/**************************************************************************
*
* Copyright 2007-2008 VMware, Inc.
* All Rights Reserved.
* Copyright 2009-2010 VMware, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* TGSI interpreter/executor.
*
* Flow control information:
*
* Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
* flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
* care since a condition may be true for some quad components but false
* for other components.
*
* We basically execute all statements (even if they're in the part of
* an IF/ELSE clause that's "not taken") and use a special mask to
* control writing to destination registers. This is the ExecMask.
* See store_dest().
*
* The ExecMask is computed from three other masks (CondMask, LoopMask and
* ContMask) which are controlled by the flow control instructions (namely:
* (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
*
*
* Authors:
* Michal Krol
* Brian Paul
*/
#include "pipe/p_compiler.h"
#include "pipe/p_state.h"
#include "pipe/p_shader_tokens.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_util.h"
#include "tgsi_exec.h"
#include "util/u_half.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "util/rounding.h"
#define DEBUG_EXECUTION 0
#define FAST_MATH 0
#define TILE_TOP_LEFT 0
#define TILE_TOP_RIGHT 1
#define TILE_BOTTOM_LEFT 2
#define TILE_BOTTOM_RIGHT 3
union tgsi_double_channel {
double d[TGSI_QUAD_SIZE];
unsigned u[TGSI_QUAD_SIZE][2];
uint64_t u64[TGSI_QUAD_SIZE];
int64_t i64[TGSI_QUAD_SIZE];
};
struct tgsi_double_vector {
union tgsi_double_channel xy;
union tgsi_double_channel zw;
};
static void
micro_abs(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = fabsf(src->f[0]);
dst->f[1] = fabsf(src->f[1]);
dst->f[2] = fabsf(src->f[2]);
dst->f[3] = fabsf(src->f[3]);
}
static void
micro_arl(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i[0] = (int)floorf(src->f[0]);
dst->i[1] = (int)floorf(src->f[1]);
dst->i[2] = (int)floorf(src->f[2]);
dst->i[3] = (int)floorf(src->f[3]);
}
static void
micro_arr(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i[0] = (int)floorf(src->f[0] + 0.5f);
dst->i[1] = (int)floorf(src->f[1] + 0.5f);
dst->i[2] = (int)floorf(src->f[2] + 0.5f);
dst->i[3] = (int)floorf(src->f[3] + 0.5f);
}
static void
micro_ceil(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = ceilf(src->f[0]);
dst->f[1] = ceilf(src->f[1]);
dst->f[2] = ceilf(src->f[2]);
dst->f[3] = ceilf(src->f[3]);
}
static void
micro_cmp(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2)
{
dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
}
static void
micro_cos(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = cosf(src->f[0]);
dst->f[1] = cosf(src->f[1]);
dst->f[2] = cosf(src->f[2]);
dst->f[3] = cosf(src->f[3]);
}
static void
micro_d2f(union tgsi_exec_channel *dst,
const union tgsi_double_channel *src)
{
dst->f[0] = (float)src->d[0];
dst->f[1] = (float)src->d[1];
dst->f[2] = (float)src->d[2];
dst->f[3] = (float)src->d[3];
}
static void
micro_d2i(union tgsi_exec_channel *dst,
const union tgsi_double_channel *src)
{
dst->i[0] = (int)src->d[0];
dst->i[1] = (int)src->d[1];
dst->i[2] = (int)src->d[2];
dst->i[3] = (int)src->d[3];
}
static void
micro_d2u(union tgsi_exec_channel *dst,
const union tgsi_double_channel *src)
{
dst->u[0] = (unsigned)src->d[0];
dst->u[1] = (unsigned)src->d[1];
dst->u[2] = (unsigned)src->d[2];
dst->u[3] = (unsigned)src->d[3];
}
static void
micro_dabs(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = src->d[0] >= 0.0 ? src->d[0] : -src->d[0];
dst->d[1] = src->d[1] >= 0.0 ? src->d[1] : -src->d[1];
dst->d[2] = src->d[2] >= 0.0 ? src->d[2] : -src->d[2];
dst->d[3] = src->d[3] >= 0.0 ? src->d[3] : -src->d[3];
}
static void
micro_dadd(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = src[0].d[0] + src[1].d[0];
dst->d[1] = src[0].d[1] + src[1].d[1];
dst->d[2] = src[0].d[2] + src[1].d[2];
dst->d[3] = src[0].d[3] + src[1].d[3];
}
static void
micro_ddiv(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = src[0].d[0] / src[1].d[0];
dst->d[1] = src[0].d[1] / src[1].d[1];
dst->d[2] = src[0].d[2] / src[1].d[2];
dst->d[3] = src[0].d[3] / src[1].d[3];
}
static void
micro_ddx(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] =
dst->f[1] =
dst->f[2] =
dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
}
static void
micro_ddy(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] =
dst->f[1] =
dst->f[2] =
dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
}
static void
micro_dmul(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = src[0].d[0] * src[1].d[0];
dst->d[1] = src[0].d[1] * src[1].d[1];
dst->d[2] = src[0].d[2] * src[1].d[2];
dst->d[3] = src[0].d[3] * src[1].d[3];
}
static void
micro_dmax(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = src[0].d[0] > src[1].d[0] ? src[0].d[0] : src[1].d[0];
dst->d[1] = src[0].d[1] > src[1].d[1] ? src[0].d[1] : src[1].d[1];
dst->d[2] = src[0].d[2] > src[1].d[2] ? src[0].d[2] : src[1].d[2];
dst->d[3] = src[0].d[3] > src[1].d[3] ? src[0].d[3] : src[1].d[3];
}
static void
micro_dmin(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = src[0].d[0] < src[1].d[0] ? src[0].d[0] : src[1].d[0];
dst->d[1] = src[0].d[1] < src[1].d[1] ? src[0].d[1] : src[1].d[1];
dst->d[2] = src[0].d[2] < src[1].d[2] ? src[0].d[2] : src[1].d[2];
dst->d[3] = src[0].d[3] < src[1].d[3] ? src[0].d[3] : src[1].d[3];
}
static void
micro_dneg(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = -src->d[0];
dst->d[1] = -src->d[1];
dst->d[2] = -src->d[2];
dst->d[3] = -src->d[3];
}
static void
micro_dslt(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u[0][0] = src[0].d[0] < src[1].d[0] ? ~0U : 0U;
dst->u[1][0] = src[0].d[1] < src[1].d[1] ? ~0U : 0U;
dst->u[2][0] = src[0].d[2] < src[1].d[2] ? ~0U : 0U;
dst->u[3][0] = src[0].d[3] < src[1].d[3] ? ~0U : 0U;
}
static void
micro_dsne(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u[0][0] = src[0].d[0] != src[1].d[0] ? ~0U : 0U;
dst->u[1][0] = src[0].d[1] != src[1].d[1] ? ~0U : 0U;
dst->u[2][0] = src[0].d[2] != src[1].d[2] ? ~0U : 0U;
dst->u[3][0] = src[0].d[3] != src[1].d[3] ? ~0U : 0U;
}
static void
micro_dsge(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u[0][0] = src[0].d[0] >= src[1].d[0] ? ~0U : 0U;
dst->u[1][0] = src[0].d[1] >= src[1].d[1] ? ~0U : 0U;
dst->u[2][0] = src[0].d[2] >= src[1].d[2] ? ~0U : 0U;
dst->u[3][0] = src[0].d[3] >= src[1].d[3] ? ~0U : 0U;
}
static void
micro_dseq(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u[0][0] = src[0].d[0] == src[1].d[0] ? ~0U : 0U;
dst->u[1][0] = src[0].d[1] == src[1].d[1] ? ~0U : 0U;
dst->u[2][0] = src[0].d[2] == src[1].d[2] ? ~0U : 0U;
dst->u[3][0] = src[0].d[3] == src[1].d[3] ? ~0U : 0U;
}
static void
micro_drcp(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = 1.0 / src->d[0];
dst->d[1] = 1.0 / src->d[1];
dst->d[2] = 1.0 / src->d[2];
dst->d[3] = 1.0 / src->d[3];
}
static void
micro_dsqrt(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = sqrt(src->d[0]);
dst->d[1] = sqrt(src->d[1]);
dst->d[2] = sqrt(src->d[2]);
dst->d[3] = sqrt(src->d[3]);
}
static void
micro_drsq(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = 1.0 / sqrt(src->d[0]);
dst->d[1] = 1.0 / sqrt(src->d[1]);
dst->d[2] = 1.0 / sqrt(src->d[2]);
dst->d[3] = 1.0 / sqrt(src->d[3]);
}
static void
micro_dmad(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = src[0].d[0] * src[1].d[0] + src[2].d[0];
dst->d[1] = src[0].d[1] * src[1].d[1] + src[2].d[1];
dst->d[2] = src[0].d[2] * src[1].d[2] + src[2].d[2];
dst->d[3] = src[0].d[3] * src[1].d[3] + src[2].d[3];
}
static void
micro_dfrac(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = src->d[0] - floor(src->d[0]);
dst->d[1] = src->d[1] - floor(src->d[1]);
dst->d[2] = src->d[2] - floor(src->d[2]);
dst->d[3] = src->d[3] - floor(src->d[3]);
}
static void
micro_dldexp(union tgsi_double_channel *dst,
const union tgsi_double_channel *src0,
union tgsi_exec_channel *src1)
{
dst->d[0] = ldexp(src0->d[0], src1->i[0]);
dst->d[1] = ldexp(src0->d[1], src1->i[1]);
dst->d[2] = ldexp(src0->d[2], src1->i[2]);
dst->d[3] = ldexp(src0->d[3], src1->i[3]);
}
static void
micro_dfracexp(union tgsi_double_channel *dst,
union tgsi_exec_channel *dst_exp,
const union tgsi_double_channel *src)
{
dst->d[0] = frexp(src->d[0], &dst_exp->i[0]);
dst->d[1] = frexp(src->d[1], &dst_exp->i[1]);
dst->d[2] = frexp(src->d[2], &dst_exp->i[2]);
dst->d[3] = frexp(src->d[3], &dst_exp->i[3]);
}
static void
micro_exp2(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
#if FAST_MATH
dst->f[0] = util_fast_exp2(src->f[0]);
dst->f[1] = util_fast_exp2(src->f[1]);
dst->f[2] = util_fast_exp2(src->f[2]);
dst->f[3] = util_fast_exp2(src->f[3]);
#else
#if DEBUG
/* Inf is okay for this instruction, so clamp it to silence assertions. */
uint i;
union tgsi_exec_channel clamped;
for (i = 0; i < 4; i++) {
if (src->f[i] > 127.99999f) {
clamped.f[i] = 127.99999f;
} else if (src->f[i] < -126.99999f) {
clamped.f[i] = -126.99999f;
} else {
clamped.f[i] = src->f[i];
}
}
src = &clamped;
#endif /* DEBUG */
dst->f[0] = powf(2.0f, src->f[0]);
dst->f[1] = powf(2.0f, src->f[1]);
dst->f[2] = powf(2.0f, src->f[2]);
dst->f[3] = powf(2.0f, src->f[3]);
#endif /* FAST_MATH */
}
static void
micro_f2d(union tgsi_double_channel *dst,
const union tgsi_exec_channel *src)
{
dst->d[0] = (double)src->f[0];
dst->d[1] = (double)src->f[1];
dst->d[2] = (double)src->f[2];
dst->d[3] = (double)src->f[3];
}
static void
micro_flr(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = floorf(src->f[0]);
dst->f[1] = floorf(src->f[1]);
dst->f[2] = floorf(src->f[2]);
dst->f[3] = floorf(src->f[3]);
}
static void
micro_frc(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = src->f[0] - floorf(src->f[0]);
dst->f[1] = src->f[1] - floorf(src->f[1]);
dst->f[2] = src->f[2] - floorf(src->f[2]);
dst->f[3] = src->f[3] - floorf(src->f[3]);
}
static void
micro_i2d(union tgsi_double_channel *dst,
const union tgsi_exec_channel *src)
{
dst->d[0] = (double)src->i[0];
dst->d[1] = (double)src->i[1];
dst->d[2] = (double)src->i[2];
dst->d[3] = (double)src->i[3];
}
static void
micro_iabs(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
}
static void
micro_ineg(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i[0] = -src->i[0];
dst->i[1] = -src->i[1];
dst->i[2] = -src->i[2];
dst->i[3] = -src->i[3];
}
static void
micro_lg2(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
#if FAST_MATH
dst->f[0] = util_fast_log2(src->f[0]);
dst->f[1] = util_fast_log2(src->f[1]);
dst->f[2] = util_fast_log2(src->f[2]);
dst->f[3] = util_fast_log2(src->f[3]);
#else
dst->f[0] = logf(src->f[0]) * 1.442695f;
dst->f[1] = logf(src->f[1]) * 1.442695f;
dst->f[2] = logf(src->f[2]) * 1.442695f;
dst->f[3] = logf(src->f[3]) * 1.442695f;
#endif
}
static void
micro_lrp(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2)
{
dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
}
static void
micro_mad(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2)
{
dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
}
static void
micro_mov(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->u[0] = src->u[0];
dst->u[1] = src->u[1];
dst->u[2] = src->u[2];
dst->u[3] = src->u[3];
}
static void
micro_rcp(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
#if 0 /* for debugging */
assert(src->f[0] != 0.0f);
assert(src->f[1] != 0.0f);
assert(src->f[2] != 0.0f);
assert(src->f[3] != 0.0f);
#endif
dst->f[0] = 1.0f / src->f[0];
dst->f[1] = 1.0f / src->f[1];
dst->f[2] = 1.0f / src->f[2];
dst->f[3] = 1.0f / src->f[3];
}
static void
micro_rnd(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = _mesa_roundevenf(src->f[0]);
dst->f[1] = _mesa_roundevenf(src->f[1]);
dst->f[2] = _mesa_roundevenf(src->f[2]);
dst->f[3] = _mesa_roundevenf(src->f[3]);
}
static void
micro_rsq(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
#if 0 /* for debugging */
assert(src->f[0] != 0.0f);
assert(src->f[1] != 0.0f);
assert(src->f[2] != 0.0f);
assert(src->f[3] != 0.0f);
#endif
dst->f[0] = 1.0f / sqrtf(src->f[0]);
dst->f[1] = 1.0f / sqrtf(src->f[1]);
