTH/4];
unsigned j;
unsigned num_iter = bld->type.length / 4;
struct lp_type parttype = bld->type;
parttype.length = 4;
for (j = 0; j < num_iter; j++) {
LLVMValueRef partsrc[4];
unsigned i;
for (i = 0; i < 4; i++) {
partsrc[i] = lp_build_extract_range(gallivm, tmp[i], j*4, 4);
}
partres[j] = lp_build_horizontal_add4x4f(bld, partsrc);
}
ret_vec = lp_build_concat(gallivm, partres, parttype, num_iter);
}
return ret_vec;
}
/**
* Generate a - b
*/
LLVMValueRef
lp_build_sub(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMValueRef res;
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
if (b == bld->zero)
return a;
if (a == bld->undef || b == bld->undef)
return bld->undef;
if (a == b)
return bld->zero;
if (type.norm) {
const char *intrinsic = NULL;
if (!type.sign && b == bld->one)
return bld->zero;
if (!type.floating && !type.fixed) {
if (type.width * type.length == 128) {
if (util_cpu_caps.has_sse2) {
if (type.width == 8)
intrinsic = type.sign ? "llvm.x86.sse2.psubs.b" : "llvm.x86.sse2.psubus.b";
if (type.width == 16)
intrinsic = type.sign ? "llvm.x86.sse2.psubs.w" : "llvm.x86.sse2.psubus.w";
} else if (util_cpu_caps.has_altivec) {
if (type.width == 8)
intrinsic = type.sign ? "llvm.ppc.altivec.vsubsbs" : "llvm.ppc.altivec.vsububs";
if (type.width == 16)
intrinsic = type.sign ? "llvm.ppc.altivec.vsubshs" : "llvm.ppc.altivec.vsubuhs";
}
}
if (type.width * type.length == 256) {
if (util_cpu_caps.has_avx2) {
if (type.width == 8)
intrinsic = type.sign ? "llvm.x86.avx2.psubs.b" : "llvm.x86.avx2.psubus.b";
if (type.width == 16)
intrinsic = type.sign ? "llvm.x86.avx2.psubs.w" : "llvm.x86.avx2.psubus.w";
}
}
}
if (intrinsic)
return lp_build_intrinsic_binary(builder, intrinsic, lp_build_vec_type(bld->gallivm, bld->type), a, b);
}
if(type.norm && !type.floating && !type.fixed) {
if (type.sign) {
uint64_t sign = (uint64_t)1 << (type.width - 1);
LLVMValueRef max_val = lp_build_const_int_vec(bld->gallivm, type, sign - 1);
LLVMValueRef min_val = lp_build_const_int_vec(bld->gallivm, type, sign);
/* a_clamp_max is the maximum a for negative b,
a_clamp_min is the minimum a for positive b. */
LLVMValueRef a_clamp_max = lp_build_min_simple(bld, a, LLVMBuildAdd(builder, max_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
LLVMValueRef a_clamp_min = lp_build_max_simple(bld, a, LLVMBuildAdd(builder, min_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
a = lp_build_select(bld, lp_build_cmp(bld, PIPE_FUNC_GREATER, b, bld->zero), a_clamp_min, a_clamp_max);
} else {
a = lp_build_max_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
}
}
if(LLVMIsConstant(a) && LLVMIsConstant(b))
if (type.floating)
res = LLVMConstFSub(a, b);
else
res = LLVMConstSub(a, b);
else
if (type.floating)
res = LLVMBuildFSub(builder, a, b, "");
else
res = LLVMBuildSub(builder, a, b, "");
if(bld->type.norm && (bld->type.floating || bld->type.fixed))
res = lp_build_max_simple(bld, res, bld->zero, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
return res;
}
/**
* Normalized multiplication.
*
* There are several approaches for (using 8-bit normalized multiplication as
* an example):
*
* - alpha plus one
*
* makes the following approximation to the division (Sree)
*
* a*b/255 ~= (a*(b + 1)) >> 256
*
* which is the fastest method that satisfies the following OpenGL criteria of
*
* 0*0 = 0 and 255*255 = 255
*
* - geometric series
*
* takes the geometric series approximation to the division
*
* t/255 = (t >> 8) + (t >> 16) + (t >> 24) ..
*
* in this case just the first two terms to fit in 16bit arithmetic
*
* t/255 ~= (t + (t >> 8)) >> 8
*
* note that just by itself it doesn't satisfies the OpenGL criteria, as
* 255*255 = 254, so the special case b = 255 must be accounted or roundoff
* must be used.
*
* - geometric series plus rounding
*
* when using a geometric series division instead of truncating the result
* use roundoff in the approximation (Jim Blinn)
*
* t/255 ~= (t + (t >> 8) + 0x80) >> 8
*
* achieving the exact results.
*
*
*
* @sa Alvy Ray Smith, Image Compositing Fundamentals, Tech Memo 4, Aug 15, 1995,
* ftp://ftp.alvyray.com/Acrobat/4_Comp.pdf
* @sa Michael Herf, The "double blend trick", May 2000,
* http://www.stereopsis.com/doubleblend.html
*/
LLVMValueRef
lp_build_mul_norm(struct gallivm_state *gallivm,
struct lp_type wide_type,
LLVMValueRef a, LLVMValueRef b)
{
LLVMBuilderRef builder = gallivm->builder;
struct lp_build_context bld;
unsigned n;
LLVMValueRef half;
LLVMValueRef ab;
assert(!wide_type.floating);
assert(lp_check_value(wide_type, a));
assert(lp_check_value(wide_type, b));
lp_build_context_init(&bld, gallivm, wide_type);
n = wide_type.width / 2;
if (wide_type.sign) {
--n;
}
/*
* TODO: for 16bits normalized SSE2 vectors we could consider using PMULHUW
* http://ssp.impulsetrain.com/2011/07/03/multiplying-normalized-16-bit-numbers-with-sse2/
*/
/*
* a*b / (2**n - 1) ~= (a*b + (a*b >> n) + half) >> n
*/
ab = LLVMBuildMul(builder, a, b, "");
ab = LLVMBuildAdd(builder, ab, lp_build_shr_imm(&bld, ab, n), "");
/*
* half = sgn(ab) * 0.5 * (2 ** n) = sgn(ab) * (1 << (n - 1))
*/
half = lp_build_const_int_vec(gallivm, wide_type, 1LL << (n - 1));
if (wide_type.sign) {
LLVMValueRef minus_half = LLVMBuildNeg(builder, half, "");
LLVMValueRef sign = lp_build_shr_imm(&bld, ab, wide_type.width - 1);
half = lp_build_select(&bld, sign, minus_half, half);
}
ab = LLVMBuildAdd(builder, ab, half, "");
/* Final division */
ab = lp_build_shr_imm(&bld, ab, n);
return ab;
}
/**
* Generate a * b
*/
LLVMValueRef
lp_build_mul(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMValueRef shift;
LLVMValueRef res;
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
if(a == bld->zero)
return bld->zero;
if(a == bld->one)
return b;
if(b == bld->zero)
return bld->zero;
if(b == bld->one)
return a;
if(a == bld->undef || b == bld->undef)
return bld->undef;
if (!type.floating && !type.fixed && type.norm) {
struct lp_type wide_type = lp_wider_type(type);
LLVMValueRef al, ah, bl, bh, abl, abh, ab;
lp_build_unpack2_native(bld->gallivm, type, wide_type, a, &al, &ah);
lp_build_unpack2_native(bld->gallivm, type, wide_type, b, &bl, &bh);
/* PMULLW, PSRLW, PADDW */
abl = lp_build_mul_norm(bld->gallivm, wide_type, al, bl);
abh = lp_build_mul_norm(bld->gallivm, wide_type, ah, bh);
ab = lp_build_pack2_native(bld->gallivm, wide_type, type, abl, abh);
return ab;
}
if(type.fixed)
shift = lp_build_const_int_vec(bld->gallivm, type, type.width/2);
else
shift = NULL;
if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
if (type.floating)
res = LLVMConstFMul(a, b);
else
res = LLVMConstMul(a, b);
if(shift) {
if(type.sign)
res = LLVMConstAShr(res, shift);
else
res = LLVMConstLShr(res, shift);
}
}
else {
if (type.floating)
res = LLVMBuildFMul(builder, a, b, "");
else
res = LLVMBuildMul(builder, a, b, "");
if(shift) {
if(type.sign)
res = LLVMBuildAShr(builder, res, shift, "");
else
res = LLVMBuildLShr(builder, res, shift, "");
}
}
return res;
}
/*
* Widening mul, valid for 32x32 bit -> 64bit only.
* Result is low 32bits, high bits returned in res_hi.
*
* Emits code that is meant to be compiled for the host CPU.
*/
LLVMValueRef
lp_build_mul_32_lohi_cpu(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b,
LLVMValueRef *res_hi)
{
struct gallivm_state *gallivm = bld->gallivm;
LLVMBuilderRef builder = gallivm->builder;
assert(bld->type.width == 32);
assert(bld->type.floating == 0);
assert(bld->type.fixed == 0);
assert(bld->type.norm == 0);
/*
* XXX: for some reason, with zext/zext/mul/trunc the code llvm produces
* for x86 simd is atrocious (even if the high bits weren't required),
* trying to handle real 64bit inputs (which of course can't happen due
* to using 64bit umul with 32bit numbers zero-extended to 64bit, but
* apparently llvm does not recognize this widening mul). This includes 6
* (instead of 2) pmuludq plus extra adds and shifts
* The same story applies to signed mul, albeit fixing this requires sse41.
* https://llvm.org/bugs/show_bug.cgi?id=30845
* So, whip up our own code, albeit only for length 4 and 8 (which
* should be good enough)...
*/
if ((bld->type.length == 4 || bld->type.length == 8) &&
((util_cpu_caps.has_sse2 && (bld->type.sign == 0)) ||
util_cpu_caps.has_sse4_1)) {
const char *intrinsic = NULL;
LLVMValueRef aeven, aodd, beven, bodd, muleven, mulodd;
LLVMValueRef shuf[LP_MAX_VECTOR_WIDTH / 32], shuf_vec;
struct lp_type type_wide = lp_wider_type(bld->type);
LLVMTypeRef wider_type = lp_build_vec_type(gallivm, type_wide);
unsigned i;
for (i = 0; i < bld->type.length; i += 2) {
shuf[i] = lp_build_const_int32(gallivm, i+1);
shuf[i+1] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
}
shuf_vec = LLVMConstVector(shuf, bld->type.length);
aeven = a;
beven = b;
aodd = LLVMBuildShuffleVector(builder, aeven, bld->undef, shuf_vec, "");
bodd = LLVMBuildShuffleVector(builder, beven, bld->undef, shuf_vec, "");
if (util_cpu_caps.has_avx2 && bld->type.length == 8) {
if (bld->type.sign) {
intrinsic = "llvm.x86.avx2.pmul.dq";
} else {
intrinsic = "llvm.x86.avx2.pmulu.dq";
}
muleven = lp_build_intrinsic_binary(builder, intrinsic,
wider_type, aeven, beven);
mulodd = lp_build_intrinsic_binary(builder, intrinsic,
wider_type, aodd, bodd);
}
else {
/* for consistent naming look elsewhere... */
if (bld->type.sign) {
intrinsic = "llvm.x86.sse41.pmuldq";
} else {
intrinsic = "llvm.x86.sse2.pmulu.dq";
}
/*
* XXX If we only have AVX but not AVX2 this is a pain.