dst->f[2] = 1.0f / sqrtf(src->f[2]);
dst->f[3] = 1.0f / sqrtf(src->f[3]);
}
static void
micro_sqrt(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = sqrtf(src->f[0]);
dst->f[1] = sqrtf(src->f[1]);
dst->f[2] = sqrtf(src->f[2]);
dst->f[3] = sqrtf(src->f[3]);
}
static void
micro_seq(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
}
static void
micro_sge(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
}
static void
micro_sgn(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
}
static void
micro_isgn(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0;
dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0;
dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0;
dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0;
}
static void
micro_sgt(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
}
static void
micro_sin(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = sinf(src->f[0]);
dst->f[1] = sinf(src->f[1]);
dst->f[2] = sinf(src->f[2]);
dst->f[3] = sinf(src->f[3]);
}
static void
micro_sle(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
}
static void
micro_slt(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
}
static void
micro_sne(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
}
static void
micro_trunc(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = truncf(src->f[0]);
dst->f[1] = truncf(src->f[1]);
dst->f[2] = truncf(src->f[2]);
dst->f[3] = truncf(src->f[3]);
}
static void
micro_u2d(union tgsi_double_channel *dst,
const union tgsi_exec_channel *src)
{
dst->d[0] = (double)src->u[0];
dst->d[1] = (double)src->u[1];
dst->d[2] = (double)src->u[2];
dst->d[3] = (double)src->u[3];
}
static void
micro_i64abs(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->i64[0] = src->i64[0] >= 0.0 ? src->i64[0] : -src->i64[0];
dst->i64[1] = src->i64[1] >= 0.0 ? src->i64[1] : -src->i64[1];
dst->i64[2] = src->i64[2] >= 0.0 ? src->i64[2] : -src->i64[2];
dst->i64[3] = src->i64[3] >= 0.0 ? src->i64[3] : -src->i64[3];
}
static void
micro_i64sgn(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->i64[0] = src->i64[0] < 0 ? -1 : src->i64[0] > 0 ? 1 : 0;
dst->i64[1] = src->i64[1] < 0 ? -1 : src->i64[1] > 0 ? 1 : 0;
dst->i64[2] = src->i64[2] < 0 ? -1 : src->i64[2] > 0 ? 1 : 0;
dst->i64[3] = src->i64[3] < 0 ? -1 : src->i64[3] > 0 ? 1 : 0;
}
static void
micro_i64neg(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->i64[0] = -src->i64[0];
dst->i64[1] = -src->i64[1];
dst->i64[2] = -src->i64[2];
dst->i64[3] = -src->i64[3];
}
static void
micro_u64seq(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u[0][0] = src[0].u64[0] == src[1].u64[0] ? ~0U : 0U;
dst->u[1][0] = src[0].u64[1] == src[1].u64[1] ? ~0U : 0U;
dst->u[2][0] = src[0].u64[2] == src[1].u64[2] ? ~0U : 0U;
dst->u[3][0] = src[0].u64[3] == src[1].u64[3] ? ~0U : 0U;
}
static void
micro_u64sne(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u[0][0] = src[0].u64[0] != src[1].u64[0] ? ~0U : 0U;
dst->u[1][0] = src[0].u64[1] != src[1].u64[1] ? ~0U : 0U;
dst->u[2][0] = src[0].u64[2] != src[1].u64[2] ? ~0U : 0U;
dst->u[3][0] = src[0].u64[3] != src[1].u64[3] ? ~0U : 0U;
}
static void
micro_i64slt(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u[0][0] = src[0].i64[0] < src[1].i64[0] ? ~0U : 0U;
dst->u[1][0] = src[0].i64[1] < src[1].i64[1] ? ~0U : 0U;
dst->u[2][0] = src[0].i64[2] < src[1].i64[2] ? ~0U : 0U;
dst->u[3][0] = src[0].i64[3] < src[1].i64[3] ? ~0U : 0U;
}
static void
micro_u64slt(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u[0][0] = src[0].u64[0] < src[1].u64[0] ? ~0U : 0U;
dst->u[1][0] = src[0].u64[1] < src[1].u64[1] ? ~0U : 0U;
dst->u[2][0] = src[0].u64[2] < src[1].u64[2] ? ~0U : 0U;
dst->u[3][0] = src[0].u64[3] < src[1].u64[3] ? ~0U : 0U;
}
static void
micro_i64sge(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u[0][0] = src[0].i64[0] >= src[1].i64[0] ? ~0U : 0U;
dst->u[1][0] = src[0].i64[1] >= src[1].i64[1] ? ~0U : 0U;
dst->u[2][0] = src[0].i64[2] >= src[1].i64[2] ? ~0U : 0U;
dst->u[3][0] = src[0].i64[3] >= src[1].i64[3] ? ~0U : 0U;
}
static void
micro_u64sge(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u[0][0] = src[0].u64[0] >= src[1].u64[0] ? ~0U : 0U;
dst->u[1][0] = src[0].u64[1] >= src[1].u64[1] ? ~0U : 0U;
dst->u[2][0] = src[0].u64[2] >= src[1].u64[2] ? ~0U : 0U;
dst->u[3][0] = src[0].u64[3] >= src[1].u64[3] ? ~0U : 0U;
}
static void
micro_u64max(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u64[0] = src[0].u64[0] > src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
dst->u64[1] = src[0].u64[1] > src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
dst->u64[2] = src[0].u64[2] > src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
dst->u64[3] = src[0].u64[3] > src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
}
static void
micro_i64max(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->i64[0] = src[0].i64[0] > src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
dst->i64[1] = src[0].i64[1] > src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
dst->i64[2] = src[0].i64[2] > src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
dst->i64[3] = src[0].i64[3] > src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
}
static void
micro_u64min(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u64[0] = src[0].u64[0] < src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
dst->u64[1] = src[0].u64[1] < src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
dst->u64[2] = src[0].u64[2] < src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
dst->u64[3] = src[0].u64[3] < src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
}
static void
micro_i64min(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->i64[0] = src[0].i64[0] < src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
dst->i64[1] = src[0].i64[1] < src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
dst->i64[2] = src[0].i64[2] < src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
dst->i64[3] = src[0].i64[3] < src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
}
static void
micro_u64add(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u64[0] = src[0].u64[0] + src[1].u64[0];
dst->u64[1] = src[0].u64[1] + src[1].u64[1];
dst->u64[2] = src[0].u64[2] + src[1].u64[2];
dst->u64[3] = src[0].u64[3] + src[1].u64[3];
}
static void
micro_u64mul(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u64[0] = src[0].u64[0] * src[1].u64[0];
dst->u64[1] = src[0].u64[1] * src[1].u64[1];
dst->u64[2] = src[0].u64[2] * src[1].u64[2];
dst->u64[3] = src[0].u64[3] * src[1].u64[3];
}
static void
micro_u64div(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u64[0] = src[1].u64[0] ? src[0].u64[0] / src[1].u64[0] : ~0ull;
dst->u64[1] = src[1].u64[1] ? src[0].u64[1] / src[1].u64[1] : ~0ull;
dst->u64[2] = src[1].u64[2] ? src[0].u64[2] / src[1].u64[2] : ~0ull;
dst->u64[3] = src[1].u64[3] ? src[0].u64[3] / src[1].u64[3] : ~0ull;
}
static void
micro_i64div(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->i64[0] = src[1].i64[0] ? src[0].i64[0] / src[1].i64[0] : 0;
dst->i64[1] = src[1].i64[1] ? src[0].i64[1] / src[1].i64[1] : 0;
dst->i64[2] = src[1].i64[2] ? src[0].i64[2] / src[1].i64[2] : 0;
dst->i64[3] = src[1].i64[3] ? src[0].i64[3] / src[1].i64[3] : 0;
}
static void
micro_u64mod(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u64[0] = src[1].u64[0] ? src[0].u64[0] % src[1].u64[0] : ~0ull;
dst->u64[1] = src[1].u64[1] ? src[0].u64[1] % src[1].u64[1] : ~0ull;
dst->u64[2] = src[1].u64[2] ? src[0].u64[2] % src[1].u64[2] : ~0ull;
dst->u64[3] = src[1].u64[3] ? src[0].u64[3] % src[1].u64[3] : ~0ull;
}
static void
micro_i64mod(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->i64[0] = src[1].i64[0] ? src[0].i64[0] % src[1].i64[0] : ~0ll;
dst->i64[1] = src[1].i64[1] ? src[0].i64[1] % src[1].i64[1] : ~0ll;
dst->i64[2] = src[1].i64[2] ? src[0].i64[2] % src[1].i64[2] : ~0ll;
dst->i64[3] = src[1].i64[3] ? src[0].i64[3] % src[1].i64[3] : ~0ll;
}
static void
micro_u64shl(union tgsi_double_channel *dst,
const union tgsi_double_channel *src0,
union tgsi_exec_channel *src1)
{
unsigned masked_count;
masked_count = src1->u[0] & 0x3f;
dst->u64[0] = src0->u64[0] << masked_count;
masked_count = src1->u[1] & 0x3f;
dst->u64[1] = src0->u64[1] << masked_count;
masked_count = src1->u[2] & 0x3f;
dst->u64[2] = src0->u64[2] << masked_count;
masked_count = src1->u[3] & 0x3f;
dst->u64[3] = src0->u64[3] << masked_count;
}
static void
micro_i64shr(union tgsi_double_channel *dst,
const union tgsi_double_channel *src0,
union tgsi_exec_channel *src1)
{
unsigned masked_count;
masked_count = src1->u[0] & 0x3f;
dst->i64[0] = src0->i64[0] >> masked_count;
masked_count = src1->u[1] & 0x3f;
dst->i64[1] = src0->i64[1] >> masked_count;
masked_count = src1->u[2] & 0x3f;
dst->i64[2] = src0->i64[2] >> masked_count;
masked_count = src1->u[3] & 0x3f;
dst->i64[3] = src0->i64[3] >> masked_count;
}
static void
micro_u64shr(union tgsi_double_channel *dst,
const union tgsi_double_channel *src0,
union tgsi_exec_channel *src1)
{
unsigned masked_count;
masked_count = src1->u[0] & 0x3f;
dst->u64[0] = src0->u64[0] >> masked_count;
masked_count = src1->u[1] & 0x3f;
dst->u64[1] = src0->u64[1] >> masked_count;
masked_count = src1->u[2] & 0x3f;
dst->u64[2] = src0->u64[2] >> masked_count;
masked_count = src1->u[3] & 0x3f;
dst->u64[3] = src0->u64[3] >> masked_count;
}
enum tgsi_exec_datatype {
TGSI_EXEC_DATA_FLOAT,
TGSI_EXEC_DATA_INT,
TGSI_EXEC_DATA_UINT,
TGSI_EXEC_DATA_DOUBLE,
TGSI_EXEC_DATA_INT64,
TGSI_EXEC_DATA_UINT64,
};
/*
* Shorthand locations of various utility registers (_I = Index, _C = Channel)
*/
#define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
#define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
#define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
#define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
#define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
#define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
/** The execution mask depends on the conditional mask and the loop mask */
#define UPDATE_EXEC_MASK(MACH) \
MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
static const union tgsi_exec_channel ZeroVec =
{ { 0.0, 0.0, 0.0, 0.0 } };
static const union tgsi_exec_channel OneVec = {
{1.0f, 1.0f, 1.0f, 1.0f}
};
static const union tgsi_exec_channel P128Vec = {
{128.0f, 128.0f, 128.0f, 128.0f}
};
static const union tgsi_exec_channel M128Vec = {
{-128.0f, -128.0f, -128.0f, -128.0f}
};
/**
* Assert that none of the float values in 'chan' are infinite or NaN.
* NaN and Inf may occur normally during program execution and should
* not lead to crashes, etc. But when debugging, it's helpful to catch
* them.
*/
static inline void
check_inf_or_nan(const union tgsi_exec_channel *chan)
{
assert(!util_is_inf_or_nan((chan)->f[0]));
assert(!util_is_inf_or_nan((chan)->f[1]));
assert(!util_is_inf_or_nan((chan)->f[2]));
assert(!util_is_inf_or_nan((chan)->f[3]));
}
#ifdef DEBUG
static void
print_chan(const char *msg, const union tgsi_exec_channel *chan)
{
debug_printf("%s = {%f, %f, %f, %f}\n",
msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
}
#endif
#ifdef DEBUG
static void
print_temp(const struct tgsi_exec_machine *mach, uint index)
{
const struct tgsi_exec_vector *tmp = &mach->Temps[index];
int i;
debug_printf("Temp[%u] =\n", index);
for (i = 0; i < 4; i++) {
debug_printf(" %c: { %f, %f, %f, %f }\n",
"XYZW"[i],
tmp->xyzw[i].f[0],
tmp->xyzw[i].f[1],
tmp->xyzw[i].f[2],
tmp->xyzw[i].f[3]);
}
}
#endif
void
tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
unsigned num_bufs,
const void **bufs,
const unsigned *buf_sizes)
{
unsigned i;
for (i = 0; i < num_bufs; i++) {
mach->Consts[i] = bufs[i];
mach->ConstsSize[i] = buf_sizes[i];
}
}
/**
* Check if there's a potential src/dst register data dependency when
* using SOA execution.
* Example:
* MOV T, T.yxwz;
* This would expand into:
* MOV t0, t1;
* MOV t1, t0;
* MOV t2, t3;
* MOV t3, t2;
* The second instruction will have the wrong value for t0 if executed as-is.