* lp_build_intrinsic_binary_anylength() can't handle it
* (due to src and dst type not being identical).
*/
if (bld->type.length == 8) {
LLVMValueRef aevenlo, aevenhi, bevenlo, bevenhi;
LLVMValueRef aoddlo, aoddhi, boddlo, boddhi;
LLVMValueRef muleven2[2], mulodd2[2];
struct lp_type type_wide_half = type_wide;
LLVMTypeRef wtype_half;
type_wide_half.length = 2;
wtype_half = lp_build_vec_type(gallivm, type_wide_half);
aevenlo = lp_build_extract_range(gallivm, aeven, 0, 4);
aevenhi = lp_build_extract_range(gallivm, aeven, 4, 4);
bevenlo = lp_build_extract_range(gallivm, beven, 0, 4);
bevenhi = lp_build_extract_range(gallivm, beven, 4, 4);
aoddlo = lp_build_extract_range(gallivm, aodd, 0, 4);
aoddhi = lp_build_extract_range(gallivm, aodd, 4, 4);
boddlo = lp_build_extract_range(gallivm, bodd, 0, 4);
boddhi = lp_build_extract_range(gallivm, bodd, 4, 4);
muleven2[0] = lp_build_intrinsic_binary(builder, intrinsic,
wtype_half, aevenlo, bevenlo);
mulodd2[0] = lp_build_intrinsic_binary(builder, intrinsic,
wtype_half, aoddlo, boddlo);
muleven2[1] = lp_build_intrinsic_binary(builder, intrinsic,
wtype_half, aevenhi, bevenhi);
mulodd2[1] = lp_build_intrinsic_binary(builder, intrinsic,
wtype_half, aoddhi, boddhi);
muleven = lp_build_concat(gallivm, muleven2, type_wide_half, 2);
mulodd = lp_build_concat(gallivm, mulodd2, type_wide_half, 2);
}
else {
muleven = lp_build_intrinsic_binary(builder, intrinsic,
wider_type, aeven, beven);
mulodd = lp_build_intrinsic_binary(builder, intrinsic,
wider_type, aodd, bodd);
}
}
muleven = LLVMBuildBitCast(builder, muleven, bld->vec_type, "");
mulodd = LLVMBuildBitCast(builder, mulodd, bld->vec_type, "");
for (i = 0; i < bld->type.length; i += 2) {
shuf[i] = lp_build_const_int32(gallivm, i + 1);
shuf[i+1] = lp_build_const_int32(gallivm, i + 1 + bld->type.length);
}
shuf_vec = LLVMConstVector(shuf, bld->type.length);
*res_hi = LLVMBuildShuffleVector(builder, muleven, mulodd, shuf_vec, "");
for (i = 0; i < bld->type.length; i += 2) {
shuf[i] = lp_build_const_int32(gallivm, i);
shuf[i+1] = lp_build_const_int32(gallivm, i + bld->type.length);
}
shuf_vec = LLVMConstVector(shuf, bld->type.length);
return LLVMBuildShuffleVector(builder, muleven, mulodd, shuf_vec, "");
}
else {
return lp_build_mul_32_lohi(bld, a, b, res_hi);
}
}
/*
* Widening mul, valid for 32x32 bit -> 64bit only.
* Result is low 32bits, high bits returned in res_hi.
*
* Emits generic code.
*/
LLVMValueRef
lp_build_mul_32_lohi(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b,
LLVMValueRef *res_hi)
{
struct gallivm_state *gallivm = bld->gallivm;
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef tmp, shift, res_lo;
struct lp_type type_tmp;
LLVMTypeRef wide_type, narrow_type;
type_tmp = bld->type;
narrow_type = lp_build_vec_type(gallivm, type_tmp);
type_tmp.width *= 2;
wide_type = lp_build_vec_type(gallivm, type_tmp);
shift = lp_build_const_vec(gallivm, type_tmp, 32);
if (bld->type.sign) {
a = LLVMBuildSExt(builder, a, wide_type, "");
b = LLVMBuildSExt(builder, b, wide_type, "");
} else {
a = LLVMBuildZExt(builder, a, wide_type, "");
b = LLVMBuildZExt(builder, b, wide_type, "");
}
tmp = LLVMBuildMul(builder, a, b, "");
res_lo = LLVMBuildTrunc(builder, tmp, narrow_type, "");
/* Since we truncate anyway, LShr and AShr are equivalent. */
tmp = LLVMBuildLShr(builder, tmp, shift, "");
*res_hi = LLVMBuildTrunc(builder, tmp, narrow_type, "");
return res_lo;
}
/* a * b + c */
LLVMValueRef
lp_build_mad(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b,
LLVMValueRef c)
{
const struct lp_type type = bld->type;
if (type.floating) {
return lp_build_fmuladd(bld->gallivm->builder, a, b, c);
} else {
return lp_build_add(bld, lp_build_mul(bld, a, b), c);
}
}
/**
* Small vector x scale multiplication optimization.
*/
LLVMValueRef
lp_build_mul_imm(struct lp_build_context *bld,
LLVMValueRef a,
int b)
{
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMValueRef factor;
assert(lp_check_value(bld->type, a));
if(b == 0)
return bld->zero;
if(b == 1)
return a;
if(b == -1)
return lp_build_negate(bld, a);
if(b == 2 && bld->type.floating)
return lp_build_add(bld, a, a);
if(util_is_power_of_two(b)) {
unsigned shift = ffs(b) - 1;
if(bld->type.floating) {
#if 0
/*
* Power of two multiplication by directly manipulating the exponent.
*
* XXX: This might not be always faster, it will introduce a small error
* for multiplication by zero, and it will produce wrong results
* for Inf and NaN.
*/
unsigned mantissa = lp_mantissa(bld->type);
factor = lp_build_const_int_vec(bld->gallivm, bld->type, (unsigned long long)shift << mantissa);
a = LLVMBuildBitCast(builder, a, lp_build_int_vec_type(bld->type), "");
a = LLVMBuildAdd(builder, a, factor, "");
a = LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, bld->type), "");
return a;
#endif
}
else {
factor = lp_build_const_vec(bld->gallivm, bld->type, shift);
return LLVMBuildShl(builder, a, factor, "");
}
}
factor = lp_build_const_vec(bld->gallivm, bld->type, (double)b);
return lp_build_mul(bld, a, factor);
}
/**
* Generate a / b
*/
LLVMValueRef
lp_build_div(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
if(a == bld->zero)
return bld->zero;
if(a == bld->one && type.floating)
return lp_build_rcp(bld, b);
if(b == bld->zero)
return bld->undef;
if(b == bld->one)
return a;
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
if (type.floating)
return LLVMConstFDiv(a, b);
else if (type.sign)
return LLVMConstSDiv(a, b);
else
return LLVMConstUDiv(a, b);
}
/* fast rcp is disabled (just uses div), so makes no sense to try that */
if(FALSE &&
((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
(util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) &&
type.floating)
return lp_build_mul(bld, a, lp_build_rcp(bld, b));
if (type.floating)
return LLVMBuildFDiv(builder, a, b, "");
else if (type.sign)
return LLVMBuildSDiv(builder, a, b, "");
else
return LLVMBuildUDiv(builder, a, b, "");
}
/**
* Linear interpolation helper.
*
* @param normalized whether we are interpolating normalized values,
* encoded in normalized integers, twice as wide.
*
* @sa http://www.stereopsis.com/doubleblend.html
*/
static inline LLVMValueRef
lp_build_lerp_simple(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef v0,
LLVMValueRef v1,
unsigned flags)
{
unsigned half_width = bld->type.width/2;
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMValueRef delta;
LLVMValueRef res;
assert(lp_check_value(bld->type, x));
assert(lp_check_value(bld->type, v0));
assert(lp_check_value(bld->type, v1));
delta = lp_build_sub(bld, v1, v0);
if (bld->type.floating) {
assert(flags == 0);
return lp_build_mad(bld, x, delta, v0);
}
if (flags & LP_BLD_LERP_WIDE_NORMALIZED) {
if (!bld->type.sign) {
if (!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS)) {
/*
* Scale x from [0, 2**n - 1] to [0, 2**n] by adding the
* most-significant-bit to the lowest-significant-bit, so that
* later we can just divide by 2**n instead of 2**n - 1.
*/
x = lp_build_add(bld, x, lp_build_shr_imm(bld, x, half_width - 1));
}
/* (x * delta) >> n */
res = lp_build_mul(bld, x, delta);
res = lp_build_shr_imm(bld, res, half_width);
} else {
/*
* The rescaling trick above doesn't work for signed numbers, so
* use the 2**n - 1 divison approximation in lp_build_mul_norm
* instead.
*/
assert(!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS));
res = lp_build_mul_norm(bld->gallivm, bld->type, x, delta);
}
} else {
assert(!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS));
res = lp_build_mul(bld, x, delta);
}
if ((flags & LP_BLD_LERP_WIDE_NORMALIZED) && !bld->type.sign) {
/*
* At this point both res and v0 only use the lower half of the bits,
* the rest is zero. Instead of add / mask, do add with half wide type.
*/
struct lp_type narrow_type;
struct lp_build_context narrow_bld;
memset(&narrow_type, 0, sizeof narrow_type);
narrow_type.sign = bld->type.sign;
narrow_type.width = bld->type.width/2;
narrow_type.length = bld->type.length*2;
lp_build_context_init(&narrow_bld, bld->gallivm, narrow_type);
res = LLVMBuildBitCast(builder, res, narrow_bld.vec_type, "");
v0 = LLVMBuildBitCast(builder, v0, narrow_bld.vec_type, "");
res = lp_build_add(&narrow_bld, v0, res);
res = LLVMBuildBitCast(builder, res, bld->vec_type, "");
} else {
res = lp_build_add(bld, v0, res);
if (bld->type.fixed) {
/*
* We need to mask out the high order bits when lerping 8bit
* normalized colors stored on 16bits
*/
/* XXX: This step is necessary for lerping 8bit colors stored on
* 16bits, but it will be wrong for true fixed point use cases.
* Basically we need a more powerful lp_type, capable of further
* distinguishing the values interpretation from the value storage.
*/
LLVMValueRef low_bits;
low_bits = lp_build_const_int_vec(bld->gallivm, bld->type, (1 << half_width) - 1);
res = LLVMBuildAnd(builder, res, low_bits, "");
}
}
return res;
}
/**
* Linear interpolation.