*/
boolean
tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
{
uint i, chan;
uint writemask = inst->Dst[0].Register.WriteMask;
if (writemask == TGSI_WRITEMASK_X ||
writemask == TGSI_WRITEMASK_Y ||
writemask == TGSI_WRITEMASK_Z ||
writemask == TGSI_WRITEMASK_W ||
writemask == TGSI_WRITEMASK_NONE) {
/* no chance of data dependency */
return FALSE;
}
/* loop over src regs */
for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
if ((inst->Src[i].Register.File ==
inst->Dst[0].Register.File) &&
((inst->Src[i].Register.Index ==
inst->Dst[0].Register.Index) ||
inst->Src[i].Register.Indirect ||
inst->Dst[0].Register.Indirect)) {
/* loop over dest channels */
uint channelsWritten = 0x0;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
/* check if we're reading a channel that's been written */
uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
if (channelsWritten & (1 << swizzle)) {
return TRUE;
}
channelsWritten |= (1 << chan);
}
}
}
}
return FALSE;
}
/**
* Initialize machine state by expanding tokens to full instructions,
* allocating temporary storage, setting up constants, etc.
* After this, we can call tgsi_exec_machine_run() many times.
*/
void
tgsi_exec_machine_bind_shader(
struct tgsi_exec_machine *mach,
const struct tgsi_token *tokens,
struct tgsi_sampler *sampler,
struct tgsi_image *image,
struct tgsi_buffer *buffer)
{
uint k;
struct tgsi_parse_context parse;
struct tgsi_full_instruction *instructions;
struct tgsi_full_declaration *declarations;
uint maxInstructions = 10, numInstructions = 0;
uint maxDeclarations = 10, numDeclarations = 0;
#if 0
tgsi_dump(tokens, 0);
#endif
util_init_math();
mach->Tokens = tokens;
mach->Sampler = sampler;
mach->Image = image;
mach->Buffer = buffer;
if (!tokens) {
/* unbind and free all */
FREE(mach->Declarations);
mach->Declarations = NULL;
mach->NumDeclarations = 0;
FREE(mach->Instructions);
mach->Instructions = NULL;
mach->NumInstructions = 0;
return;
}
k = tgsi_parse_init (&parse, mach->Tokens);
if (k != TGSI_PARSE_OK) {
debug_printf( "Problem parsing!\n" );
return;
}
mach->ImmLimit = 0;
mach->NumOutputs = 0;
for (k = 0; k < TGSI_SEMANTIC_COUNT; k++)
mach->SysSemanticToIndex[k] = -1;
if (mach->ShaderType == PIPE_SHADER_GEOMETRY &&
!mach->UsedGeometryShader) {
struct tgsi_exec_vector *inputs;
struct tgsi_exec_vector *outputs;
inputs = align_malloc(sizeof(struct tgsi_exec_vector) *
TGSI_MAX_PRIM_VERTICES * PIPE_MAX_SHADER_INPUTS,
16);
if (!inputs)
return;
outputs = align_malloc(sizeof(struct tgsi_exec_vector) *
TGSI_MAX_TOTAL_VERTICES, 16);
if (!outputs) {
align_free(inputs);
return;
}
align_free(mach->Inputs);
align_free(mach->Outputs);
mach->Inputs = inputs;
mach->Outputs = outputs;
mach->UsedGeometryShader = TRUE;
}
declarations = (struct tgsi_full_declaration *)
MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
if (!declarations) {
return;
}
instructions = (struct tgsi_full_instruction *)
MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
if (!instructions) {
FREE( declarations );
return;
}
while( !tgsi_parse_end_of_tokens( &parse ) ) {
uint i;
tgsi_parse_token( &parse );
switch( parse.FullToken.Token.Type ) {
case TGSI_TOKEN_TYPE_DECLARATION:
/* save expanded declaration */
if (numDeclarations == maxDeclarations) {
declarations = REALLOC(declarations,
maxDeclarations
* sizeof(struct tgsi_full_declaration),
(maxDeclarations + 10)
* sizeof(struct tgsi_full_declaration));
maxDeclarations += 10;
}
if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
unsigned reg;
for (reg = parse.FullToken.FullDeclaration.Range.First;
reg <= parse.FullToken.FullDeclaration.Range.Last;
++reg) {
++mach->NumOutputs;
}
}
else if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
const struct tgsi_full_declaration *decl = &parse.FullToken.FullDeclaration;
mach->SysSemanticToIndex[decl->Semantic.Name] = decl->Range.First;
}
memcpy(declarations + numDeclarations,
&parse.FullToken.FullDeclaration,
sizeof(declarations[0]));
numDeclarations++;
break;
case TGSI_TOKEN_TYPE_IMMEDIATE:
{
uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
assert( size <= 4 );
assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES );
for( i = 0; i < size; i++ ) {
mach->Imms[mach->ImmLimit][i] =
parse.FullToken.FullImmediate.u[i].Float;
}
mach->ImmLimit += 1;
}
break;
case TGSI_TOKEN_TYPE_INSTRUCTION:
/* save expanded instruction */
if (numInstructions == maxInstructions) {
instructions = REALLOC(instructions,
maxInstructions
* sizeof(struct tgsi_full_instruction),
(maxInstructions + 10)
* sizeof(struct tgsi_full_instruction));
maxInstructions += 10;
}
memcpy(instructions + numInstructions,
&parse.FullToken.FullInstruction,
sizeof(instructions[0]));
numInstructions++;
break;
case TGSI_TOKEN_TYPE_PROPERTY:
if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
if (parse.FullToken.FullProperty.Property.PropertyName == TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES) {
mach->MaxOutputVertices = parse.FullToken.FullProperty.u[0].Data;
}
}
break;
default:
assert( 0 );
}
}
tgsi_parse_free (&parse);
FREE(mach->Declarations);
mach->Declarations = declarations;
mach->NumDeclarations = numDeclarations;
FREE(mach->Instructions);
mach->Instructions = instructions;
mach->NumInstructions = numInstructions;
}
struct tgsi_exec_machine *
tgsi_exec_machine_create(enum pipe_shader_type shader_type)
{
struct tgsi_exec_machine *mach;
uint i;
mach = align_malloc( sizeof *mach, 16 );
if (!mach)
goto fail;
memset(mach, 0, sizeof(*mach));
mach->ShaderType = shader_type;
mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
if (shader_type != PIPE_SHADER_COMPUTE) {
mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_INPUTS, 16);
mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_OUTPUTS, 16);
if (!mach->Inputs || !mach->Outputs)
goto fail;
}
/* Setup constants needed by the SSE2 executor. */
for( i = 0; i < 4; i++ ) {
mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF; /* not used */
mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f; /* not used */
mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
}
#ifdef DEBUG
/* silence warnings */
(void) print_chan;
(void) print_temp;
#endif
return mach;
fail:
if (mach) {
align_free(mach->Inputs);
align_free(mach->Outputs);
align_free(mach);
}
return NULL;
}
void
tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
{
if (mach) {
FREE(mach->Instructions);
FREE(mach->Declarations);
align_free(mach->Inputs);
align_free(mach->Outputs);
align_free(mach);
}
}
static void
micro_add(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = src0->f[0] + src1->f[0];
dst->f[1] = src0->f[1] + src1->f[1];
dst->f[2] = src0->f[2] + src1->f[2];
dst->f[3] = src0->f[3] + src1->f[3];
}
static void
micro_div(
union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1 )
{
if (src1->f[0] != 0) {
dst->f[0] = src0->f[0] / src1->f[0];
}
if (src1->f[1] != 0) {
dst->f[1] = src0->f[1] / src1->f[1];
}
if (src1->f[2] != 0) {
dst->f[2] = src0->f[2] / src1->f[2];
}
if (src1->f[3] != 0) {
dst->f[3] = src0->f[3] / src1->f[3];
}
}
static void
micro_lt(
union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2,
const union tgsi_exec_channel *src3 )
{
dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
}
static void
micro_max(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
}
static void
micro_min(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
}
static void
micro_mul(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = src0->f[0] * src1->f[0];
dst->f[1] = src0->f[1] * src1->f[1];
dst->f[2] = src0->f[2] * src1->f[2];
dst->f[3] = src0->f[3] * src1->f[3];
}
static void
micro_neg(
union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src )
{
dst->f[0] = -src->f[0];
dst->f[1] = -src->f[1];
dst->f[2] = -src->f[2];
dst->f[3] = -src->f[3];
}
static void
micro_pow(
union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1 )
{
#if FAST_MATH
dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
#else
dst->f[0] = powf( src0->f[0], src1->f[0] );
dst->f[1] = powf( src0->f[1], src1->f[1] );
dst->f[2] = powf( src0->f[2], src1->f[2] );
dst->f[3] = powf( src0->f[3], src1->f[3] );
#endif
}
static void
micro_ldexp(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = ldexpf(src0->f[0], src1->i[0]);
dst->f[1] = ldexpf(src0->f[1], src1->i[1]);
dst->f[2] = ldexpf(src0->f[2], src1->i[2]);
dst->f[3] = ldexpf(src0->f[3], src1->i[3]);
}
static void
micro_sub(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->f[0] = src0->f[0] - src1->f[0];
dst->f[1] = src0->f[1] - src1->f[1];
dst->f[2] = src0->f[2] - src1->f[2];
dst->f[3] = src0->f[3] - src1->f[3];
}
static void
fetch_src_file_channel(const struct tgsi_exec_machine *mach,
const uint chan_index,
const uint file,
const uint swizzle,
const union tgsi_exec_channel *index,
const union tgsi_exec_channel *index2D,
union tgsi_exec_channel *chan)
{
uint i;
assert(swizzle < 4);
switch (file) {
case TGSI_FILE_CONSTANT:
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
assert(mach->Consts[index2D->i[i]]);
if (index->i[i] < 0) {
chan->u[i] = 0;
} else {
/* NOTE: copying the const value as a uint instead of float */
const uint constbuf = index2D->i[i];
const uint *buf = (const uint *)mach->Consts[constbuf];
const int pos = index->i[i] * 4 + swizzle;
/* const buffer bounds check */
if (pos < 0 || pos >= (int) mach->ConstsSize[constbuf]) {
if (0) {
/* Debug: print warning */
static int count = 0;
if (count++ < 100)
debug_printf("TGSI Exec: const buffer index %d"
" out of bounds\n", pos);
}
chan->u[i] = 0;
}
else
chan->u[i] = buf[pos];
}
}
break;
case TGSI_FILE_INPUT:
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
/*
if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
index2D->i[i], index->i[i]);
}*/
int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
assert(pos >= 0);
assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
}
break;
case TGSI_FILE_SYSTEM_VALUE:
/* XXX no swizzling at this point. Will be needed if we put
* gl_FragCoord, for example, in a sys value register.
*/
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
chan->u[i] = mach->SystemValue[index->i[i]].xyzw[swizzle].u[i];
}
break;
case TGSI_FILE_TEMPORARY:
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
assert(index2D->i[i] == 0);
chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
}
break;
case TGSI_FILE_IMMEDIATE:
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
assert(index2D->i[i] == 0);
chan->f[i] = mach->Imms[index->i[i]][swizzle];
}
break;
case TGSI_FILE_ADDRESS:
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
assert(index->i[i] >= 0);
assert(index2D->i[i] == 0);
chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
}
break;
case TGSI_FILE_OUTPUT:
/* vertex/fragment output vars can be read too */
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
assert(index->i[i] >= 0);
assert(index2D->i[i] == 0);
chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
}
break;
default:
assert(0);
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
chan->u[i] = 0;
}
}
}
static void
fetch_source_d(const struct tgsi_exec_machine *mach,
union tgsi_exec_channel *chan,
const struct tgsi_full_src_register *reg,
const uint chan_index,
enum tgsi_exec_datatype src_datatype)
{
union tgsi_exec_channel index;
union tgsi_exec_channel index2D;
uint swizzle;
/* We start with a direct index into a register file.
*
* file[1],
* where:
* file = Register.File
* [1] = Register.Index
*/
index.i[0] =
index.i[1] =
index.i[2] =
index.i[3] = reg->Register.Index;
/* There is an extra source register that indirectly subscripts
* a register file. The direct index now becomes an offset
* that is being added to the indirect register.
*
* file[ind[2].x+1],
* where:
* ind = Indirect.File
* [2] = Indirect.Index
* .x = Indirect.SwizzleX
*/
if (reg->Register.Indirect) {
union tgsi_exec_channel index2;
union tgsi_exec_channel indir_index;
const uint execmask = mach->ExecMask;
uint i;
/* which address register (always zero now) */
index2.i[0] =
index2.i[1] =
index2.i[2] =
index2.i[3] = reg->Indirect.Index;
/* get current value of address register[swizzle] */
swizzle = reg->Indirect.Swizzle;
fetch_src_file_channel(mach,
chan_index,
reg->Indirect.File,
swizzle,
&index2,
&ZeroVec,
&indir_index);
/* add value of address register to the offset */
index.i[0] += indir_index.i[0];
index.i[1] += indir_index.i[1];
index.i[2] += indir_index.i[2];
index.i[3] += indir_index.i[3];
/* for disabled execution channels, zero-out the index to
* avoid using a potential garbage value.
*/
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
if ((execmask & (1 << i)) == 0)
index.i[i] = 0;
}
}
/* There is an extra source register that is a second
* subscript to a register file. Effectively it means that
* the register file is actually a 2D array of registers.
*
* file[3][1],
* where:
* [3] = Dimension.Index
*/
if (reg->Register.Dimension) {
index2D.i[0] =
index2D.i[1] =
index2D.i[2] =
index2D.i[3] = reg->Dimension.Index;
/* Again, the second subscript index can be addressed indirectly
* identically to the first one.
* Nothing stops us from indirectly addressing the indirect register,
* but there is no need for that, so we won't exercise it.