*/
LLVMValueRef
lp_build_lerp(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef v0,
LLVMValueRef v1,
unsigned flags)
{
const struct lp_type type = bld->type;
LLVMValueRef res;
assert(lp_check_value(type, x));
assert(lp_check_value(type, v0));
assert(lp_check_value(type, v1));
assert(!(flags & LP_BLD_LERP_WIDE_NORMALIZED));
if (type.norm) {
struct lp_type wide_type;
struct lp_build_context wide_bld;
LLVMValueRef xl, xh, v0l, v0h, v1l, v1h, resl, resh;
assert(type.length >= 2);
/*
* Create a wider integer type, enough to hold the
* intermediate result of the multiplication.
*/
memset(&wide_type, 0, sizeof wide_type);
wide_type.sign = type.sign;
wide_type.width = type.width*2;
wide_type.length = type.length/2;
lp_build_context_init(&wide_bld, bld->gallivm, wide_type);
lp_build_unpack2_native(bld->gallivm, type, wide_type, x, &xl, &xh);
lp_build_unpack2_native(bld->gallivm, type, wide_type, v0, &v0l, &v0h);
lp_build_unpack2_native(bld->gallivm, type, wide_type, v1, &v1l, &v1h);
/*
* Lerp both halves.
*/
flags |= LP_BLD_LERP_WIDE_NORMALIZED;
resl = lp_build_lerp_simple(&wide_bld, xl, v0l, v1l, flags);
resh = lp_build_lerp_simple(&wide_bld, xh, v0h, v1h, flags);
res = lp_build_pack2_native(bld->gallivm, wide_type, type, resl, resh);
} else {
res = lp_build_lerp_simple(bld, x, v0, v1, flags);
}
return res;
}
/**
* Bilinear interpolation.
*
* Values indices are in v_{yx}.
*/
LLVMValueRef
lp_build_lerp_2d(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef y,
LLVMValueRef v00,
LLVMValueRef v01,
LLVMValueRef v10,
LLVMValueRef v11,
unsigned flags)
{
LLVMValueRef v0 = lp_build_lerp(bld, x, v00, v01, flags);
LLVMValueRef v1 = lp_build_lerp(bld, x, v10, v11, flags);
return lp_build_lerp(bld, y, v0, v1, flags);
}
LLVMValueRef
lp_build_lerp_3d(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef y,
LLVMValueRef z,
LLVMValueRef v000,
LLVMValueRef v001,
LLVMValueRef v010,
LLVMValueRef v011,
LLVMValueRef v100,
LLVMValueRef v101,
LLVMValueRef v110,
LLVMValueRef v111,
unsigned flags)
{
LLVMValueRef v0 = lp_build_lerp_2d(bld, x, y, v000, v001, v010, v011, flags);
LLVMValueRef v1 = lp_build_lerp_2d(bld, x, y, v100, v101, v110, v111, flags);
return lp_build_lerp(bld, z, v0, v1, flags);
}
/**
* Generate min(a, b)
* Do checks for special cases but not for nans.
*/
LLVMValueRef
lp_build_min(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
{
assert(lp_check_value(bld->type, a));
assert(lp_check_value(bld->type, b));
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(a == b)
return a;
if (bld->type.norm) {
if (!bld->type.sign) {
if (a == bld->zero || b == bld->zero) {
return bld->zero;
}
}
if(a == bld->one)
return b;
if(b == bld->one)
return a;
}
return lp_build_min_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
}
/**
* Generate min(a, b)
* NaN's are handled according to the behavior specified by the
* nan_behavior argument.
*/
LLVMValueRef
lp_build_min_ext(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b,
enum gallivm_nan_behavior nan_behavior)
{
assert(lp_check_value(bld->type, a));
assert(lp_check_value(bld->type, b));
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(a == b)
return a;
if (bld->type.norm) {
if (!bld->type.sign) {
if (a == bld->zero || b == bld->zero) {
return bld->zero;
}
}
if(a == bld->one)
return b;
if(b == bld->one)
return a;
}
return lp_build_min_simple(bld, a, b, nan_behavior);
}
/**
* Generate max(a, b)
* Do checks for special cases, but NaN behavior is undefined.
*/
LLVMValueRef
lp_build_max(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b)
{
assert(lp_check_value(bld->type, a));
assert(lp_check_value(bld->type, b));
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(a == b)
return a;
if(bld->type.norm) {
if(a == bld->one || b == bld->one)
return bld->one;
if (!bld->type.sign) {
if (a == bld->zero) {
return b;
}
if (b == bld->zero) {
return a;
}
}
}
return lp_build_max_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
}
/**
* Generate max(a, b)
* Checks for special cases.
* NaN's are handled according to the behavior specified by the
* nan_behavior argument.
*/
LLVMValueRef
lp_build_max_ext(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef b,
enum gallivm_nan_behavior nan_behavior)
{
assert(lp_check_value(bld->type, a));
assert(lp_check_value(bld->type, b));
if(a == bld->undef || b == bld->undef)
return bld->undef;
if(a == b)
return a;
if(bld->type.norm) {
if(a == bld->one || b == bld->one)
return bld->one;
if (!bld->type.sign) {
if (a == bld->zero) {
return b;
}
if (b == bld->zero) {
return a;
}
}
}
return lp_build_max_simple(bld, a, b, nan_behavior);
}
/**
* Generate clamp(a, min, max)
* NaN behavior (for any of a, min, max) is undefined.
* Do checks for special cases.
*/
LLVMValueRef
lp_build_clamp(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef min,
LLVMValueRef max)
{
assert(lp_check_value(bld->type, a));
assert(lp_check_value(bld->type, min));
assert(lp_check_value(bld->type, max));
a = lp_build_min(bld, a, max);
a = lp_build_max(bld, a, min);
return a;
}
/**
* Generate clamp(a, 0, 1)
* A NaN will get converted to zero.
*/
LLVMValueRef
lp_build_clamp_zero_one_nanzero(struct lp_build_context *bld,
LLVMValueRef a)
{
a = lp_build_max_ext(bld, a, bld->zero, GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN);
a = lp_build_min(bld, a, bld->one);
return a;
}
/**
* Generate abs(a)
*/
LLVMValueRef
lp_build_abs(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
assert(lp_check_value(type, a));
if(!type.sign)
return a;
if(type.floating) {
if (0x0306 <= HAVE_LLVM && HAVE_LLVM < 0x0309) {
/* Workaround llvm.org/PR27332 */
LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
unsigned long long absMask = ~(1ULL << (type.width - 1));
LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type, ((unsigned long long) absMask));
a = LLVMBuildBitCast(builder, a, int_vec_type, "");
a = LLVMBuildAnd(builder, a, mask, "");
a = LLVMBuildBitCast(builder, a, vec_type, "");
return a;
} else {
char intrinsic[32];
lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.fabs", vec_type);
return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
}
}
if(type.width*type.length == 128 && util_cpu_caps.has_ssse3 && HAVE_LLVM < 0x0600) {
switch(type.width) {
case 8:
return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.b.128", vec_type, a);
case 16:
return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.w.128", vec_type, a);
case 32:
return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.d.128", vec_type, a);
}
}
else if (type.width*type.length == 256 && util_cpu_caps.has_avx2 && HAVE_LLVM < 0x0600) {
switch(type.width) {
case 8:
return lp_build_intrinsic_unary(builder, "llvm.x86.avx2.pabs.b", vec_type, a);
case 16:
return lp_build_intrinsic_unary(builder, "llvm.x86.avx2.pabs.w", vec_type, a);
case 32:
return lp_build_intrinsic_unary(builder, "llvm.x86.avx2.pabs.d", vec_type, a);
}
}
return lp_build_select(bld, lp_build_cmp(bld, PIPE_FUNC_GREATER, a, bld->zero),
a, LLVMBuildNeg(builder, a, ""));
}
LLVMValueRef
lp_build_negate(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
assert(lp_check_value(bld->type, a));
if (bld->type.floating)
a = LLVMBuildFNeg(builder, a, "");
else
a = LLVMBuildNeg(builder, a, "");
return a;
}
/** Return -1, 0 or +1 depending on the sign of a */
LLVMValueRef
lp_build_sgn(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMValueRef cond;
LLVMValueRef res;
assert(lp_check_value(type, a));
/* Handle non-zero case */
if(!type.sign) {
/* if not zero then sign must be positive */
res = bld->one;
}
else if(type.floating) {
LLVMTypeRef vec_type;
LLVMTypeRef int_type;
LLVMValueRef mask;
LLVMValueRef sign;
LLVMValueRef one;
unsigned long long maskBit = (unsigned long long)1 << (type.width - 1);
int_type = lp_build_int_vec_type(bld->gallivm, type);
vec_type = lp_build_vec_type(bld->gallivm, type);
mask = lp_build_const_int_vec(bld->gallivm, type, maskBit);
/* Take the sign bit and add it to 1 constant */
sign = LLVMBuildBitCast(builder, a, int_type, "");
sign = LLVMBuildAnd(builder, sign, mask, "");
one = LLVMConstBitCast(bld->one, int_type);
res = LLVMBuildOr(builder, sign, one, "");
res = LLVMBuildBitCast(builder, res, vec_type, "");
}
else
{
/* signed int/norm/fixed point */
/* could use psign with sse3 and appropriate vectors here */
LLVMValueRef minus_one = lp_build_const_vec(bld->gallivm, type, -1.0);
cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, bld->zero);
res = lp_build_select(bld, cond, bld->one, minus_one);
}
/* Handle zero */
cond = lp_build_cmp(bld, PIPE_FUNC_EQUAL, a, bld->zero);
res = lp_build_select(bld, cond, bld->zero, res);
return res;
}
/**
* Set the sign of float vector 'a' according to 'sign'.
* If sign==0, return abs(a).
* If sign==1, return -abs(a);
* Other values for sign produce undefined results.
*/
LLVMValueRef
lp_build_set_sign(struct lp_build_context *bld,
LLVMValueRef a, LLVMValueRef sign)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
LLVMValueRef shift = lp_build_const_int_vec(bld->gallivm, type, type.width - 1);
LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
~((unsigned long long) 1 << (type.width - 1)));
LLVMValueRef val, res;
assert(type.floating);
assert(lp_check_value(type, a));
/* val = reinterpret_cast<int>(a) */
val = LLVMBuildBitCast(builder, a, int_vec_type, "");
/* val = val & mask */
val = LLVMBuildAnd(builder, val, mask, "");
/* sign = sign << shift */
sign = LLVMBuildShl(builder, sign, shift, "");
/* res = val | sign */
res = LLVMBuildOr(builder, val, sign, "");
/* res = reinterpret_cast<float>(res) */
res = LLVMBuildBitCast(builder, res, vec_type, "");
return res;
}
/**
* Convert vector of (or scalar) int to vector of (or scalar) float.