*
* file[ind[4].y+3][1],
* where:
* ind = DimIndirect.File
* [4] = DimIndirect.Index
* .y = DimIndirect.SwizzleX
*/
if (reg->Dimension.Indirect) {
union tgsi_exec_channel index2;
union tgsi_exec_channel indir_index;
const uint execmask = mach->ExecMask;
uint i;
index2.i[0] =
index2.i[1] =
index2.i[2] =
index2.i[3] = reg->DimIndirect.Index;
swizzle = reg->DimIndirect.Swizzle;
fetch_src_file_channel(mach,
chan_index,
reg->DimIndirect.File,
swizzle,
&index2,
&ZeroVec,
&indir_index);
index2D.i[0] += indir_index.i[0];
index2D.i[1] += indir_index.i[1];
index2D.i[2] += indir_index.i[2];
index2D.i[3] += indir_index.i[3];
/* for disabled execution channels, zero-out the index to
* avoid using a potential garbage value.
*/
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
if ((execmask & (1 << i)) == 0) {
index2D.i[i] = 0;
}
}
}
/* If by any chance there was a need for a 3D array of register
* files, we would have to check whether Dimension is followed
* by a dimension register and continue the saga.
*/
} else {
index2D.i[0] =
index2D.i[1] =
index2D.i[2] =
index2D.i[3] = 0;
}
swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
fetch_src_file_channel(mach,
chan_index,
reg->Register.File,
swizzle,
&index,
&index2D,
chan);
}
static void
fetch_source(const struct tgsi_exec_machine *mach,
union tgsi_exec_channel *chan,
const struct tgsi_full_src_register *reg,
const uint chan_index,
enum tgsi_exec_datatype src_datatype)
{
fetch_source_d(mach, chan, reg, chan_index, src_datatype);
if (reg->Register.Absolute) {
if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
micro_abs(chan, chan);
} else {
micro_iabs(chan, chan);
}
}
if (reg->Register.Negate) {
if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
micro_neg(chan, chan);
} else {
micro_ineg(chan, chan);
}
}
}
static union tgsi_exec_channel *
store_dest_dstret(struct tgsi_exec_machine *mach,
const union tgsi_exec_channel *chan,
const struct tgsi_full_dst_register *reg,
const struct tgsi_full_instruction *inst,
uint chan_index,
enum tgsi_exec_datatype dst_datatype)
{
static union tgsi_exec_channel null;
union tgsi_exec_channel *dst;
union tgsi_exec_channel index2D;
int offset = 0; /* indirection offset */
int index;
/* for debugging */
if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
check_inf_or_nan(chan);
}
/* There is an extra source register that indirectly subscripts
* a register file. The direct index now becomes an offset
* that is being added to the indirect register.
*
* file[ind[2].x+1],
* where:
* ind = Indirect.File
* [2] = Indirect.Index
* .x = Indirect.SwizzleX
*/
if (reg->Register.Indirect) {
union tgsi_exec_channel index;
union tgsi_exec_channel indir_index;
uint swizzle;
/* which address register (always zero for now) */
index.i[0] =
index.i[1] =
index.i[2] =
index.i[3] = reg->Indirect.Index;
/* get current value of address register[swizzle] */
swizzle = reg->Indirect.Swizzle;
/* fetch values from the address/indirection register */
fetch_src_file_channel(mach,
chan_index,
reg->Indirect.File,
swizzle,
&index,
&ZeroVec,
&indir_index);
/* save indirection offset */
offset = indir_index.i[0];
}
/* There is an extra source register that is a second
* subscript to a register file. Effectively it means that
* the register file is actually a 2D array of registers.
*
* file[3][1],
* where:
* [3] = Dimension.Index
*/
if (reg->Register.Dimension) {
index2D.i[0] =
index2D.i[1] =
index2D.i[2] =
index2D.i[3] = reg->Dimension.Index;
/* Again, the second subscript index can be addressed indirectly
* identically to the first one.
* Nothing stops us from indirectly addressing the indirect register,
* but there is no need for that, so we won't exercise it.
*
* file[ind[4].y+3][1],
* where:
* ind = DimIndirect.File
* [4] = DimIndirect.Index
* .y = DimIndirect.SwizzleX
*/
if (reg->Dimension.Indirect) {
union tgsi_exec_channel index2;
union tgsi_exec_channel indir_index;
const uint execmask = mach->ExecMask;
unsigned swizzle;
uint i;
index2.i[0] =
index2.i[1] =
index2.i[2] =
index2.i[3] = reg->DimIndirect.Index;
swizzle = reg->DimIndirect.Swizzle;
fetch_src_file_channel(mach,
chan_index,
reg->DimIndirect.File,
swizzle,
&index2,
&ZeroVec,
&indir_index);
index2D.i[0] += indir_index.i[0];
index2D.i[1] += indir_index.i[1];
index2D.i[2] += indir_index.i[2];
index2D.i[3] += indir_index.i[3];
/* for disabled execution channels, zero-out the index to
* avoid using a potential garbage value.
*/
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
if ((execmask & (1 << i)) == 0) {
index2D.i[i] = 0;
}
}
}
/* If by any chance there was a need for a 3D array of register
* files, we would have to check whether Dimension is followed
* by a dimension register and continue the saga.
*/
} else {
index2D.i[0] =
index2D.i[1] =
index2D.i[2] =
index2D.i[3] = 0;
}
switch (reg->Register.File) {
case TGSI_FILE_NULL:
dst = &null;
break;
case TGSI_FILE_OUTPUT:
index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
+ reg->Register.Index;
dst = &mach->Outputs[offset + index].xyzw[chan_index];
#if 0
debug_printf("NumOutputs = %d, TEMP_O_C/I = %d, redindex = %d\n",
mach->NumOutputs, mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0],
reg->Register.Index);
if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
debug_printf("STORING OUT[%d] mask(%d), = (", offset + index, execmask);
for (i = 0; i < TGSI_QUAD_SIZE; i++)
if (execmask & (1 << i))
debug_printf("%f, ", chan->f[i]);
debug_printf(")\n");
}
#endif
break;
case TGSI_FILE_TEMPORARY:
index = reg->Register.Index;
assert( index < TGSI_EXEC_NUM_TEMPS );
dst = &mach->Temps[offset + index].xyzw[chan_index];
break;
case TGSI_FILE_ADDRESS:
index = reg->Register.Index;
dst = &mach->Addrs[index].xyzw[chan_index];
break;
default:
assert( 0 );
return NULL;
}
return dst;
}
static void
store_dest_double(struct tgsi_exec_machine *mach,
const union tgsi_exec_channel *chan,
const struct tgsi_full_dst_register *reg,
const struct tgsi_full_instruction *inst,
uint chan_index,
enum tgsi_exec_datatype dst_datatype)
{
union tgsi_exec_channel *dst;
const uint execmask = mach->ExecMask;
int i;
dst = store_dest_dstret(mach, chan, reg, inst, chan_index,
dst_datatype);
if (!dst)
return;
/* doubles path */
for (i = 0; i < TGSI_QUAD_SIZE; i++)
if (execmask & (1 << i))
dst->i[i] = chan->i[i];
}
static void
store_dest(struct tgsi_exec_machine *mach,
const union tgsi_exec_channel *chan,
const struct tgsi_full_dst_register *reg,
const struct tgsi_full_instruction *inst,
uint chan_index,
enum tgsi_exec_datatype dst_datatype)
{
union tgsi_exec_channel *dst;
const uint execmask = mach->ExecMask;
int i;
dst = store_dest_dstret(mach, chan, reg, inst, chan_index,
dst_datatype);
if (!dst)
return;
if (!inst->Instruction.Saturate) {
for (i = 0; i < TGSI_QUAD_SIZE; i++)
if (execmask & (1 << i))
dst->i[i] = chan->i[i];
}
else {
for (i = 0; i < TGSI_QUAD_SIZE; i++)
if (execmask & (1 << i)) {
if (chan->f[i] < 0.0f)
dst->f[i] = 0.0f;
else if (chan->f[i] > 1.0f)
dst->f[i] = 1.0f;
else
dst->i[i] = chan->i[i];
}
}
}
#define FETCH(VAL,INDEX,CHAN)\
fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
#define IFETCH(VAL,INDEX,CHAN)\
fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT)
/**
* Execute ARB-style KIL which is predicated by a src register.
* Kill fragment if any of the four values is less than zero.
*/
static void
exec_kill_if(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
uint uniquemask;
uint chan_index;
uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
union tgsi_exec_channel r[1];
/* This mask stores component bits that were already tested. */
uniquemask = 0;
for (chan_index = 0; chan_index < 4; chan_index++)
{
uint swizzle;
uint i;
/* unswizzle channel */
swizzle = tgsi_util_get_full_src_register_swizzle (
&inst->Src[0],
chan_index);
/* check if the component has not been already tested */
if (uniquemask & (1 << swizzle))
continue;
uniquemask |= 1 << swizzle;
FETCH(&r[0], 0, chan_index);
for (i = 0; i < 4; i++)
if (r[0].f[i] < 0.0f)
kilmask |= 1 << i;
}
/* restrict to fragments currently executing */
kilmask &= mach->ExecMask;
mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
}
/**
* Unconditional fragment kill/discard.
*/
static void
exec_kill(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
/* kill fragment for all fragments currently executing */
kilmask = mach->ExecMask;
mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
}
static void
emit_vertex(struct tgsi_exec_machine *mach)
{
/* FIXME: check for exec mask correctly
unsigned i;
for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
if ((mach->ExecMask & (1 << i)))
*/
if (mach->ExecMask) {
if (mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]] >= mach->MaxOutputVertices)
return;
mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
}
}
static void
emit_primitive(struct tgsi_exec_machine *mach)
{
unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
/* FIXME: check for exec mask correctly
unsigned i;
for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
if ((mach->ExecMask & (1 << i)))
*/
if (mach->ExecMask) {
++(*prim_count);
debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
mach->Primitives[*prim_count] = 0;
}
}
static void
conditional_emit_primitive(struct tgsi_exec_machine *mach)
{
if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
int emitted_verts =
mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]];
if (emitted_verts) {
emit_primitive(mach);
}
}
}
/*
* Fetch four texture samples using STR texture coordinates.
*/
static void
fetch_texel( struct tgsi_sampler *sampler,
const unsigned sview_idx,
const unsigned sampler_idx,
const union tgsi_exec_channel *s,
const union tgsi_exec_channel *t,
const union tgsi_exec_channel *p,
const union tgsi_exec_channel *c0,
const union tgsi_exec_channel *c1,
float derivs[3][2][TGSI_QUAD_SIZE],
const int8_t offset[3],
enum tgsi_sampler_control control,
union tgsi_exec_channel *r,
union tgsi_exec_channel *g,
union tgsi_exec_channel *b,
union tgsi_exec_channel *a )
{
uint j;
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
/* FIXME: handle explicit derivs, offsets */
sampler->get_samples(sampler, sview_idx, sampler_idx,
s->f, t->f, p->f, c0->f, c1->f, derivs, offset, control, rgba);
for (j = 0; j < 4; j++) {
r->f[j] = rgba[0][j];
g->f[j] = rgba[1][j];
b->f[j] = rgba[2][j];
a->f[j] = rgba[3][j];
}
}
#define TEX_MODIFIER_NONE 0
#define TEX_MODIFIER_PROJECTED 1
#define TEX_MODIFIER_LOD_BIAS 2
#define TEX_MODIFIER_EXPLICIT_LOD 3
#define TEX_MODIFIER_LEVEL_ZERO 4
#define TEX_MODIFIER_GATHER 5
/*
* Fetch all 3 (for s,t,r coords) texel offsets, put them into int array.
*/
static void
fetch_texel_offsets(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
int8_t offsets[3])
{
if (inst->Texture.NumOffsets == 1) {
union tgsi_exec_channel index;
union tgsi_exec_channel offset[3];
index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index;
fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]);
fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]);
fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]);
offsets[0] = offset[0].i[0];
offsets[1] = offset[1].i[0];
offsets[2] = offset[2].i[0];
} else {
assert(inst->Texture.NumOffsets == 0);
offsets[0] = offsets[1] = offsets[2] = 0;
}
}
/*
* Fetch dx and dy values for one channel (s, t or r).
* Put dx values into one float array, dy values into another.
*/
static void
fetch_assign_deriv_channel(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
unsigned regdsrcx,
unsigned chan,
float derivs[2][TGSI_QUAD_SIZE])
{
union tgsi_exec_channel d;
FETCH(&d, regdsrcx, chan);
derivs[0][0] = d.f[0];
derivs[0][1] = d.f[1];
derivs[0][2] = d.f[2];
derivs[0][3] = d.f[3];
FETCH(&d, regdsrcx + 1, chan);
derivs[1][0] = d.f[0];
derivs[1][1] = d.f[1];
derivs[1][2] = d.f[2];
derivs[1][3] = d.f[3];
}
static uint
fetch_sampler_unit(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
uint sampler)
{
uint unit = 0;
int i;
if (inst->Src[sampler].Register.Indirect) {
const struct tgsi_full_src_register *reg = &inst->Src[sampler];
union tgsi_exec_channel indir_index, index2;
const uint execmask = mach->ExecMask;
index2.i[0] =
index2.i[1] =
index2.i[2] =
index2.i[3] = reg->Indirect.Index;
fetch_src_file_channel(mach,
0,
reg->Indirect.File,
reg->Indirect.Swizzle,
&index2,
&ZeroVec,
&indir_index);
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
if (execmask & (1 << i)) {
unit = inst->Src[sampler].Register.Index + indir_index.i[i];
break;
}
}
} else {
unit = inst->Src[sampler].Register.Index;
}
return unit;
}
/*
* execute a texture instruction.
*
* modifier is used to control the channel routing for the
* instruction variants like proj, lod, and texture with lod bias.
* sampler indicates which src register the sampler is contained in.