*/
LLVMValueRef
lp_build_int_to_float(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
assert(type.floating);
return LLVMBuildSIToFP(builder, a, vec_type, "");
}
static boolean
arch_rounding_available(const struct lp_type type)
{
if ((util_cpu_caps.has_sse4_1 &&
(type.length == 1 || type.width*type.length == 128)) ||
(util_cpu_caps.has_avx && type.width*type.length == 256) ||
(util_cpu_caps.has_avx512f && type.width*type.length == 512))
return TRUE;
else if ((util_cpu_caps.has_altivec &&
(type.width == 32 && type.length == 4)))
return TRUE;
return FALSE;
}
enum lp_build_round_mode
{
LP_BUILD_ROUND_NEAREST = 0,
LP_BUILD_ROUND_FLOOR = 1,
LP_BUILD_ROUND_CEIL = 2,
LP_BUILD_ROUND_TRUNCATE = 3
};
static inline LLVMValueRef
lp_build_iround_nearest_sse2(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
LLVMTypeRef ret_type = lp_build_int_vec_type(bld->gallivm, type);
const char *intrinsic;
LLVMValueRef res;
assert(type.floating);
/* using the double precision conversions is a bit more complicated */
assert(type.width == 32);
assert(lp_check_value(type, a));
assert(util_cpu_caps.has_sse2);
/* This is relying on MXCSR rounding mode, which should always be nearest. */
if (type.length == 1) {
LLVMTypeRef vec_type;
LLVMValueRef undef;
LLVMValueRef arg;
LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
vec_type = LLVMVectorType(bld->elem_type, 4);
intrinsic = "llvm.x86.sse.cvtss2si";
undef = LLVMGetUndef(vec_type);
arg = LLVMBuildInsertElement(builder, undef, a, index0, "");
res = lp_build_intrinsic_unary(builder, intrinsic,
ret_type, arg);
}
else {
if (type.width* type.length == 128) {
intrinsic = "llvm.x86.sse2.cvtps2dq";
}
else {
assert(type.width*type.length == 256);
assert(util_cpu_caps.has_avx);
intrinsic = "llvm.x86.avx.cvt.ps2dq.256";
}
res = lp_build_intrinsic_unary(builder, intrinsic,
ret_type, a);
}
return res;
}
/*
*/
static inline LLVMValueRef
lp_build_round_altivec(struct lp_build_context *bld,
LLVMValueRef a,
enum lp_build_round_mode mode)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
const char *intrinsic = NULL;
assert(type.floating);
assert(lp_check_value(type, a));
assert(util_cpu_caps.has_altivec);
(void)type;
switch (mode) {
case LP_BUILD_ROUND_NEAREST:
intrinsic = "llvm.ppc.altivec.vrfin";
break;
case LP_BUILD_ROUND_FLOOR:
intrinsic = "llvm.ppc.altivec.vrfim";
break;
case LP_BUILD_ROUND_CEIL:
intrinsic = "llvm.ppc.altivec.vrfip";
break;
case LP_BUILD_ROUND_TRUNCATE:
intrinsic = "llvm.ppc.altivec.vrfiz";
break;
}
return lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
}
static inline LLVMValueRef
lp_build_round_arch(struct lp_build_context *bld,
LLVMValueRef a,
enum lp_build_round_mode mode)
{
if (util_cpu_caps.has_sse4_1) {
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
const char *intrinsic_root;
char intrinsic[32];
assert(type.floating);
assert(lp_check_value(type, a));
(void)type;
switch (mode) {
case LP_BUILD_ROUND_NEAREST:
intrinsic_root = "llvm.nearbyint";
break;
case LP_BUILD_ROUND_FLOOR:
intrinsic_root = "llvm.floor";
break;
case LP_BUILD_ROUND_CEIL:
intrinsic_root = "llvm.ceil";
break;
case LP_BUILD_ROUND_TRUNCATE:
intrinsic_root = "llvm.trunc";
break;
}
lp_format_intrinsic(intrinsic, sizeof intrinsic, intrinsic_root, bld->vec_type);
return lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
}
else /* (util_cpu_caps.has_altivec) */
return lp_build_round_altivec(bld, a, mode);
}
/**
* Return the integer part of a float (vector) value (== round toward zero).
* The returned value is a float (vector).
* Ex: trunc(-1.5) = -1.0
*/
LLVMValueRef
lp_build_trunc(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
assert(type.floating);
assert(lp_check_value(type, a));
if (arch_rounding_available(type)) {
return lp_build_round_arch(bld, a, LP_BUILD_ROUND_TRUNCATE);
}
else {
const struct lp_type type = bld->type;
struct lp_type inttype;
struct lp_build_context intbld;
LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
LLVMValueRef trunc, res, anosign, mask;
LLVMTypeRef int_vec_type = bld->int_vec_type;
LLVMTypeRef vec_type = bld->vec_type;
assert(type.width == 32); /* might want to handle doubles at some point */
inttype = type;
inttype.floating = 0;
lp_build_context_init(&intbld, bld->gallivm, inttype);
/* round by truncation */
trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
res = LLVMBuildSIToFP(builder, trunc, vec_type, "floor.trunc");
/* mask out sign bit */
anosign = lp_build_abs(bld, a);
/*
* mask out all values if anosign > 2^24
* This should work both for large ints (all rounding is no-op for them
* because such floats are always exact) as well as special cases like
* NaNs, Infs (taking advantage of the fact they use max exponent).
* (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
*/
anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
return lp_build_select(bld, mask, a, res);
}
}
/**
* Return float (vector) rounded to nearest integer (vector). The returned
* value is a float (vector).
* Ex: round(0.9) = 1.0
* Ex: round(-1.5) = -2.0
*/
LLVMValueRef
lp_build_round(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
assert(type.floating);
assert(lp_check_value(type, a));
if (arch_rounding_available(type)) {
return lp_build_round_arch(bld, a, LP_BUILD_ROUND_NEAREST);
}
else {
const struct lp_type type = bld->type;
struct lp_type inttype;
struct lp_build_context intbld;
LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
LLVMValueRef res, anosign, mask;
LLVMTypeRef int_vec_type = bld->int_vec_type;
LLVMTypeRef vec_type = bld->vec_type;
assert(type.width == 32); /* might want to handle doubles at some point */
inttype = type;
inttype.floating = 0;
lp_build_context_init(&intbld, bld->gallivm, inttype);
res = lp_build_iround(bld, a);
res = LLVMBuildSIToFP(builder, res, vec_type, "");
/* mask out sign bit */
anosign = lp_build_abs(bld, a);
/*
* mask out all values if anosign > 2^24
* This should work both for large ints (all rounding is no-op for them
* because such floats are always exact) as well as special cases like
* NaNs, Infs (taking advantage of the fact they use max exponent).
* (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
*/
anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
return lp_build_select(bld, mask, a, res);
}
}
/**
* Return floor of float (vector), result is a float (vector)
* Ex: floor(1.1) = 1.0
* Ex: floor(-1.1) = -2.0
*/
LLVMValueRef
lp_build_floor(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
assert(type.floating);
assert(lp_check_value(type, a));
if (arch_rounding_available(type)) {
return lp_build_round_arch(bld, a, LP_BUILD_ROUND_FLOOR);
}
else {
const struct lp_type type = bld->type;
struct lp_type inttype;
struct lp_build_context intbld;
LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
LLVMValueRef trunc, res, anosign, mask;
LLVMTypeRef int_vec_type = bld->int_vec_type;
LLVMTypeRef vec_type = bld->vec_type;
if (type.width != 32) {
char intrinsic[32];
lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.floor", vec_type);
return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
}
assert(type.width == 32); /* might want to handle doubles at some point */
inttype = type;
inttype.floating = 0;
lp_build_context_init(&intbld, bld->gallivm, inttype);
/* round by truncation */
trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
res = LLVMBuildSIToFP(builder, trunc, vec_type, "floor.trunc");
if (type.sign) {
LLVMValueRef tmp;
/*
* fix values if rounding is wrong (for non-special cases)
* - this is the case if trunc > a
*/
mask = lp_build_cmp(bld, PIPE_FUNC_GREATER, res, a);
/* tmp = trunc > a ? 1.0 : 0.0 */
tmp = LLVMBuildBitCast(builder, bld->one, int_vec_type, "");
tmp = lp_build_and(&intbld, mask, tmp);
tmp = LLVMBuildBitCast(builder, tmp, vec_type, "");
res = lp_build_sub(bld, res, tmp);
}
/* mask out sign bit */
anosign = lp_build_abs(bld, a);
/*
* mask out all values if anosign > 2^24
* This should work both for large ints (all rounding is no-op for them
* because such floats are always exact) as well as special cases like
* NaNs, Infs (taking advantage of the fact they use max exponent).
* (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
*/
anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
return lp_build_select(bld, mask, a, res);
}
}
/**
* Return ceiling of float (vector), returning float (vector).
* Ex: ceil( 1.1) = 2.0
* Ex: ceil(-1.1) = -1.0
*/
LLVMValueRef
lp_build_ceil(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
assert(type.floating);
assert(lp_check_value(type, a));
if (arch_rounding_available(type)) {
return lp_build_round_arch(bld, a, LP_BUILD_ROUND_CEIL);
}
else {
const struct lp_type type = bld->type;
struct lp_type inttype;
struct lp_build_context intbld;
LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
LLVMValueRef trunc, res, anosign, mask, tmp;
LLVMTypeRef int_vec_type = bld->int_vec_type;
LLVMTypeRef vec_type = bld->vec_type;
if (type.width != 32) {
char intrinsic[32];
lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.ceil", vec_type);
return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
}
assert(type.width == 32); /* might want to handle doubles at some point */
inttype = type;
inttype.floating = 0;
lp_build_context_init(&intbld, bld->gallivm, inttype);
/* round by truncation */
trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
trunc = LLVMBuildSIToFP(builder, trunc, vec_type, "ceil.trunc");
/*
* fix values if rounding is wrong (for non-special cases)
* - this is the case if trunc < a
*/
mask = lp_build_cmp(bld, PIPE_FUNC_LESS, trunc, a);
/* tmp = trunc < a ? 1.0 : 0.0 */
tmp = LLVMBuildBitCast(builder, bld->one, int_vec_type, "");
tmp = lp_build_and(&intbld, mask, tmp);
tmp = LLVMBuildBitCast(builder, tmp, vec_type, "");
res = lp_build_add(bld, trunc, tmp);
/* mask out sign bit */
anosign = lp_build_abs(bld, a);
/*
* mask out all values if anosign > 2^24
* This should work both for large ints (all rounding is no-op for them
* because such floats are always exact) as well as special cases like
* NaNs, Infs (taking advantage of the fact they use max exponent).
* (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
*/
anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
return lp_build_select(bld, mask, a, res);
}
}
/**
* Return fractional part of 'a' computed as a - floor(a)
* Typically used in texture coord arithmetic.
*/
LLVMValueRef
lp_build_fract(struct lp_build_context *bld,
LLVMValueRef a)
{
assert(bld->type.floating);
return lp_build_sub(bld, a, lp_build_floor(bld, a));
}
/**
* Prevent returning 1.0 for very small negative values of 'a' by clamping
* against 0.99999(9). (Will also return that value for NaNs.)
*/
static inline LLVMValueRef
clamp_fract(struct lp_build_context *bld, LLVMValueRef fract)
{
LLVMValueRef max;
/* this is the largest number smaller than 1.0 representable as float */
max = lp_build_const_vec(bld->gallivm, bld->type,
1.0 - 1.0/(1LL << (lp_mantissa(bld->type) + 1)));
return lp_build_min_ext(bld, fract, max,
GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN);
}
/**
* Same as lp_build_fract, but guarantees that the result is always smaller
* than one. Will also return the smaller-than-one value for infs, NaNs.