*/
static void
exec_tex(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
uint modifier, uint sampler)
{
const union tgsi_exec_channel *args[5], *proj = NULL;
union tgsi_exec_channel r[5];
enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
uint chan;
uint unit;
int8_t offsets[3];
int dim, shadow_ref, i;
unit = fetch_sampler_unit(mach, inst, sampler);
/* always fetch all 3 offsets, overkill but keeps code simple */
fetch_texel_offsets(mach, inst, offsets);
assert(modifier != TEX_MODIFIER_LEVEL_ZERO);
assert(inst->Texture.Texture != TGSI_TEXTURE_BUFFER);
dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
shadow_ref = tgsi_util_get_shadow_ref_src_index(inst->Texture.Texture);
assert(dim <= 4);
if (shadow_ref >= 0)
assert(shadow_ref >= dim && shadow_ref < ARRAY_SIZE(args));
/* fetch modifier to the last argument */
if (modifier != TEX_MODIFIER_NONE) {
const int last = ARRAY_SIZE(args) - 1;
/* fetch modifier from src0.w or src1.x */
if (sampler == 1) {
assert(dim <= TGSI_CHAN_W && shadow_ref != TGSI_CHAN_W);
FETCH(&r[last], 0, TGSI_CHAN_W);
}
else {
assert(shadow_ref != 4);
FETCH(&r[last], 1, TGSI_CHAN_X);
}
if (modifier != TEX_MODIFIER_PROJECTED) {
args[last] = &r[last];
}
else {
proj = &r[last];
args[last] = &ZeroVec;
}
/* point unused arguments to zero vector */
for (i = dim; i < last; i++)
args[i] = &ZeroVec;
if (modifier == TEX_MODIFIER_EXPLICIT_LOD)
control = TGSI_SAMPLER_LOD_EXPLICIT;
else if (modifier == TEX_MODIFIER_LOD_BIAS)
control = TGSI_SAMPLER_LOD_BIAS;
else if (modifier == TEX_MODIFIER_GATHER)
control = TGSI_SAMPLER_GATHER;
}
else {
for (i = dim; i < ARRAY_SIZE(args); i++)
args[i] = &ZeroVec;
}
/* fetch coordinates */
for (i = 0; i < dim; i++) {
FETCH(&r[i], 0, TGSI_CHAN_X + i);
if (proj)
micro_div(&r[i], &r[i], proj);
args[i] = &r[i];
}
/* fetch reference value */
if (shadow_ref >= 0) {
FETCH(&r[shadow_ref], shadow_ref / 4, TGSI_CHAN_X + (shadow_ref % 4));
if (proj)
micro_div(&r[shadow_ref], &r[shadow_ref], proj);
args[shadow_ref] = &r[shadow_ref];
}
fetch_texel(mach->Sampler, unit, unit,
args[0], args[1], args[2], args[3], args[4],
NULL, offsets, control,
&r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
#if 0
debug_printf("fetch r: %g %g %g %g\n",
r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
debug_printf("fetch g: %g %g %g %g\n",
r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
debug_printf("fetch b: %g %g %g %g\n",
r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
debug_printf("fetch a: %g %g %g %g\n",
r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
#endif
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_lodq(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
uint resource_unit, sampler_unit;
int dim;
int i;
union tgsi_exec_channel coords[4];
const union tgsi_exec_channel *args[ARRAY_SIZE(coords)];
union tgsi_exec_channel r[2];
resource_unit = fetch_sampler_unit(mach, inst, 1);
if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
uint target = mach->SamplerViews[resource_unit].Resource;
dim = tgsi_util_get_texture_coord_dim(target);
sampler_unit = fetch_sampler_unit(mach, inst, 2);
} else {
dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
sampler_unit = resource_unit;
}
assert(dim <= ARRAY_SIZE(coords));
/* fetch coordinates */
for (i = 0; i < dim; i++) {
FETCH(&coords[i], 0, TGSI_CHAN_X + i);
args[i] = &coords[i];
}
for (i = dim; i < ARRAY_SIZE(coords); i++) {
args[i] = &ZeroVec;
}
mach->Sampler->query_lod(mach->Sampler, resource_unit, sampler_unit,
args[0]->f,
args[1]->f,
args[2]->f,
args[3]->f,
TGSI_SAMPLER_LOD_NONE,
r[0].f,
r[1].f);
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X,
TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y,
TGSI_EXEC_DATA_FLOAT);
}
if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
unsigned char swizzles[4];
unsigned chan;
swizzles[0] = inst->Src[1].Register.SwizzleX;
swizzles[1] = inst->Src[1].Register.SwizzleY;
swizzles[2] = inst->Src[1].Register.SwizzleZ;
swizzles[3] = inst->Src[1].Register.SwizzleW;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
if (swizzles[chan] >= 2) {
store_dest(mach, &ZeroVec,
&inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
} else {
store_dest(mach, &r[swizzles[chan]],
&inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
} else {
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X,
TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y,
TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_txd(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[4];
float derivs[3][2][TGSI_QUAD_SIZE];
uint chan;
uint unit;
int8_t offsets[3];
unit = fetch_sampler_unit(mach, inst, 3);
/* always fetch all 3 offsets, overkill but keeps code simple */
fetch_texel_offsets(mach, inst, offsets);
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_1D:
FETCH(&r[0], 0, TGSI_CHAN_X);
fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
fetch_texel(mach->Sampler, unit, unit,
&r[0], &ZeroVec, &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
&r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
break;
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
/* SHADOW1D/1D_ARRAY would not need Y/Z respectively, but don't bother */
FETCH(&r[0], 0, TGSI_CHAN_X);
FETCH(&r[1], 0, TGSI_CHAN_Y);
FETCH(&r[2], 0, TGSI_CHAN_Z);
fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
fetch_texel(mach->Sampler, unit, unit,
&r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
&r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
break;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_RECT:
FETCH(&r[0], 0, TGSI_CHAN_X);
FETCH(&r[1], 0, TGSI_CHAN_Y);
fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
fetch_texel(mach->Sampler, unit, unit,
&r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
&r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
break;
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
/* only SHADOW2D_ARRAY actually needs W */
FETCH(&r[0], 0, TGSI_CHAN_X);
FETCH(&r[1], 0, TGSI_CHAN_Y);
FETCH(&r[2], 0, TGSI_CHAN_Z);
FETCH(&r[3], 0, TGSI_CHAN_W);
fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
fetch_texel(mach->Sampler, unit, unit,
&r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
&r[0], &r[1], &r[2], &r[3]); /* outputs */
break;
case TGSI_TEXTURE_3D:
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_CUBE_ARRAY:
case TGSI_TEXTURE_SHADOWCUBE:
/* only TEXTURE_CUBE_ARRAY and TEXTURE_SHADOWCUBE actually need W */
FETCH(&r[0], 0, TGSI_CHAN_X);
FETCH(&r[1], 0, TGSI_CHAN_Y);
FETCH(&r[2], 0, TGSI_CHAN_Z);
FETCH(&r[3], 0, TGSI_CHAN_W);
fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Z, derivs[2]);
fetch_texel(mach->Sampler, unit, unit,
&r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
&r[0], &r[1], &r[2], &r[3]); /* outputs */
break;
default:
assert(0);
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_txf(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[4];
uint chan;
uint unit;
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
int j;
int8_t offsets[3];
unsigned target;
unit = fetch_sampler_unit(mach, inst, 1);
/* always fetch all 3 offsets, overkill but keeps code simple */
fetch_texel_offsets(mach, inst, offsets);
IFETCH(&r[3], 0, TGSI_CHAN_W);
if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
target = mach->SamplerViews[unit].Resource;
}
else {
target = inst->Texture.Texture;
}
switch(target) {
case TGSI_TEXTURE_3D:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
case TGSI_TEXTURE_2D_ARRAY_MSAA:
IFETCH(&r[2], 0, TGSI_CHAN_Z);
/* fallthrough */
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_2D_MSAA:
IFETCH(&r[1], 0, TGSI_CHAN_Y);
/* fallthrough */
case TGSI_TEXTURE_BUFFER:
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
IFETCH(&r[0], 0, TGSI_CHAN_X);
break;
default:
assert(0);
break;
}
mach->Sampler->get_texel(mach->Sampler, unit, r[0].i, r[1].i, r[2].i, r[3].i,
offsets, rgba);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
r[0].f[j] = rgba[0][j];
r[1].f[j] = rgba[1][j];
r[2].f[j] = rgba[2][j];
r[3].f[j] = rgba[3][j];
}
if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
unsigned char swizzles[4];
swizzles[0] = inst->Src[1].Register.SwizzleX;
swizzles[1] = inst->Src[1].Register.SwizzleY;
swizzles[2] = inst->Src[1].Register.SwizzleZ;
swizzles[3] = inst->Src[1].Register.SwizzleW;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[swizzles[chan]],
&inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
else {
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
}
static void
exec_txq(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
int result[4];
union tgsi_exec_channel r[4], src;
uint chan;
uint unit;
int i,j;
unit = fetch_sampler_unit(mach, inst, 1);
fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
/* XXX: This interface can't return per-pixel values */
mach->Sampler->get_dims(mach->Sampler, unit, src.i[0], result);
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
for (j = 0; j < 4; j++) {
r[j].i[i] = result[j];
}
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
TGSI_EXEC_DATA_INT);
}
}
}
static void
exec_sample(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
uint modifier, boolean compare)
{
const uint resource_unit = inst->Src[1].Register.Index;
const uint sampler_unit = inst->Src[2].Register.Index;
union tgsi_exec_channel r[5], c1;
const union tgsi_exec_channel *lod = &ZeroVec;
enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
uint chan;
unsigned char swizzles[4];
int8_t offsets[3];
/* always fetch all 3 offsets, overkill but keeps code simple */
fetch_texel_offsets(mach, inst, offsets);
assert(modifier != TEX_MODIFIER_PROJECTED);
if (modifier != TEX_MODIFIER_NONE) {
if (modifier == TEX_MODIFIER_LOD_BIAS) {
FETCH(&c1, 3, TGSI_CHAN_X);
lod = &c1;
control = TGSI_SAMPLER_LOD_BIAS;
}
else if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
FETCH(&c1, 3, TGSI_CHAN_X);
lod = &c1;
control = TGSI_SAMPLER_LOD_EXPLICIT;
}
else if (modifier == TEX_MODIFIER_GATHER) {
control = TGSI_SAMPLER_GATHER;
}
else {
assert(modifier == TEX_MODIFIER_LEVEL_ZERO);
control = TGSI_SAMPLER_LOD_ZERO;
}
}
FETCH(&r[0], 0, TGSI_CHAN_X);
switch (mach->SamplerViews[resource_unit].Resource) {
case TGSI_TEXTURE_1D:
if (compare) {
FETCH(&r[2], 3, TGSI_CHAN_X);
fetch_texel(mach->Sampler, resource_unit, sampler_unit,
&r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
NULL, offsets, control,
&r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
}
else {
fetch_texel(mach->Sampler, resource_unit, sampler_unit,
&r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
NULL, offsets, control,
&r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
}
break;
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_RECT:
FETCH(&r[1], 0, TGSI_CHAN_Y);
if (compare) {
FETCH(&r[2], 3, TGSI_CHAN_X);
fetch_texel(mach->Sampler, resource_unit, sampler_unit,
&r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
NULL, offsets, control,
&r[0], &r[1], &r[2], &r[3]); /* outputs */
}
else {
fetch_texel(mach->Sampler, resource_unit, sampler_unit,
&r[0], &r[1], &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
NULL, offsets, control,
&r[0], &r[1], &r[2], &r[3]); /* outputs */
}
break;
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_3D:
case TGSI_TEXTURE_CUBE:
FETCH(&r[1], 0, TGSI_CHAN_Y);
FETCH(&r[2], 0, TGSI_CHAN_Z);
if(compare) {
FETCH(&r[3], 3, TGSI_CHAN_X);
fetch_texel(mach->Sampler, resource_unit, sampler_unit,
&r[0], &r[1], &r[2], &r[3], lod,
NULL, offsets, control,
&r[0], &r[1], &r[2], &r[3]);
}
else {
fetch_texel(mach->Sampler, resource_unit, sampler_unit,
&r[0], &r[1], &r[2], &ZeroVec, lod,
NULL, offsets, control,
&r[0], &r[1], &r[2], &r[3]);
}
break;
case TGSI_TEXTURE_CUBE_ARRAY:
FETCH(&r[1], 0, TGSI_CHAN_Y);
FETCH(&r[2], 0, TGSI_CHAN_Z);
FETCH(&r[3], 0, TGSI_CHAN_W);
if(compare) {
FETCH(&r[4], 3, TGSI_CHAN_X);
fetch_texel(mach->Sampler, resource_unit, sampler_unit,
&r[0], &r[1], &r[2], &r[3], &r[4],
NULL, offsets, control,
&r[0], &r[1], &r[2], &r[3]);
}
else {
fetch_texel(mach->Sampler, resource_unit, sampler_unit,
&r[0], &r[1], &r[2], &r[3], lod,
NULL, offsets, control,
&r[0], &r[1], &r[2], &r[3]);
}
break;
default:
assert(0);
}
swizzles[0] = inst->Src[1].Register.SwizzleX;
swizzles[1] = inst->Src[1].Register.SwizzleY;
swizzles[2] = inst->Src[1].Register.SwizzleZ;
swizzles[3] = inst->Src[1].Register.SwizzleW;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[swizzles[chan]],
&inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_sample_d(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
const uint resource_unit = inst->Src[1].Register.Index;
const uint sampler_unit = inst->Src[2].Register.Index;
union tgsi_exec_channel r[4];
float derivs[3][2][TGSI_QUAD_SIZE];
uint chan;
unsigned char swizzles[4];
int8_t offsets[3];
/* always fetch all 3 offsets, overkill but keeps code simple */
fetch_texel_offsets(mach, inst, offsets);
FETCH(&r[0], 0, TGSI_CHAN_X);
switch (mach->SamplerViews[resource_unit].Resource) {
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_1D_ARRAY:
/* only 1D array actually needs Y */
FETCH(&r[1], 0, TGSI_CHAN_Y);
fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
fetch_texel(mach->Sampler, resource_unit, sampler_unit,
&r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
&r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
break;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_2D_ARRAY:
/* only 2D array actually needs Z */
FETCH(&r[1], 0, TGSI_CHAN_Y);
FETCH(&r[2], 0, TGSI_CHAN_Z);
fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
fetch_texel(mach->Sampler, resource_unit, sampler_unit,
&r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* inputs */
derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
&r[0], &r[1], &r[2], &r[3]); /* outputs */
break;
case TGSI_TEXTURE_3D:
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_CUBE_ARRAY:
/* only cube array actually needs W */
FETCH(&r[1], 0, TGSI_CHAN_Y);
FETCH(&r[2], 0, TGSI_CHAN_Z);
FETCH(&r[3], 0, TGSI_CHAN_W);
fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Z, derivs[2]);
fetch_texel(mach->Sampler, resource_unit, sampler_unit,
&r[0], &r[1], &r[2], &r[3], &ZeroVec,
derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
&r[0], &r[1], &r[2], &r[3]);
break;
default:
assert(0);
}
swizzles[0] = inst->Src[1].Register.SwizzleX;
swizzles[1] = inst->Src[1].Register.SwizzleY;
swizzles[2] = inst->Src[1].Register.SwizzleZ;
swizzles[3] = inst->Src[1].Register.SwizzleW;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[swizzles[chan]],
&inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
/**
* Evaluate a constant-valued coefficient at the position of the
* current quad.