*/
LLVMValueRef
lp_build_fract_safe(struct lp_build_context *bld,
LLVMValueRef a)
{
return clamp_fract(bld, lp_build_fract(bld, a));
}
/**
* Return the integer part of a float (vector) value (== round toward zero).
* The returned value is an integer (vector).
* Ex: itrunc(-1.5) = -1
*/
LLVMValueRef
lp_build_itrunc(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
assert(type.floating);
assert(lp_check_value(type, a));
return LLVMBuildFPToSI(builder, a, int_vec_type, "");
}
/**
* Return float (vector) rounded to nearest integer (vector). The returned
* value is an integer (vector).
* Ex: iround(0.9) = 1
* Ex: iround(-1.5) = -2
*/
LLVMValueRef
lp_build_iround(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMTypeRef int_vec_type = bld->int_vec_type;
LLVMValueRef res;
assert(type.floating);
assert(lp_check_value(type, a));
if ((util_cpu_caps.has_sse2 &&
((type.width == 32) && (type.length == 1 || type.length == 4))) ||
(util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) {
return lp_build_iround_nearest_sse2(bld, a);
}
if (arch_rounding_available(type)) {
res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_NEAREST);
}
else {
LLVMValueRef half;
half = lp_build_const_vec(bld->gallivm, type, 0.5);
if (type.sign) {
LLVMTypeRef vec_type = bld->vec_type;
LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
(unsigned long long)1 << (type.width - 1));
LLVMValueRef sign;
/* get sign bit */
sign = LLVMBuildBitCast(builder, a, int_vec_type, "");
sign = LLVMBuildAnd(builder, sign, mask, "");
/* sign * 0.5 */
half = LLVMBuildBitCast(builder, half, int_vec_type, "");
half = LLVMBuildOr(builder, sign, half, "");
half = LLVMBuildBitCast(builder, half, vec_type, "");
}
res = LLVMBuildFAdd(builder, a, half, "");
}
res = LLVMBuildFPToSI(builder, res, int_vec_type, "");
return res;
}
/**
* Return floor of float (vector), result is an int (vector)
* Ex: ifloor(1.1) = 1.0
* Ex: ifloor(-1.1) = -2.0
*/
LLVMValueRef
lp_build_ifloor(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMTypeRef int_vec_type = bld->int_vec_type;
LLVMValueRef res;
assert(type.floating);
assert(lp_check_value(type, a));
res = a;
if (type.sign) {
if (arch_rounding_available(type)) {
res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_FLOOR);
}
else {
struct lp_type inttype;
struct lp_build_context intbld;
LLVMValueRef trunc, itrunc, mask;
assert(type.floating);
assert(lp_check_value(type, a));
inttype = type;
inttype.floating = 0;
lp_build_context_init(&intbld, bld->gallivm, inttype);
/* round by truncation */
itrunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
trunc = LLVMBuildSIToFP(builder, itrunc, bld->vec_type, "ifloor.trunc");
/*
* fix values if rounding is wrong (for non-special cases)
* - this is the case if trunc > a
* The results of doing this with NaNs, very large values etc.
* are undefined but this seems to be the case anyway.
*/
mask = lp_build_cmp(bld, PIPE_FUNC_GREATER, trunc, a);
/* cheapie minus one with mask since the mask is minus one / zero */
return lp_build_add(&intbld, itrunc, mask);
}
}
/* round to nearest (toward zero) */
res = LLVMBuildFPToSI(builder, res, int_vec_type, "ifloor.res");
return res;
}
/**
* Return ceiling of float (vector), returning int (vector).
* Ex: iceil( 1.1) = 2
* Ex: iceil(-1.1) = -1
*/
LLVMValueRef
lp_build_iceil(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMTypeRef int_vec_type = bld->int_vec_type;
LLVMValueRef res;
assert(type.floating);
assert(lp_check_value(type, a));
if (arch_rounding_available(type)) {
res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_CEIL);
}
else {
struct lp_type inttype;
struct lp_build_context intbld;
LLVMValueRef trunc, itrunc, mask;
assert(type.floating);
assert(lp_check_value(type, a));
inttype = type;
inttype.floating = 0;
lp_build_context_init(&intbld, bld->gallivm, inttype);
/* round by truncation */
itrunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
trunc = LLVMBuildSIToFP(builder, itrunc, bld->vec_type, "iceil.trunc");
/*
* fix values if rounding is wrong (for non-special cases)
* - this is the case if trunc < a
* The results of doing this with NaNs, very large values etc.
* are undefined but this seems to be the case anyway.
*/
mask = lp_build_cmp(bld, PIPE_FUNC_LESS, trunc, a);
/* cheapie plus one with mask since the mask is minus one / zero */
return lp_build_sub(&intbld, itrunc, mask);
}
/* round to nearest (toward zero) */
res = LLVMBuildFPToSI(builder, res, int_vec_type, "iceil.res");
return res;
}
/**
* Combined ifloor() & fract().
*
* Preferred to calling the functions separately, as it will ensure that the
* strategy (floor() vs ifloor()) that results in less redundant work is used.
*/
void
lp_build_ifloor_fract(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef *out_ipart,
LLVMValueRef *out_fpart)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMValueRef ipart;
assert(type.floating);
assert(lp_check_value(type, a));
if (arch_rounding_available(type)) {
/*
* floor() is easier.
*/
ipart = lp_build_floor(bld, a);
*out_fpart = LLVMBuildFSub(builder, a, ipart, "fpart");
*out_ipart = LLVMBuildFPToSI(builder, ipart, bld->int_vec_type, "ipart");
}
else {
/*
* ifloor() is easier.
*/
*out_ipart = lp_build_ifloor(bld, a);
ipart = LLVMBuildSIToFP(builder, *out_ipart, bld->vec_type, "ipart");
*out_fpart = LLVMBuildFSub(builder, a, ipart, "fpart");
}
}
/**
* Same as lp_build_ifloor_fract, but guarantees that the fractional part is
* always smaller than one.
*/
void
lp_build_ifloor_fract_safe(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef *out_ipart,
LLVMValueRef *out_fpart)
{
lp_build_ifloor_fract(bld, a, out_ipart, out_fpart);
*out_fpart = clamp_fract(bld, *out_fpart);
}
LLVMValueRef
lp_build_sqrt(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
char intrinsic[32];
assert(lp_check_value(type, a));
assert(type.floating);
lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.sqrt", vec_type);
return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
}
/**
* Do one Newton-Raphson step to improve reciprocate precision:
*
* x_{i+1} = x_i * (2 - a * x_i)
*
* XXX: Unfortunately this won't give IEEE-754 conformant results for 0 or
* +/-Inf, giving NaN instead. Certain applications rely on this behavior,
* such as Google Earth, which does RCP(RSQRT(0.0) when drawing the Earth's
* halo. It would be necessary to clamp the argument to prevent this.
*
* See also:
* - http://en.wikipedia.org/wiki/Division_(digital)#Newton.E2.80.93Raphson_division
* - http://softwarecommunity.intel.com/articles/eng/1818.htm
*/
static inline LLVMValueRef
lp_build_rcp_refine(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef rcp_a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMValueRef two = lp_build_const_vec(bld->gallivm, bld->type, 2.0);
LLVMValueRef res;
res = LLVMBuildFMul(builder, a, rcp_a, "");
res = LLVMBuildFSub(builder, two, res, "");
res = LLVMBuildFMul(builder, rcp_a, res, "");
return res;
}
LLVMValueRef
lp_build_rcp(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
assert(lp_check_value(type, a));
if(a == bld->zero)
return bld->undef;
if(a == bld->one)
return bld->one;
if(a == bld->undef)
return bld->undef;
assert(type.floating);
if(LLVMIsConstant(a))
return LLVMConstFDiv(bld->one, a);
/*
* We don't use RCPPS because:
* - it only has 10bits of precision
* - it doesn't even get the reciprocate of 1.0 exactly
* - doing Newton-Rapshon steps yields wrong (NaN) values for 0.0 or Inf
* - for recent processors the benefit over DIVPS is marginal, a case
* dependent
*
* We could still use it on certain processors if benchmarks show that the
* RCPPS plus necessary workarounds are still preferrable to DIVPS; or for
* particular uses that require less workarounds.
*/
if (FALSE && ((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
(util_cpu_caps.has_avx && type.width == 32 && type.length == 8))){
const unsigned num_iterations = 0;
LLVMValueRef res;
unsigned i;
const char *intrinsic = NULL;
if (type.length == 4) {
intrinsic = "llvm.x86.sse.rcp.ps";
}
else {
intrinsic = "llvm.x86.avx.rcp.ps.256";
}
res = lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
for (i = 0; i < num_iterations; ++i) {
res = lp_build_rcp_refine(bld, a, res);
}
return res;
}
return LLVMBuildFDiv(builder, bld->one, a, "");
}
/**
* Do one Newton-Raphson step to improve rsqrt precision:
*
* x_{i+1} = 0.5 * x_i * (3.0 - a * x_i * x_i)
*
* See also Intel 64 and IA-32 Architectures Optimization Manual.
*/
static inline LLVMValueRef
lp_build_rsqrt_refine(struct lp_build_context *bld,
LLVMValueRef a,
LLVMValueRef rsqrt_a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMValueRef half = lp_build_const_vec(bld->gallivm, bld->type, 0.5);
LLVMValueRef three = lp_build_const_vec(bld->gallivm, bld->type, 3.0);
LLVMValueRef res;
res = LLVMBuildFMul(builder, rsqrt_a, rsqrt_a, "");
res = LLVMBuildFMul(builder, a, res, "");
res = LLVMBuildFSub(builder, three, res, "");
res = LLVMBuildFMul(builder, rsqrt_a, res, "");
res = LLVMBuildFMul(builder, half, res, "");
return res;
}
/**
* Generate 1/sqrt(a).
* Result is undefined for values < 0, infinity for +0.
*/
LLVMValueRef
lp_build_rsqrt(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
assert(lp_check_value(type, a));
assert(type.floating);
/*
* This should be faster but all denormals will end up as infinity.
*/
if (0 && lp_build_fast_rsqrt_available(type)) {
const unsigned num_iterations = 1;
LLVMValueRef res;
unsigned i;
/* rsqrt(1.0) != 1.0 here */
res = lp_build_fast_rsqrt(bld, a);
if (num_iterations) {
/*
* Newton-Raphson will result in NaN instead of infinity for zero,
* and NaN instead of zero for infinity.
* Also, need to ensure rsqrt(1.0) == 1.0.
* All numbers smaller than FLT_MIN will result in +infinity
* (rsqrtps treats all denormals as zero).