*/
static void
eval_constant_coef(
struct tgsi_exec_machine *mach,
unsigned attrib,
unsigned chan )
{
unsigned i;
for( i = 0; i < TGSI_QUAD_SIZE; i++ ) {
mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
}
}
/**
* Evaluate a linear-valued coefficient at the position of the
* current quad.
*/
static void
eval_linear_coef(
struct tgsi_exec_machine *mach,
unsigned attrib,
unsigned chan )
{
const float x = mach->QuadPos.xyzw[0].f[0];
const float y = mach->QuadPos.xyzw[1].f[0];
const float dadx = mach->InterpCoefs[attrib].dadx[chan];
const float dady = mach->InterpCoefs[attrib].dady[chan];
const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
mach->Inputs[attrib].xyzw[chan].f[0] = a0;
mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
}
/**
* Evaluate a perspective-valued coefficient at the position of the
* current quad.
*/
static void
eval_perspective_coef(
struct tgsi_exec_machine *mach,
unsigned attrib,
unsigned chan )
{
const float x = mach->QuadPos.xyzw[0].f[0];
const float y = mach->QuadPos.xyzw[1].f[0];
const float dadx = mach->InterpCoefs[attrib].dadx[chan];
const float dady = mach->InterpCoefs[attrib].dady[chan];
const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
const float *w = mach->QuadPos.xyzw[3].f;
/* divide by W here */
mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
}
typedef void (* eval_coef_func)(
struct tgsi_exec_machine *mach,
unsigned attrib,
unsigned chan );
static void
exec_declaration(struct tgsi_exec_machine *mach,
const struct tgsi_full_declaration *decl)
{
if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) {
mach->SamplerViews[decl->Range.First] = decl->SamplerView;
return;
}
if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
if (decl->Declaration.File == TGSI_FILE_INPUT) {
uint first, last, mask;
first = decl->Range.First;
last = decl->Range.Last;
mask = decl->Declaration.UsageMask;
/* XXX we could remove this special-case code since
* mach->InterpCoefs[first].a0 should already have the
* front/back-face value. But we should first update the
* ureg code to emit the right UsageMask value (WRITEMASK_X).
* Then, we could remove the tgsi_exec_machine::Face field.
*/
/* XXX make FACE a system value */
if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
uint i;
assert(decl->Semantic.Index == 0);
assert(first == last);
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
mach->Inputs[first].xyzw[0].f[i] = mach->Face;
}
} else {
eval_coef_func eval;
uint i, j;
switch (decl->Interp.Interpolate) {
case TGSI_INTERPOLATE_CONSTANT:
eval = eval_constant_coef;
break;
case TGSI_INTERPOLATE_LINEAR:
eval = eval_linear_coef;
break;
case TGSI_INTERPOLATE_PERSPECTIVE:
eval = eval_perspective_coef;
break;
case TGSI_INTERPOLATE_COLOR:
eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef;
break;
default:
assert(0);
return;
}
for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
if (mask & (1 << j)) {
for (i = first; i <= last; i++) {
eval(mach, i, j);
}
}
}
}
if (DEBUG_EXECUTION) {
uint i, j;
for (i = first; i <= last; ++i) {
debug_printf("IN[%2u] = ", i);
for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
if (j > 0) {
debug_printf(" ");
}
debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
mach->Inputs[i].xyzw[0].f[j], mach->Inputs[i].xyzw[0].u[j],
mach->Inputs[i].xyzw[1].f[j], mach->Inputs[i].xyzw[1].u[j],
mach->Inputs[i].xyzw[2].f[j], mach->Inputs[i].xyzw[2].u[j],
mach->Inputs[i].xyzw[3].f[j], mach->Inputs[i].xyzw[3].u[j]);
}
}
}
}
}
}
typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src);
static void
exec_scalar_unary(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_unary_op op,
enum tgsi_exec_datatype dst_datatype,
enum tgsi_exec_datatype src_datatype)
{
unsigned int chan;
union tgsi_exec_channel src;
union tgsi_exec_channel dst;
fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
op(&dst, &src);
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
}
}
}
static void
exec_vector_unary(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_unary_op op,
enum tgsi_exec_datatype dst_datatype,
enum tgsi_exec_datatype src_datatype)
{
unsigned int chan;
struct tgsi_exec_vector dst;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
union tgsi_exec_channel src;
fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
op(&dst.xyzw[chan], &src);
}
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
}
}
}
typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1);
static void
exec_scalar_binary(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_binary_op op,
enum tgsi_exec_datatype dst_datatype,
enum tgsi_exec_datatype src_datatype)
{
unsigned int chan;
union tgsi_exec_channel src[2];
union tgsi_exec_channel dst;
fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype);
fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, src_datatype);
op(&dst, &src[0], &src[1]);
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
}
}
}
static void
exec_vector_binary(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_binary_op op,
enum tgsi_exec_datatype dst_datatype,
enum tgsi_exec_datatype src_datatype)
{
unsigned int chan;
struct tgsi_exec_vector dst;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
union tgsi_exec_channel src[2];
fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
op(&dst.xyzw[chan], &src[0], &src[1]);
}
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
}
}
}
typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2);
static void
exec_vector_trinary(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_trinary_op op,
enum tgsi_exec_datatype dst_datatype,
enum tgsi_exec_datatype src_datatype)
{
unsigned int chan;
struct tgsi_exec_vector dst;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
union tgsi_exec_channel src[3];
fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
}
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
}
}
}
typedef void (* micro_quaternary_op)(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2,
const union tgsi_exec_channel *src3);
static void
exec_vector_quaternary(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_quaternary_op op,
enum tgsi_exec_datatype dst_datatype,
enum tgsi_exec_datatype src_datatype)
{
unsigned int chan;
struct tgsi_exec_vector dst;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
union tgsi_exec_channel src[4];
fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
fetch_source(mach, &src[3], &inst->Src[3], chan, src_datatype);
op(&dst.xyzw[chan], &src[0], &src[1], &src[2], &src[3]);
}
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
}
}
}
static void
exec_dp3(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
unsigned int chan;
union tgsi_exec_channel arg[3];
fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_mul(&arg[2], &arg[0], &arg[1]);
for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_dp4(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
unsigned int chan;
union tgsi_exec_channel arg[3];
fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_mul(&arg[2], &arg[0], &arg[1]);
for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_dp2(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
unsigned int chan;
union tgsi_exec_channel arg[3];
fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_mul(&arg[2], &arg[0], &arg[1]);
fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_pk2h(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
unsigned chan;
union tgsi_exec_channel arg[2], dst;
fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &arg[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
dst.u[chan] = util_float_to_half(arg[0].f[chan]) |
(util_float_to_half(arg[1].f[chan]) << 16);
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &dst, &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_UINT);
}
}
}
static void
exec_up2h(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
unsigned chan;
union tgsi_exec_channel arg, dst[2];
fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
dst[0].f[chan] = util_half_to_float(arg.u[chan] & 0xffff);
dst[1].f[chan] = util_half_to_float(arg.u[chan] >> 16);
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &dst[chan & 1], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
micro_ucmp(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2)
{
dst->f[0] = src0->u[0] ? src1->f[0] : src2->f[0];
dst->f[1] = src0->u[1] ? src1->f[1] : src2->f[1];
dst->f[2] = src0->u[2] ? src1->f[2] : src2->f[2];
dst->f[3] = src0->u[3] ? src1->f[3] : src2->f[3];
}
static void
exec_ucmp(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
unsigned int chan;
struct tgsi_exec_vector dst;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
union tgsi_exec_channel src[3];
fetch_source(mach, &src[0], &inst->Src[0], chan,
TGSI_EXEC_DATA_UINT);
fetch_source(mach, &src[1], &inst->Src[1], chan,
TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &src[2], &inst->Src[2], chan,
TGSI_EXEC_DATA_FLOAT);
micro_ucmp(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
}
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan,
TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_dst(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[2];
union tgsi_exec_channel d[4];
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_log(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[3];
fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */
micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */
micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */
micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_exp(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[3];
fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */
store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */
store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_lit(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[3];
union tgsi_exec_channel d[3];
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
micro_max(&r[1], &r[1], &ZeroVec);
fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
micro_min(&r[2], &r[2], &P128Vec);
micro_max(&r[2], &r[2], &M128Vec);
micro_pow(&r[1], &r[1], &r[2]);
micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec);
store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_break(struct tgsi_exec_machine *mach)
{
if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
/* turn off loop channels for each enabled exec channel */
mach->LoopMask &= ~mach->ExecMask;
/* Todo: if mach->LoopMask == 0, jump to end of loop */
UPDATE_EXEC_MASK(mach);
} else {
assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
mach->Switch.mask = 0x0;
UPDATE_EXEC_MASK(mach);
}
}
static void
exec_switch(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
mach->Switch.mask = 0x0;
mach->Switch.defaultMask = 0x0;
mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
UPDATE_EXEC_MASK(mach);
}
static void
exec_case(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
union tgsi_exec_channel src;
uint mask = 0;
fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
if (mach->Switch.selector.u[0] == src.u[0]) {
mask |= 0x1;
}
if (mach->Switch.selector.u[1] == src.u[1]) {
mask |= 0x2;
}
if (mach->Switch.selector.u[2] == src.u[2]) {
mask |= 0x4;
}
if (mach->Switch.selector.u[3] == src.u[3]) {
mask |= 0x8;
}
mach->Switch.defaultMask |= mask;
mach->Switch.mask |= mask & prevMask;
UPDATE_EXEC_MASK(mach);
}
/* FIXME: this will only work if default is last */
static void
exec_default(struct tgsi_exec_machine *mach)
{
uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
UPDATE_EXEC_MASK(mach);
}
static void
exec_endswitch(struct tgsi_exec_machine *mach)
{
mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
UPDATE_EXEC_MASK(mach);
}
typedef void (* micro_dop)(union tgsi_double_channel *dst,
const union tgsi_double_channel *src);
typedef void (* micro_dop_sop)(union tgsi_double_channel *dst,
const union tgsi_double_channel *src0,
union tgsi_exec_channel *src1);
typedef void (* micro_dop_s)(union tgsi_double_channel *dst,
const union tgsi_exec_channel *src);
typedef void (* micro_sop_d)(union tgsi_exec_channel *dst,
const union tgsi_double_channel *src);
static void
fetch_double_channel(struct tgsi_exec_machine *mach,
union tgsi_double_channel *chan,
const struct tgsi_full_src_register *reg,
uint chan_0,
uint chan_1)
{
union tgsi_exec_channel src[2];
uint i;
fetch_source_d(mach, &src[0], reg, chan_0, TGSI_EXEC_DATA_UINT);
fetch_source_d(mach, &src[1], reg, chan_1, TGSI_EXEC_DATA_UINT);
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
chan->u[i][0] = src[0].u[i];
chan->u[i][1] = src[1].u[i];
}
if (reg->Register.Absolute) {
micro_dabs(chan, chan);
}
if (reg->Register.Negate) {
micro_dneg(chan, chan);
}
}
static void
store_double_channel(struct tgsi_exec_machine *mach,
const union tgsi_double_channel *chan,
const struct tgsi_full_dst_register *reg,
const struct tgsi_full_instruction *inst,
uint chan_0,
uint chan_1)
{
union tgsi_exec_channel dst[2];
uint i;
union tgsi_double_channel temp;
const uint execmask = mach->ExecMask;
if (!inst->Instruction.Saturate) {
for (i = 0; i < TGSI_QUAD_SIZE; i++)
if (execmask & (1 << i)) {
dst[0].u[i] = chan->u[i][0];
dst[1].u[i] = chan->u[i][1];
}
}
else {
for (i = 0; i < TGSI_QUAD_SIZE; i++)
if (execmask & (1 << i)) {
if (chan->d[i] < 0.0)
temp.d[i] = 0.0;
else if (chan->d[i] > 1.0)
temp.d[i] = 1.0;
else
temp.d[i] = chan->d[i];
dst[0].u[i] = temp.u[i][0];
dst[1].u[i] = temp.u[i][1];
}
}
store_dest_double(mach, &dst[0], reg, inst, chan_0, TGSI_EXEC_DATA_UINT);
if (chan_1 != -1)
store_dest_double(mach, &dst[1], reg, inst, chan_1, TGSI_EXEC_DATA_UINT);
}
static void
exec_double_unary(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_dop op)
{
union tgsi_double_channel src;