*/
LLVMValueRef cmp;
LLVMValueRef flt_min = lp_build_const_vec(bld->gallivm, type, FLT_MIN);
LLVMValueRef inf = lp_build_const_vec(bld->gallivm, type, INFINITY);
for (i = 0; i < num_iterations; ++i) {
res = lp_build_rsqrt_refine(bld, a, res);
}
cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_LESS, a, flt_min);
res = lp_build_select(bld, cmp, inf, res);
cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_EQUAL, a, inf);
res = lp_build_select(bld, cmp, bld->zero, res);
cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_EQUAL, a, bld->one);
res = lp_build_select(bld, cmp, bld->one, res);
}
return res;
}
return lp_build_rcp(bld, lp_build_sqrt(bld, a));
}
/**
* If there's a fast (inaccurate) rsqrt instruction available
* (caller may want to avoid to call rsqrt_fast if it's not available,
* i.e. for calculating x^0.5 it may do rsqrt_fast(x) * x but if
* unavailable it would result in sqrt/div/mul so obviously
* much better to just call sqrt, skipping both div and mul).
*/
boolean
lp_build_fast_rsqrt_available(struct lp_type type)
{
assert(type.floating);
if ((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
(util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) {
return true;
}
return false;
}
/**
* Generate 1/sqrt(a).
* Result is undefined for values < 0, infinity for +0.
* Precision is limited, only ~10 bits guaranteed
* (rsqrt 1.0 may not be 1.0, denorms may be flushed to 0).
*/
LLVMValueRef
lp_build_fast_rsqrt(struct lp_build_context *bld,
LLVMValueRef a)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
assert(lp_check_value(type, a));
if (lp_build_fast_rsqrt_available(type)) {
const char *intrinsic = NULL;
if (type.length == 4) {
intrinsic = "llvm.x86.sse.rsqrt.ps";
}
else {
intrinsic = "llvm.x86.avx.rsqrt.ps.256";
}
return lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
}
else {
debug_printf("%s: emulating fast rsqrt with rcp/sqrt\n", __FUNCTION__);
}
return lp_build_rcp(bld, lp_build_sqrt(bld, a));
}
/**
* Generate sin(a) or cos(a) using polynomial approximation.
* TODO: it might be worth recognizing sin and cos using same source
* (i.e. d3d10 sincos opcode). Obviously doing both at the same time
* would be way cheaper than calculating (nearly) everything twice...
* Not sure it's common enough to be worth bothering however, scs
* opcode could also benefit from calculating both though.
*/
static LLVMValueRef
lp_build_sin_or_cos(struct lp_build_context *bld,
LLVMValueRef a,
boolean cos)
{
struct gallivm_state *gallivm = bld->gallivm;
LLVMBuilderRef b = gallivm->builder;
struct lp_type int_type = lp_int_type(bld->type);
/*
* take the absolute value,
* x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
*/
LLVMValueRef inv_sig_mask = lp_build_const_int_vec(gallivm, bld->type, ~0x80000000);
LLVMValueRef a_v4si = LLVMBuildBitCast(b, a, bld->int_vec_type, "a_v4si");
LLVMValueRef absi = LLVMBuildAnd(b, a_v4si, inv_sig_mask, "absi");
LLVMValueRef x_abs = LLVMBuildBitCast(b, absi, bld->vec_type, "x_abs");
/*
* scale by 4/Pi
* y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
*/
LLVMValueRef FOPi = lp_build_const_vec(gallivm, bld->type, 1.27323954473516);
LLVMValueRef scale_y = LLVMBuildFMul(b, x_abs, FOPi, "scale_y");
/*
* store the integer part of y in mm0
* emm2 = _mm_cvttps_epi32(y);
*/
LLVMValueRef emm2_i = LLVMBuildFPToSI(b, scale_y, bld->int_vec_type, "emm2_i");
/*
* j=(j+1) & (~1) (see the cephes sources)
* emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
*/
LLVMValueRef all_one = lp_build_const_int_vec(gallivm, bld->type, 1);
LLVMValueRef emm2_add = LLVMBuildAdd(b, emm2_i, all_one, "emm2_add");
/*
* emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
*/
LLVMValueRef inv_one = lp_build_const_int_vec(gallivm, bld->type, ~1);
LLVMValueRef emm2_and = LLVMBuildAnd(b, emm2_add, inv_one, "emm2_and");
/*
* y = _mm_cvtepi32_ps(emm2);
*/
LLVMValueRef y_2 = LLVMBuildSIToFP(b, emm2_and, bld->vec_type, "y_2");
LLVMValueRef const_2 = lp_build_const_int_vec(gallivm, bld->type, 2);
LLVMValueRef const_4 = lp_build_const_int_vec(gallivm, bld->type, 4);
LLVMValueRef const_29 = lp_build_const_int_vec(gallivm, bld->type, 29);
LLVMValueRef sign_mask = lp_build_const_int_vec(gallivm, bld->type, 0x80000000);
/*
* Argument used for poly selection and sign bit determination
* is different for sin vs. cos.
*/
LLVMValueRef emm2_2 = cos ? LLVMBuildSub(b, emm2_and, const_2, "emm2_2") :
emm2_and;
LLVMValueRef sign_bit = cos ? LLVMBuildShl(b, LLVMBuildAnd(b, const_4,
LLVMBuildNot(b, emm2_2, ""), ""),
const_29, "sign_bit") :
LLVMBuildAnd(b, LLVMBuildXor(b, a_v4si,
LLVMBuildShl(b, emm2_add,
const_29, ""), ""),
sign_mask, "sign_bit");
/*
* get the polynom selection mask
* there is one polynom for 0 <= x <= Pi/4
* and another one for Pi/4<x<=Pi/2
* Both branches will be computed.
*
* emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
* emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
*/
LLVMValueRef emm2_3 = LLVMBuildAnd(b, emm2_2, const_2, "emm2_3");
LLVMValueRef poly_mask = lp_build_compare(gallivm,
int_type, PIPE_FUNC_EQUAL,
emm2_3, lp_build_const_int_vec(gallivm, bld->type, 0));
/*
* _PS_CONST(minus_cephes_DP1, -0.78515625);
* _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
* _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
*/
LLVMValueRef DP1 = lp_build_const_vec(gallivm, bld->type, -0.78515625);
LLVMValueRef DP2 = lp_build_const_vec(gallivm, bld->type, -2.4187564849853515625e-4);
LLVMValueRef DP3 = lp_build_const_vec(gallivm, bld->type, -3.77489497744594108e-8);
/*
* The magic pass: "Extended precision modular arithmetic"
* x = ((x - y * DP1) - y * DP2) - y * DP3;
*/
LLVMValueRef x_1 = lp_build_fmuladd(b, y_2, DP1, x_abs);
LLVMValueRef x_2 = lp_build_fmuladd(b, y_2, DP2, x_1);
LLVMValueRef x_3 = lp_build_fmuladd(b, y_2, DP3, x_2);
/*
* Evaluate the first polynom (0 <= x <= Pi/4)
*
* z = _mm_mul_ps(x,x);
*/
LLVMValueRef z = LLVMBuildFMul(b, x_3, x_3, "z");
/*
* _PS_CONST(coscof_p0, 2.443315711809948E-005);
* _PS_CONST(coscof_p1, -1.388731625493765E-003);
* _PS_CONST(coscof_p2, 4.166664568298827E-002);
*/
LLVMValueRef coscof_p0 = lp_build_const_vec(gallivm, bld->type, 2.443315711809948E-005);
LLVMValueRef coscof_p1 = lp_build_const_vec(gallivm, bld->type, -1.388731625493765E-003);
LLVMValueRef coscof_p2 = lp_build_const_vec(gallivm, bld->type, 4.166664568298827E-002);
/*
* y = *(v4sf*)_ps_coscof_p0;
* y = _mm_mul_ps(y, z);
*/
LLVMValueRef y_4 = lp_build_fmuladd(b, z, coscof_p0, coscof_p1);
LLVMValueRef y_6 = lp_build_fmuladd(b, y_4, z, coscof_p2);
LLVMValueRef y_7 = LLVMBuildFMul(b, y_6, z, "y_7");
LLVMValueRef y_8 = LLVMBuildFMul(b, y_7, z, "y_8");
/*
* tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
* y = _mm_sub_ps(y, tmp);
* y = _mm_add_ps(y, *(v4sf*)_ps_1);
*/
LLVMValueRef half = lp_build_const_vec(gallivm, bld->type, 0.5);
LLVMValueRef tmp = LLVMBuildFMul(b, z, half, "tmp");
LLVMValueRef y_9 = LLVMBuildFSub(b, y_8, tmp, "y_8");
LLVMValueRef one = lp_build_const_vec(gallivm, bld->type, 1.0);
LLVMValueRef y_10 = LLVMBuildFAdd(b, y_9, one, "y_9");
/*
* _PS_CONST(sincof_p0, -1.9515295891E-4);
* _PS_CONST(sincof_p1, 8.3321608736E-3);
* _PS_CONST(sincof_p2, -1.6666654611E-1);
*/
LLVMValueRef sincof_p0 = lp_build_const_vec(gallivm, bld->type, -1.9515295891E-4);
LLVMValueRef sincof_p1 = lp_build_const_vec(gallivm, bld->type, 8.3321608736E-3);
LLVMValueRef sincof_p2 = lp_build_const_vec(gallivm, bld->type, -1.6666654611E-1);
/*
* Evaluate the second polynom (Pi/4 <= x <= 0)
*
* y2 = *(v4sf*)_ps_sincof_p0;
* y2 = _mm_mul_ps(y2, z);
* y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
* y2 = _mm_mul_ps(y2, z);
* y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
* y2 = _mm_mul_ps(y2, z);
* y2 = _mm_mul_ps(y2, x);
* y2 = _mm_add_ps(y2, x);
*/
LLVMValueRef y2_4 = lp_build_fmuladd(b, z, sincof_p0, sincof_p1);
LLVMValueRef y2_6 = lp_build_fmuladd(b, y2_4, z, sincof_p2);
LLVMValueRef y2_7 = LLVMBuildFMul(b, y2_6, z, "y2_7");
LLVMValueRef y2_9 = lp_build_fmuladd(b, y2_7, x_3, x_3);
/*
* select the correct result from the two polynoms
* xmm3 = poly_mask;
* y2 = _mm_and_ps(xmm3, y2); //, xmm3);
* y = _mm_andnot_ps(xmm3, y);
* y = _mm_or_ps(y,y2);
*/
LLVMValueRef y2_i = LLVMBuildBitCast(b, y2_9, bld->int_vec_type, "y2_i");
LLVMValueRef y_i = LLVMBuildBitCast(b, y_10, bld->int_vec_type, "y_i");
LLVMValueRef y2_and = LLVMBuildAnd(b, y2_i, poly_mask, "y2_and");
LLVMValueRef poly_mask_inv = LLVMBuildNot(b, poly_mask, "poly_mask_inv");
LLVMValueRef y_and = LLVMBuildAnd(b, y_i, poly_mask_inv, "y_and");
LLVMValueRef y_combine = LLVMBuildOr(b, y_and, y2_and, "y_combine");
/*
* update the sign
* y = _mm_xor_ps(y, sign_bit);
*/
LLVMValueRef y_sign = LLVMBuildXor(b, y_combine, sign_bit, "y_sign");
LLVMValueRef y_result = LLVMBuildBitCast(b, y_sign, bld->vec_type, "y_result");
LLVMValueRef isfinite = lp_build_isfinite(bld, a);
/* clamp output to be within [-1, 1] */
y_result = lp_build_clamp(bld, y_result,
lp_build_const_vec(bld->gallivm, bld->type, -1.f),
lp_build_const_vec(bld->gallivm, bld->type, 1.f));
/* If a is -inf, inf or NaN then return NaN */
y_result = lp_build_select(bld, isfinite, y_result,
lp_build_const_vec(bld->gallivm, bld->type, NAN));
return y_result;
}
/**
* Generate sin(a)
*/
LLVMValueRef
lp_build_sin(struct lp_build_context *bld,
LLVMValueRef a)
{
return lp_build_sin_or_cos(bld, a, FALSE);
}
/**
* Generate cos(a)
*/
LLVMValueRef
lp_build_cos(struct lp_build_context *bld,
LLVMValueRef a)
{
return lp_build_sin_or_cos(bld, a, TRUE);
}
/**
* Generate pow(x, y)
*/
LLVMValueRef
lp_build_pow(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef y)
{
/* TODO: optimize the constant case */
if (gallivm_debug & GALLIVM_DEBUG_PERF &&
LLVMIsConstant(x) && LLVMIsConstant(y)) {
debug_printf("%s: inefficient/imprecise constant arithmetic\n",
__FUNCTION__);
}
return lp_build_exp2(bld, lp_build_mul(bld, lp_build_log2(bld, x), y));
}
/**
* Generate exp(x)
*/
LLVMValueRef
lp_build_exp(struct lp_build_context *bld,
LLVMValueRef x)
{
/* log2(e) = 1/log(2) */
LLVMValueRef log2e = lp_build_const_vec(bld->gallivm, bld->type,
1.4426950408889634);
assert(lp_check_value(bld->type, x));
return lp_build_exp2(bld, lp_build_mul(bld, log2e, x));
}
/**
* Generate log(x)
* Behavior is undefined with infs, 0s and nans
*/
LLVMValueRef
lp_build_log(struct lp_build_context *bld,
LLVMValueRef x)
{
/* log(2) */
LLVMValueRef log2 = lp_build_const_vec(bld->gallivm, bld->type,
0.69314718055994529);
assert(lp_check_value(bld->type, x));
return lp_build_mul(bld, log2, lp_build_log2(bld, x));
}
/**
* Generate log(x) that handles edge cases (infs, 0s and nans)
*/
LLVMValueRef
lp_build_log_safe(struct lp_build_context *bld,
LLVMValueRef x)
{
/* log(2) */
LLVMValueRef log2 = lp_build_const_vec(bld->gallivm, bld->type,
0.69314718055994529);
assert(lp_check_value(bld->type, x));
return lp_build_mul(bld, log2, lp_build_log2_safe(bld, x));
}
/**
* Generate polynomial.
* Ex: coeffs[0] + x * coeffs[1] + x^2 * coeffs[2].
*/
LLVMValueRef
lp_build_polynomial(struct lp_build_context *bld,
LLVMValueRef x,
const double *coeffs,
unsigned num_coeffs)
{
const struct lp_type type = bld->type;
LLVMValueRef even = NULL, odd = NULL;
LLVMValueRef x2;
unsigned i;
assert(lp_check_value(bld->type, x));
/* TODO: optimize the constant case */
if (gallivm_debug & GALLIVM_DEBUG_PERF &&
LLVMIsConstant(x)) {
debug_printf("%s: inefficient/imprecise constant arithmetic\n",
__FUNCTION__);
}
/*
* Calculate odd and even terms seperately to decrease data dependency
* Ex:
* c[0] + x^2 * c[2] + x^4 * c[4] ...
* + x * (c[1] + x^2 * c[3] + x^4 * c[5]) ...
*/
x2 = lp_build_mul(bld, x, x);
for (i = num_coeffs; i--; ) {
LLVMValueRef coeff;
coeff = lp_build_const_vec(bld->gallivm, type, coeffs[i]);
if (i % 2 == 0) {
if (even)
even = lp_build_mad(bld, x2, even, coeff);
else
even = coeff;
} else {
if (odd)
odd = lp_build_mad(bld, x2, odd, coeff);
else
odd = coeff;
}
}
if (odd)
return lp_build_mad(bld, odd, x, even);
else if (even)
return even;
else
return bld->undef;
}
/**
* Minimax polynomial fit of 2**x, in range [0, 1[
*/
const double lp_build_exp2_polynomial[] = {
#if EXP_POLY_DEGREE == 5
1.000000000000000000000, /*XXX: was 0.999999925063526176901, recompute others */
0.693153073200168932794,
0.240153617044375388211,
0.0558263180532956664775,
0.00898934009049466391101,
0.00187757667519147912699
#elif EXP_POLY_DEGREE == 4
1.00000259337069434683,
0.693003834469974940458,
0.24144275689150793076,
0.0520114606103070150235,
0.0135341679161270268764
#elif EXP_POLY_DEGREE == 3
0.999925218562710312959,
0.695833540494823811697,
0.226067155427249155588,
0.0780245226406372992967
#elif EXP_POLY_DEGREE == 2
1.00172476321474503578,
0.657636275736077639316,
0.33718943461968720704
#else
#error
#endif
};
LLVMValueRef
lp_build_exp2(struct lp_build_context *bld,
LLVMValueRef x)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
LLVMValueRef ipart = NULL;
LLVMValueRef fpart = NULL;
LLVMValueRef expipart = NULL;
LLVMValueRef expfpart = NULL;
LLVMValueRef res = NULL;
assert(lp_check_value(bld->type, x));
/* TODO: optimize the constant case */
if (gallivm_debug & GALLIVM_DEBUG_PERF &&
LLVMIsConstant(x)) {
debug_printf("%s: inefficient/imprecise constant arithmetic\n",
__FUNCTION__);
}
assert(type.floating && type.width == 32);
/* We want to preserve NaN and make sure than for exp2 if x > 128,
* the result is INF and if it's smaller than -126.9 the result is 0 */
x = lp_build_min_ext(bld, lp_build_const_vec(bld->gallivm, type, 128.0), x,
GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN);
x = lp_build_max_ext(bld, lp_build_const_vec(bld->gallivm, type, -126.99999),
x, GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN);
/* ipart = floor(x) */
/* fpart = x - ipart */
lp_build_ifloor_fract(bld, x, &ipart, &fpart);
/* expipart = (float) (1 << ipart) */
expipart = LLVMBuildAdd(builder, ipart,
lp_build_const_int_vec(bld->gallivm, type, 127), "");
expipart = LLVMBuildShl(builder, expipart,
lp_build_const_int_vec(bld->gallivm, type, 23), "");
expipart = LLVMBuildBitCast(builder, expipart, vec_type, "");
expfpart = lp_build_polynomial(bld, fpart, lp_build_exp2_polynomial,
ARRAY_SIZE(lp_build_exp2_polynomial));
res = LLVMBuildFMul(builder, expipart, expfpart, "");
return res;
}
/**
* Extract the exponent of a IEEE-754 floating point value.
*
* Optionally apply an integer bias.
*
* Result is an integer value with
*
* ifloor(log2(x)) + bias
*/
LLVMValueRef
lp_build_extract_exponent(struct lp_build_context *bld,
LLVMValueRef x,
int bias)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
unsigned mantissa = lp_mantissa(type);
LLVMValueRef res;
assert(type.floating);
assert(lp_check_value(bld->type, x));
x = LLVMBuildBitCast(builder, x, bld->int_vec_type, "");
res = LLVMBuildLShr(builder, x,
lp_build_const_int_vec(bld->gallivm, type, mantissa), "");
res = LLVMBuildAnd(builder, res,
lp_build_const_int_vec(bld->gallivm, type, 255), "");
res = LLVMBuildSub(builder, res,
lp_build_const_int_vec(bld->gallivm, type, 127 - bias), "");
return res;
}
/**
* Extract the mantissa of the a floating.
*
* Result is a floating point value with
*
* x / floor(log2(x))
*/
LLVMValueRef
lp_build_extract_mantissa(struct lp_build_context *bld,
LLVMValueRef x)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
unsigned mantissa = lp_mantissa(type);
LLVMValueRef mantmask = lp_build_const_int_vec(bld->gallivm, type,
(1ULL << mantissa) - 1);
LLVMValueRef one = LLVMConstBitCast(bld->one, bld->int_vec_type);
LLVMValueRef res;
assert(lp_check_value(bld->type, x));
assert(type.floating);
x = LLVMBuildBitCast(builder, x, bld->int_vec_type, "");
/* res = x / 2**ipart */
res = LLVMBuildAnd(builder, x, mantmask, "");
res = LLVMBuildOr(builder, res, one, "");
res = LLVMBuildBitCast(builder, res, bld->vec_type, "");
return res;
}
/**
* Minimax polynomial fit of log2((1.0 + sqrt(x))/(1.0 - sqrt(x)))/sqrt(x) ,for x in range of [0, 1/9[
* These coefficients can be generate with
* http://www.boost.org/doc/libs/1_36_0/libs/math/doc/sf_and_dist/html/math_toolkit/toolkit/internals2/minimax.html
*/
const double lp_build_log2_polynomial[] = {
#if LOG_POLY_DEGREE == 5
2.88539008148777786488L,
0.961796878841293367824L,
0.577058946784739859012L,
0.412914355135828735411L,
0.308591899232910175289L,
0.352376952300281371868L,
#elif LOG_POLY_DEGREE == 4
2.88539009343309178325L,
0.961791550404184197881L,
0.577440339438736392009L,
0.403343858251329912514L,
0.406718052498846252698L,
#elif LOG_POLY_DEGREE == 3
2.88538959748872753838L,
0.961932915889597772928L,
0.571118517972136195241L,
0.493997535084709500285L,
#else
#error
#endif
};
/**
* See http://www.devmaster.net/forums/showthread.php?p=43580
* http://en.wikipedia.org/wiki/Logarithm#Calculation
* http://www.nezumi.demon.co.uk/consult/logx.htm
*
* If handle_edge_cases is true the function will perform computations
* to match the required D3D10+ behavior for each of the edge cases.
* That means that if input is:
* - less than zero (to and including -inf) then NaN will be returned
* - equal to zero (-denorm, -0, +0 or +denorm), then -inf will be returned
* - +infinity, then +infinity will be returned
* - NaN, then NaN will be returned
*
* Those checks are fairly expensive so if you don't need them make sure
* handle_edge_cases is false.