union tgsi_double_channel dst;
if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
op(&dst, &src);
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
}
if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
op(&dst, &src);
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
}
}
static void
exec_double_binary(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_dop op,
enum tgsi_exec_datatype dst_datatype)
{
union tgsi_double_channel src[2];
union tgsi_double_channel dst;
int first_dest_chan, second_dest_chan;
int wmask;
wmask = inst->Dst[0].Register.WriteMask;
/* these are & because of the way DSLT etc store their destinations */
if (wmask & TGSI_WRITEMASK_XY) {
first_dest_chan = TGSI_CHAN_X;
second_dest_chan = TGSI_CHAN_Y;
if (dst_datatype == TGSI_EXEC_DATA_UINT) {
first_dest_chan = (wmask & TGSI_WRITEMASK_X) ? TGSI_CHAN_X : TGSI_CHAN_Y;
second_dest_chan = -1;
}
fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
op(&dst, src);
store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
}
if (wmask & TGSI_WRITEMASK_ZW) {
first_dest_chan = TGSI_CHAN_Z;
second_dest_chan = TGSI_CHAN_W;
if (dst_datatype == TGSI_EXEC_DATA_UINT) {
first_dest_chan = (wmask & TGSI_WRITEMASK_Z) ? TGSI_CHAN_Z : TGSI_CHAN_W;
second_dest_chan = -1;
}
fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
op(&dst, src);
store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
}
}
static void
exec_double_trinary(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_dop op)
{
union tgsi_double_channel src[3];
union tgsi_double_channel dst;
if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_X, TGSI_CHAN_Y);
op(&dst, src);
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
}
if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_CHAN_W);
op(&dst, src);
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
}
}
static void
exec_dldexp(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_double_channel src0;
union tgsi_exec_channel src1;
union tgsi_double_channel dst;
int wmask;
wmask = inst->Dst[0].Register.WriteMask;
if (wmask & TGSI_WRITEMASK_XY) {
fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
micro_dldexp(&dst, &src0, &src1);
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
}
if (wmask & TGSI_WRITEMASK_ZW) {
fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
micro_dldexp(&dst, &src0, &src1);
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
}
}
static void
exec_dfracexp(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_double_channel src;
union tgsi_double_channel dst;
union tgsi_exec_channel dst_exp;
fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
micro_dfracexp(&dst, &dst_exp, &src);
if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY)
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW)
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[1].Register.WriteMask & (1 << chan))
store_dest(mach, &dst_exp, &inst->Dst[1], inst, chan, TGSI_EXEC_DATA_INT);
}
}
static void
exec_arg0_64_arg1_32(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_dop_sop op)
{
union tgsi_double_channel src0;
union tgsi_exec_channel src1;
union tgsi_double_channel dst;
int wmask;
wmask = inst->Dst[0].Register.WriteMask;
if (wmask & TGSI_WRITEMASK_XY) {
fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
op(&dst, &src0, &src1);
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
}
if (wmask & TGSI_WRITEMASK_ZW) {
fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
op(&dst, &src0, &src1);
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
}
}
static int
get_image_coord_dim(unsigned tgsi_tex)
{
int dim;
switch (tgsi_tex) {
case TGSI_TEXTURE_BUFFER:
case TGSI_TEXTURE_1D:
dim = 1;
break;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_2D_MSAA:
dim = 2;
break;
case TGSI_TEXTURE_3D:
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_2D_ARRAY_MSAA:
case TGSI_TEXTURE_CUBE_ARRAY:
dim = 3;
break;
default:
assert(!"unknown texture target");
dim = 0;
break;
}
return dim;
}
static int
get_image_coord_sample(unsigned tgsi_tex)
{
int sample = 0;
switch (tgsi_tex) {
case TGSI_TEXTURE_2D_MSAA:
sample = 3;
break;
case TGSI_TEXTURE_2D_ARRAY_MSAA:
sample = 4;
break;
default:
break;
}
return sample;
}
static void
exec_load_img(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[4], sample_r;
uint unit;
int sample;
int i, j;
int dim;
uint chan;
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
struct tgsi_image_params params;
int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
unit = fetch_sampler_unit(mach, inst, 0);
dim = get_image_coord_dim(inst->Memory.Texture);
sample = get_image_coord_sample(inst->Memory.Texture);
assert(dim <= 3);
params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
params.unit = unit;
params.tgsi_tex_instr = inst->Memory.Texture;
params.format = inst->Memory.Format;
for (i = 0; i < dim; i++) {
IFETCH(&r[i], 1, TGSI_CHAN_X + i);
}
if (sample)
IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
mach->Image->load(mach->Image, ¶ms,
r[0].i, r[1].i, r[2].i, sample_r.i,
rgba);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
r[0].f[j] = rgba[0][j];
r[1].f[j] = rgba[1][j];
r[2].f[j] = rgba[2][j];
r[3].f[j] = rgba[3][j];
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_load_buf(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[4];
uint unit;
int j;
uint chan;
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
struct tgsi_buffer_params params;
int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
unit = fetch_sampler_unit(mach, inst, 0);
params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
params.unit = unit;
IFETCH(&r[0], 1, TGSI_CHAN_X);
mach->Buffer->load(mach->Buffer, ¶ms,
r[0].i, rgba);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
r[0].f[j] = rgba[0][j];
r[1].f[j] = rgba[1][j];
r[2].f[j] = rgba[2][j];
r[3].f[j] = rgba[3][j];
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_load_mem(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[4];
uint chan;
char *ptr = mach->LocalMem;
uint32_t offset;
int j;
IFETCH(&r[0], 1, TGSI_CHAN_X);
if (r[0].u[0] >= mach->LocalMemSize)
return;
offset = r[0].u[0];
ptr += offset;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
memcpy(&r[chan].u[j], ptr + (4 * chan), 4);
}
}
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_load(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
exec_load_img(mach, inst);
else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
exec_load_buf(mach, inst);
else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
exec_load_mem(mach, inst);
}
static void
exec_store_img(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[3], sample_r;
union tgsi_exec_channel value[4];
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
struct tgsi_image_params params;
int dim;
int sample;
int i, j;
uint unit;
int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
unit = inst->Dst[0].Register.Index;
dim = get_image_coord_dim(inst->Memory.Texture);
sample = get_image_coord_sample(inst->Memory.Texture);
assert(dim <= 3);
params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
params.unit = unit;
params.tgsi_tex_instr = inst->Memory.Texture;
params.format = inst->Memory.Format;
for (i = 0; i < dim; i++) {
IFETCH(&r[i], 0, TGSI_CHAN_X + i);
}
for (i = 0; i < 4; i++) {
FETCH(&value[i], 1, TGSI_CHAN_X + i);
}
if (sample)
IFETCH(&sample_r, 0, TGSI_CHAN_X + sample);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
rgba[0][j] = value[0].f[j];
rgba[1][j] = value[1].f[j];
rgba[2][j] = value[2].f[j];
rgba[3][j] = value[3].f[j];
}
mach->Image->store(mach->Image, ¶ms,
r[0].i, r[1].i, r[2].i, sample_r.i,
rgba);
}
static void
exec_store_buf(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[3];
union tgsi_exec_channel value[4];
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
struct tgsi_buffer_params params;
int i, j;
uint unit;
int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
unit = inst->Dst[0].Register.Index;
params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
params.unit = unit;
params.writemask = inst->Dst[0].Register.WriteMask;
IFETCH(&r[0], 0, TGSI_CHAN_X);
for (i = 0; i < 4; i++) {
FETCH(&value[i], 1, TGSI_CHAN_X + i);
}
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
rgba[0][j] = value[0].f[j];
rgba[1][j] = value[1].f[j];
rgba[2][j] = value[2].f[j];
rgba[3][j] = value[3].f[j];
}
mach->Buffer->store(mach->Buffer, ¶ms,
r[0].i,
rgba);
}
static void
exec_store_mem(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[3];
union tgsi_exec_channel value[4];
uint i, chan;
char *ptr = mach->LocalMem;
int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
IFETCH(&r[0], 0, TGSI_CHAN_X);
for (i = 0; i < 4; i++) {
FETCH(&value[i], 1, TGSI_CHAN_X + i);
}
if (r[0].u[0] >= mach->LocalMemSize)
return;
ptr += r[0].u[0];
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
if (execmask & (1 << i)) {
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
memcpy(ptr + (chan * 4), &value[chan].u[0], 4);
}
}
}
}
}
static void
exec_store(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE)
exec_store_img(mach, inst);
else if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER)
exec_store_buf(mach, inst);
else if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY)
exec_store_mem(mach, inst);
}
static void
exec_atomop_img(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[4], sample_r;
union tgsi_exec_channel value[4], value2[4];
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
struct tgsi_image_params params;
int dim;
int sample;
int i, j;
uint unit, chan;
int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
unit = fetch_sampler_unit(mach, inst, 0);
dim = get_image_coord_dim(inst->Memory.Texture);
sample = get_image_coord_sample(inst->Memory.Texture);
assert(dim <= 3);
params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
params.unit = unit;
params.tgsi_tex_instr = inst->Memory.Texture;
params.format = inst->Memory.Format;
for (i = 0; i < dim; i++) {
IFETCH(&r[i], 1, TGSI_CHAN_X + i);
}
for (i = 0; i < 4; i++) {
FETCH(&value[i], 2, TGSI_CHAN_X + i);
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
FETCH(&value2[i], 3, TGSI_CHAN_X + i);
}
if (sample)
IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
rgba[0][j] = value[0].f[j];
rgba[1][j] = value[1].f[j];
rgba[2][j] = value[2].f[j];
rgba[3][j] = value[3].f[j];
}
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
rgba2[0][j] = value2[0].f[j];
rgba2[1][j] = value2[1].f[j];
rgba2[2][j] = value2[2].f[j];
rgba2[3][j] = value2[3].f[j];
}
}
mach->Image->op(mach->Image, ¶ms, inst->Instruction.Opcode,
r[0].i, r[1].i, r[2].i, sample_r.i,
rgba, rgba2);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
r[0].f[j] = rgba[0][j];
r[1].f[j] = rgba[1][j];
r[2].f[j] = rgba[2][j];
r[3].f[j] = rgba[3][j];
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_atomop_buf(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[4];
union tgsi_exec_channel value[4], value2[4];
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
struct tgsi_buffer_params params;
int i, j;
uint unit, chan;
int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
unit = fetch_sampler_unit(mach, inst, 0);
params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
params.unit = unit;
params.writemask = inst->Dst[0].Register.WriteMask;
IFETCH(&r[0], 1, TGSI_CHAN_X);
for (i = 0; i < 4; i++) {
FETCH(&value[i], 2, TGSI_CHAN_X + i);
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
FETCH(&value2[i], 3, TGSI_CHAN_X + i);
}
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
rgba[0][j] = value[0].f[j];
rgba[1][j] = value[1].f[j];
rgba[2][j] = value[2].f[j];
rgba[3][j] = value[3].f[j];
}
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
rgba2[0][j] = value2[0].f[j];
rgba2[1][j] = value2[1].f[j];
rgba2[2][j] = value2[2].f[j];
rgba2[3][j] = value2[3].f[j];
}
}
mach->Buffer->op(mach->Buffer, ¶ms, inst->Instruction.Opcode,
r[0].i,
rgba, rgba2);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
r[0].f[j] = rgba[0][j];
r[1].f[j] = rgba[1][j];
r[2].f[j] = rgba[2][j];
r[3].f[j] = rgba[3][j];
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_atomop_mem(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[4];
union tgsi_exec_channel value[4], value2[4];
char *ptr = mach->LocalMem;
uint32_t val;
uint chan, i;
uint32_t offset;
int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
IFETCH(&r[0], 1, TGSI_CHAN_X);
if (r[0].u[0] >= mach->LocalMemSize)
return;
offset = r[0].u[0];
ptr += offset;
for (i = 0; i < 4; i++) {
FETCH(&value[i], 2, TGSI_CHAN_X + i);
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
FETCH(&value2[i], 3, TGSI_CHAN_X + i);
}
memcpy(&r[0].u[0], ptr, 4);
val = r[0].u[0];
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_ATOMUADD:
val += value[0].u[0];
break;
case TGSI_OPCODE_ATOMXOR:
val ^= value[0].u[0];
break;
case TGSI_OPCODE_ATOMOR:
val |= value[0].u[0];
break;
case TGSI_OPCODE_ATOMAND:
val &= value[0].u[0];
break;
case TGSI_OPCODE_ATOMUMIN:
val = MIN2(val, value[0].u[0]);
break;
case TGSI_OPCODE_ATOMUMAX:
val = MAX2(val, value[0].u[0]);
break;
case TGSI_OPCODE_ATOMIMIN:
val = MIN2(r[0].i[0], value[0].i[0]);
break;
case TGSI_OPCODE_ATOMIMAX:
val = MAX2(r[0].i[0], value[0].i[0]);
break;
case TGSI_OPCODE_ATOMXCHG:
val = value[0].i[0];
break;
case TGSI_OPCODE_ATOMCAS:
if (val == value[0].u[0])
val = value2[0].u[0];
break;
default:
break;
}
for (i = 0; i < TGSI_QUAD_SIZE; i++)
if (execmask & (1 << i))
memcpy(ptr, &val, 4);
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
static void
exec_atomop(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
exec_atomop_img(mach, inst);
else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
exec_atomop_buf(mach, inst);