*/
void
lp_build_log2_approx(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef *p_exp,
LLVMValueRef *p_floor_log2,
LLVMValueRef *p_log2,
boolean handle_edge_cases)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
LLVMValueRef expmask = lp_build_const_int_vec(bld->gallivm, type, 0x7f800000);
LLVMValueRef mantmask = lp_build_const_int_vec(bld->gallivm, type, 0x007fffff);
LLVMValueRef one = LLVMConstBitCast(bld->one, int_vec_type);
LLVMValueRef i = NULL;
LLVMValueRef y = NULL;
LLVMValueRef z = NULL;
LLVMValueRef exp = NULL;
LLVMValueRef mant = NULL;
LLVMValueRef logexp = NULL;
LLVMValueRef p_z = NULL;
LLVMValueRef res = NULL;
assert(lp_check_value(bld->type, x));
if(p_exp || p_floor_log2 || p_log2) {
/* TODO: optimize the constant case */
if (gallivm_debug & GALLIVM_DEBUG_PERF &&
LLVMIsConstant(x)) {
debug_printf("%s: inefficient/imprecise constant arithmetic\n",
__FUNCTION__);
}
assert(type.floating && type.width == 32);
/*
* We don't explicitly handle denormalized numbers. They will yield a
* result in the neighbourhood of -127, which appears to be adequate
* enough.
*/
i = LLVMBuildBitCast(builder, x, int_vec_type, "");
/* exp = (float) exponent(x) */
exp = LLVMBuildAnd(builder, i, expmask, "");
}
if(p_floor_log2 || p_log2) {
logexp = LLVMBuildLShr(builder, exp, lp_build_const_int_vec(bld->gallivm, type, 23), "");
logexp = LLVMBuildSub(builder, logexp, lp_build_const_int_vec(bld->gallivm, type, 127), "");
logexp = LLVMBuildSIToFP(builder, logexp, vec_type, "");
}
if (p_log2) {
/* mant = 1 + (float) mantissa(x) */
mant = LLVMBuildAnd(builder, i, mantmask, "");
mant = LLVMBuildOr(builder, mant, one, "");
mant = LLVMBuildBitCast(builder, mant, vec_type, "");
/* y = (mant - 1) / (mant + 1) */
y = lp_build_div(bld,
lp_build_sub(bld, mant, bld->one),
lp_build_add(bld, mant, bld->one)
);
/* z = y^2 */
z = lp_build_mul(bld, y, y);
/* compute P(z) */
p_z = lp_build_polynomial(bld, z, lp_build_log2_polynomial,
ARRAY_SIZE(lp_build_log2_polynomial));
/* y * P(z) + logexp */
res = lp_build_mad(bld, y, p_z, logexp);
if (type.floating && handle_edge_cases) {
LLVMValueRef negmask, infmask, zmask;
negmask = lp_build_cmp(bld, PIPE_FUNC_LESS, x,
lp_build_const_vec(bld->gallivm, type, 0.0f));
zmask = lp_build_cmp(bld, PIPE_FUNC_EQUAL, x,
lp_build_const_vec(bld->gallivm, type, 0.0f));
infmask = lp_build_cmp(bld, PIPE_FUNC_GEQUAL, x,
lp_build_const_vec(bld->gallivm, type, INFINITY));
/* If x is qual to inf make sure we return inf */
res = lp_build_select(bld, infmask,
lp_build_const_vec(bld->gallivm, type, INFINITY),
res);
/* If x is qual to 0, return -inf */
res = lp_build_select(bld, zmask,
lp_build_const_vec(bld->gallivm, type, -INFINITY),
res);
/* If x is nan or less than 0, return nan */
res = lp_build_select(bld, negmask,
lp_build_const_vec(bld->gallivm, type, NAN),
res);
}
}
if (p_exp) {
exp = LLVMBuildBitCast(builder, exp, vec_type, "");
*p_exp = exp;
}
if (p_floor_log2)
*p_floor_log2 = logexp;
if (p_log2)
*p_log2 = res;
}
/*
* log2 implementation which doesn't have special code to
* handle edge cases (-inf, 0, inf, NaN). It's faster but
* the results for those cases are undefined.
*/
LLVMValueRef
lp_build_log2(struct lp_build_context *bld,
LLVMValueRef x)
{
LLVMValueRef res;
lp_build_log2_approx(bld, x, NULL, NULL, &res, FALSE);
return res;
}
/*
* Version of log2 which handles all edge cases.
* Look at documentation of lp_build_log2_approx for
* description of the behavior for each of the edge cases.
*/
LLVMValueRef
lp_build_log2_safe(struct lp_build_context *bld,
LLVMValueRef x)
{
LLVMValueRef res;
lp_build_log2_approx(bld, x, NULL, NULL, &res, TRUE);
return res;
}
/**
* Faster (and less accurate) log2.
*
* log2(x) = floor(log2(x)) - 1 + x / 2**floor(log2(x))
*
* Piece-wise linear approximation, with exact results when x is a
* power of two.
*
* See http://www.flipcode.com/archives/Fast_log_Function.shtml
*/
LLVMValueRef
lp_build_fast_log2(struct lp_build_context *bld,
LLVMValueRef x)
{
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMValueRef ipart;
LLVMValueRef fpart;
assert(lp_check_value(bld->type, x));
assert(bld->type.floating);
/* ipart = floor(log2(x)) - 1 */
ipart = lp_build_extract_exponent(bld, x, -1);
ipart = LLVMBuildSIToFP(builder, ipart, bld->vec_type, "");
/* fpart = x / 2**ipart */
fpart = lp_build_extract_mantissa(bld, x);
/* ipart + fpart */
return LLVMBuildFAdd(builder, ipart, fpart, "");
}
/**
* Fast implementation of iround(log2(x)).
*
* Not an approximation -- it should give accurate results all the time.
*/
LLVMValueRef
lp_build_ilog2(struct lp_build_context *bld,
LLVMValueRef x)
{
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMValueRef sqrt2 = lp_build_const_vec(bld->gallivm, bld->type, M_SQRT2);
LLVMValueRef ipart;
assert(bld->type.floating);
assert(lp_check_value(bld->type, x));
/* x * 2^(0.5) i.e., add 0.5 to the log2(x) */
x = LLVMBuildFMul(builder, x, sqrt2, "");
/* ipart = floor(log2(x) + 0.5) */
ipart = lp_build_extract_exponent(bld, x, 0);
return ipart;
}
LLVMValueRef
lp_build_mod(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef y)
{
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMValueRef res;
const struct lp_type type = bld->type;
assert(lp_check_value(type, x));
assert(lp_check_value(type, y));
if (type.floating)
res = LLVMBuildFRem(builder, x, y, "");
else if (type.sign)
res = LLVMBuildSRem(builder, x, y, "");
else
res = LLVMBuildURem(builder, x, y, "");
return res;
}
/*
* For floating inputs it creates and returns a mask
* which is all 1's for channels which are NaN.
* Channels inside x which are not NaN will be 0.
*/
LLVMValueRef
lp_build_isnan(struct lp_build_context *bld,
LLVMValueRef x)
{
LLVMValueRef mask;
LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, bld->type);
assert(bld->type.floating);
assert(lp_check_value(bld->type, x));
mask = LLVMBuildFCmp(bld->gallivm->builder, LLVMRealOEQ, x, x,
"isnotnan");
mask = LLVMBuildNot(bld->gallivm->builder, mask, "");
mask = LLVMBuildSExt(bld->gallivm->builder, mask, int_vec_type, "isnan");
return mask;
}
/* Returns all 1's for floating point numbers that are
* finite numbers and returns all zeros for -inf,
* inf and nan's */
LLVMValueRef
lp_build_isfinite(struct lp_build_context *bld,
LLVMValueRef x)
{
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, bld->type);
struct lp_type int_type = lp_int_type(bld->type);
LLVMValueRef intx = LLVMBuildBitCast(builder, x, int_vec_type, "");
LLVMValueRef infornan32 = lp_build_const_int_vec(bld->gallivm, bld->type,
0x7f800000);
if (!bld->type.floating) {
return lp_build_const_int_vec(bld->gallivm, bld->type, 0);
}
assert(bld->type.floating);
assert(lp_check_value(bld->type, x));
assert(bld->type.width == 32);
intx = LLVMBuildAnd(builder, intx, infornan32, "");
return lp_build_compare(bld->gallivm, int_type, PIPE_FUNC_NOTEQUAL,
intx, infornan32);
}
/*
* Returns true if the number is nan or inf and false otherwise.
* The input has to be a floating point vector.
*/
LLVMValueRef
lp_build_is_inf_or_nan(struct gallivm_state *gallivm,
const struct lp_type type,
LLVMValueRef x)
{
LLVMBuilderRef builder = gallivm->builder;
struct lp_type int_type = lp_int_type(type);
LLVMValueRef const0 = lp_build_const_int_vec(gallivm, int_type,
0x7f800000);
LLVMValueRef ret;
assert(type.floating);
ret = LLVMBuildBitCast(builder, x, lp_build_vec_type(gallivm, int_type), "");
ret = LLVMBuildAnd(builder, ret, const0, "");
ret = lp_build_compare(gallivm, int_type, PIPE_FUNC_EQUAL,
ret, const0);
return ret;
}
LLVMValueRef
lp_build_fpstate_get(struct gallivm_state *gallivm)
{
if (util_cpu_caps.has_sse) {
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef mxcsr_ptr = lp_build_alloca(
gallivm,
LLVMInt32TypeInContext(gallivm->context),
"mxcsr_ptr");
LLVMValueRef mxcsr_ptr8 = LLVMBuildPointerCast(builder, mxcsr_ptr,
LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0), "");
lp_build_intrinsic(builder,
"llvm.x86.sse.stmxcsr",
LLVMVoidTypeInContext(gallivm->context),
&mxcsr_ptr8, 1, 0);
return mxcsr_ptr;
}
return 0;
}
void
lp_build_fpstate_set_denorms_zero(struct gallivm_state *gallivm,
boolean zero)
{
if (util_cpu_caps.has_sse) {
/* turn on DAZ (64) | FTZ (32768) = 32832 if available */
int daz_ftz = _MM_FLUSH_ZERO_MASK;
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef mxcsr_ptr = lp_build_fpstate_get(gallivm);
LLVMValueRef mxcsr =
LLVMBuildLoad(builder, mxcsr_ptr, "mxcsr");
if (util_cpu_caps.has_daz) {
/* Enable denormals are zero mode */
daz_ftz |= _MM_DENORMALS_ZERO_MASK;
}
if (zero) {
mxcsr = LLVMBuildOr(builder, mxcsr,
LLVMConstInt(LLVMTypeOf(mxcsr), daz_ftz, 0), "");
} else {
mxcsr = LLVMBuildAnd(builder, mxcsr,
LLVMConstInt(LLVMTypeOf(mxcsr), ~daz_ftz, 0), "");
}
LLVMBuildStore(builder, mxcsr, mxcsr_ptr);
lp_build_fpstate_set(gallivm, mxcsr_ptr);
}
}
void
lp_build_fpstate_set(struct gallivm_state *gallivm,
LLVMValueRef mxcsr_ptr)
{
if (util_cpu_caps.has_sse) {
LLVMBuilderRef builder = gallivm->builder;
mxcsr_ptr = LLVMBuildPointerCast(builder, mxcsr_ptr,
LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0), "");
lp_build_intrinsic(builder,
"llvm.x86.sse.ldmxcsr",
LLVMVoidTypeInContext(gallivm->context),
&mxcsr_ptr, 1, 0);
}
}