else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
exec_atomop_mem(mach, inst);
}
static void
exec_resq_img(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
int result[4];
union tgsi_exec_channel r[4];
uint unit;
int i, chan, j;
struct tgsi_image_params params;
int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
unit = fetch_sampler_unit(mach, inst, 0);
params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
params.unit = unit;
params.tgsi_tex_instr = inst->Memory.Texture;
params.format = inst->Memory.Format;
mach->Image->get_dims(mach->Image, ¶ms, result);
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
for (j = 0; j < 4; j++) {
r[j].i[i] = result[j];
}
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
TGSI_EXEC_DATA_INT);
}
}
}
static void
exec_resq_buf(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
int result;
union tgsi_exec_channel r[4];
uint unit;
int i, chan;
struct tgsi_buffer_params params;
int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
unit = fetch_sampler_unit(mach, inst, 0);
params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
params.unit = unit;
mach->Buffer->get_dims(mach->Buffer, ¶ms, &result);
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
r[0].i[i] = result;
}
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
TGSI_EXEC_DATA_INT);
}
}
}
static void
exec_resq(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
exec_resq_img(mach, inst);
else
exec_resq_buf(mach, inst);
}
static void
micro_f2u64(union tgsi_double_channel *dst,
const union tgsi_exec_channel *src)
{
dst->u64[0] = (uint64_t)src->f[0];
dst->u64[1] = (uint64_t)src->f[1];
dst->u64[2] = (uint64_t)src->f[2];
dst->u64[3] = (uint64_t)src->f[3];
}
static void
micro_f2i64(union tgsi_double_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i64[0] = (int64_t)src->f[0];
dst->i64[1] = (int64_t)src->f[1];
dst->i64[2] = (int64_t)src->f[2];
dst->i64[3] = (int64_t)src->f[3];
}
static void
micro_u2i64(union tgsi_double_channel *dst,
const union tgsi_exec_channel *src)
{
dst->u64[0] = (uint64_t)src->u[0];
dst->u64[1] = (uint64_t)src->u[1];
dst->u64[2] = (uint64_t)src->u[2];
dst->u64[3] = (uint64_t)src->u[3];
}
static void
micro_i2i64(union tgsi_double_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i64[0] = (int64_t)src->i[0];
dst->i64[1] = (int64_t)src->i[1];
dst->i64[2] = (int64_t)src->i[2];
dst->i64[3] = (int64_t)src->i[3];
}
static void
micro_d2u64(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->u64[0] = (uint64_t)src->d[0];
dst->u64[1] = (uint64_t)src->d[1];
dst->u64[2] = (uint64_t)src->d[2];
dst->u64[3] = (uint64_t)src->d[3];
}
static void
micro_d2i64(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->i64[0] = (int64_t)src->d[0];
dst->i64[1] = (int64_t)src->d[1];
dst->i64[2] = (int64_t)src->d[2];
dst->i64[3] = (int64_t)src->d[3];
}
static void
micro_u642d(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = (double)src->u64[0];
dst->d[1] = (double)src->u64[1];
dst->d[2] = (double)src->u64[2];
dst->d[3] = (double)src->u64[3];
}
static void
micro_i642d(union tgsi_double_channel *dst,
const union tgsi_double_channel *src)
{
dst->d[0] = (double)src->i64[0];
dst->d[1] = (double)src->i64[1];
dst->d[2] = (double)src->i64[2];
dst->d[3] = (double)src->i64[3];
}
static void
micro_u642f(union tgsi_exec_channel *dst,
const union tgsi_double_channel *src)
{
dst->f[0] = (float)src->u64[0];
dst->f[1] = (float)src->u64[1];
dst->f[2] = (float)src->u64[2];
dst->f[3] = (float)src->u64[3];
}
static void
micro_i642f(union tgsi_exec_channel *dst,
const union tgsi_double_channel *src)
{
dst->f[0] = (float)src->i64[0];
dst->f[1] = (float)src->i64[1];
dst->f[2] = (float)src->i64[2];
dst->f[3] = (float)src->i64[3];
}
static void
exec_t_2_64(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_dop_s op,
enum tgsi_exec_datatype src_datatype)
{
union tgsi_exec_channel src;
union tgsi_double_channel dst;
if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
op(&dst, &src);
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
}
if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_Y, src_datatype);
op(&dst, &src);
store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
}
}
static void
exec_64_2_t(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_sop_d op,
enum tgsi_exec_datatype dst_datatype)
{
union tgsi_double_channel src;
union tgsi_exec_channel dst;
int wm = inst->Dst[0].Register.WriteMask;
int i;
int bit;
for (i = 0; i < 2; i++) {
bit = ffs(wm);
if (bit) {
wm &= ~(1 << (bit - 1));
if (i == 0)
fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
else
fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
op(&dst, &src);
store_dest(mach, &dst, &inst->Dst[0], inst, bit - 1, dst_datatype);
}
}
}
static void
micro_i2f(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = (float)src->i[0];
dst->f[1] = (float)src->i[1];
dst->f[2] = (float)src->i[2];
dst->f[3] = (float)src->i[3];
}
static void
micro_not(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->u[0] = ~src->u[0];
dst->u[1] = ~src->u[1];
dst->u[2] = ~src->u[2];
dst->u[3] = ~src->u[3];
}
static void
micro_shl(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
unsigned masked_count;
masked_count = src1->u[0] & 0x1f;
dst->u[0] = src0->u[0] << masked_count;
masked_count = src1->u[1] & 0x1f;
dst->u[1] = src0->u[1] << masked_count;
masked_count = src1->u[2] & 0x1f;
dst->u[2] = src0->u[2] << masked_count;
masked_count = src1->u[3] & 0x1f;
dst->u[3] = src0->u[3] << masked_count;
}
static void
micro_and(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->u[0] & src1->u[0];
dst->u[1] = src0->u[1] & src1->u[1];
dst->u[2] = src0->u[2] & src1->u[2];
dst->u[3] = src0->u[3] & src1->u[3];
}
static void
micro_or(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->u[0] | src1->u[0];
dst->u[1] = src0->u[1] | src1->u[1];
dst->u[2] = src0->u[2] | src1->u[2];
dst->u[3] = src0->u[3] | src1->u[3];
}
static void
micro_xor(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->u[0] ^ src1->u[0];
dst->u[1] = src0->u[1] ^ src1->u[1];
dst->u[2] = src0->u[2] ^ src1->u[2];
dst->u[3] = src0->u[3] ^ src1->u[3];
}
static void
micro_mod(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->i[0] = src1->i[0] ? src0->i[0] % src1->i[0] : ~0;
dst->i[1] = src1->i[1] ? src0->i[1] % src1->i[1] : ~0;
dst->i[2] = src1->i[2] ? src0->i[2] % src1->i[2] : ~0;
dst->i[3] = src1->i[3] ? src0->i[3] % src1->i[3] : ~0;
}
static void
micro_f2i(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i[0] = (int)src->f[0];
dst->i[1] = (int)src->f[1];
dst->i[2] = (int)src->f[2];
dst->i[3] = (int)src->f[3];
}
static void
micro_fseq(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->f[0] == src1->f[0] ? ~0 : 0;
dst->u[1] = src0->f[1] == src1->f[1] ? ~0 : 0;
dst->u[2] = src0->f[2] == src1->f[2] ? ~0 : 0;
dst->u[3] = src0->f[3] == src1->f[3] ? ~0 : 0;
}
static void
micro_fsge(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->f[0] >= src1->f[0] ? ~0 : 0;
dst->u[1] = src0->f[1] >= src1->f[1] ? ~0 : 0;
dst->u[2] = src0->f[2] >= src1->f[2] ? ~0 : 0;
dst->u[3] = src0->f[3] >= src1->f[3] ? ~0 : 0;
}
static void
micro_fslt(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->f[0] < src1->f[0] ? ~0 : 0;
dst->u[1] = src0->f[1] < src1->f[1] ? ~0 : 0;
dst->u[2] = src0->f[2] < src1->f[2] ? ~0 : 0;
dst->u[3] = src0->f[3] < src1->f[3] ? ~0 : 0;
}
static void
micro_fsne(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->f[0] != src1->f[0] ? ~0 : 0;
dst->u[1] = src0->f[1] != src1->f[1] ? ~0 : 0;
dst->u[2] = src0->f[2] != src1->f[2] ? ~0 : 0;
dst->u[3] = src0->f[3] != src1->f[3] ? ~0 : 0;
}
static void
micro_idiv(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->i[0] = src1->i[0] ? src0->i[0] / src1->i[0] : 0;
dst->i[1] = src1->i[1] ? src0->i[1] / src1->i[1] : 0;
dst->i[2] = src1->i[2] ? src0->i[2] / src1->i[2] : 0;
dst->i[3] = src1->i[3] ? src0->i[3] / src1->i[3] : 0;
}
static void
micro_imax(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
}
static void
micro_imin(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
}
static void
micro_isge(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
}
static void
micro_ishr(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
unsigned masked_count;
masked_count = src1->i[0] & 0x1f;
dst->i[0] = src0->i[0] >> masked_count;
masked_count = src1->i[1] & 0x1f;
dst->i[1] = src0->i[1] >> masked_count;
masked_count = src1->i[2] & 0x1f;
dst->i[2] = src0->i[2] >> masked_count;
masked_count = src1->i[3] & 0x1f;
dst->i[3] = src0->i[3] >> masked_count;
}
static void
micro_islt(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
}
static void
micro_f2u(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->u[0] = (uint)src->f[0];
dst->u[1] = (uint)src->f[1];
dst->u[2] = (uint)src->f[2];
dst->u[3] = (uint)src->f[3];
}
static void
micro_u2f(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->f[0] = (float)src->u[0];
dst->f[1] = (float)src->u[1];
dst->f[2] = (float)src->u[2];
dst->f[3] = (float)src->u[3];
}
static void
micro_uadd(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->u[0] + src1->u[0];
dst->u[1] = src0->u[1] + src1->u[1];
dst->u[2] = src0->u[2] + src1->u[2];
dst->u[3] = src0->u[3] + src1->u[3];
}
static void
micro_udiv(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src1->u[0] ? src0->u[0] / src1->u[0] : ~0u;
dst->u[1] = src1->u[1] ? src0->u[1] / src1->u[1] : ~0u;
dst->u[2] = src1->u[2] ? src0->u[2] / src1->u[2] : ~0u;
dst->u[3] = src1->u[3] ? src0->u[3] / src1->u[3] : ~0u;
}
static void
micro_umad(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2)
{
dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
}
static void
micro_umax(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
}
static void
micro_umin(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
}
static void
micro_umod(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src1->u[0] ? src0->u[0] % src1->u[0] : ~0u;
dst->u[1] = src1->u[1] ? src0->u[1] % src1->u[1] : ~0u;
dst->u[2] = src1->u[2] ? src0->u[2] % src1->u[2] : ~0u;
dst->u[3] = src1->u[3] ? src0->u[3] % src1->u[3] : ~0u;
}
static void
micro_umul(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->u[0] * src1->u[0];
dst->u[1] = src0->u[1] * src1->u[1];
dst->u[2] = src0->u[2] * src1->u[2];
dst->u[3] = src0->u[3] * src1->u[3];
}
static void
micro_imul_hi(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
#define I64M(x, y) ((((int64_t)x) * ((int64_t)y)) >> 32)
dst->i[0] = I64M(src0->i[0], src1->i[0]);
dst->i[1] = I64M(src0->i[1], src1->i[1]);
dst->i[2] = I64M(src0->i[2], src1->i[2]);
dst->i[3] = I64M(src0->i[3], src1->i[3]);
#undef I64M
}
static void
micro_umul_hi(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
#define U64M(x, y) ((((uint64_t)x) * ((uint64_t)y)) >> 32)
dst->u[0] = U64M(src0->u[0], src1->u[0]);
dst->u[1] = U64M(src0->u[1], src1->u[1]);
dst->u[2] = U64M(src0->u[2], src1->u[2]);
dst->u[3] = U64M(src0->u[3], src1->u[3]);
#undef U64M
}
static void
micro_useq(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
}
static void
micro_usge(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
}
static void
micro_ushr(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
unsigned masked_count;
masked_count = src1->u[0] & 0x1f;
dst->u[0] = src0->u[0] >> masked_count;
masked_count = src1->u[1] & 0x1f;
dst->u[1] = src0->u[1] >> masked_count;
masked_count = src1->u[2] & 0x1f;
dst->u[2] = src0->u[2] >> masked_count;
masked_count = src1->u[3] & 0x1f;
dst->u[3] = src0->u[3] >> masked_count;
}
static void
micro_uslt(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
}
static void
micro_usne(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1)
{
dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
}
static void
micro_uarl(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i[0] = src->u[0];
dst->i[1] = src->u[1];
dst->i[2] = src->u[2];
dst->i[3] = src->u[3];
}
/**
* Signed bitfield extract (i.e. sign-extend the extracted bits)
*/
static void
micro_ibfe(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2)
{
int i;
for (i = 0; i < 4; i++) {
int width = src2->i[i] & 0x1f;
int offset = src1->i[i] & 0x1f;
if (width == 0)
dst->i[i] = 0;
else if (width + offset < 32)
dst->i[i] = (src0->i[i] << (32 - width - offset)) >> (32 - width);
else
dst->i[i] = src0->i[i] >> offset;
}
}
/**
* Unsigned bitfield extract
*/
static void
micro_ubfe(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2)
{
int i;
for (i = 0; i < 4; i++) {
int width = src2->u[i] & 0x1f;
int offset = src1->u[i] & 0x1f;
if (width == 0)
dst->u[i] = 0;
else if (width + offset < 32)
dst->u[i] = (src0->u[i] << (32 - width - offset)) >> (32 - width);
else
dst->u[i] = src0->u[i] >> offset;
}
}
/**
* Bitfield insert: copy low bits from src1 into a region of src0.
*/
static void
micro_bfi(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2,
const union tgsi_exec_channel *src3)
{
int i;
for (i = 0; i < 4; i++) {
int width = src3->u[i] & 0x1f;
int offset = src2->u[i] & 0x1f;
int bitmask = ((1 << width) - 1) << offset;
dst->u[i] = ((src1->u[i] << offset) & bitmask) | (src0->u[i] & ~bitmask);
}
}
static void
micro_brev(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->u[0] = util_bitreverse(src->u[0]);
dst->u[1] = util_bitreverse(src->u[1]);
dst->u[2] = util_bitreverse(src->u[2]);
dst->u[3] = util_bitreverse(src->u[3]);
}
static void
micro_popc(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->u[0] = util_bitcount(src->u[0]);
dst->u[1] = util_bitcount(src->u[1]);
dst->u[2] = util_bitcount(src->u[2]);
dst->u[3] = util_bitcount(src->u[3]);
}
static void
micro_lsb(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i[0] = ffs(src->u[0]) - 1;
dst->i[1] = ffs(src->u[1]) - 1;
dst->i[2] = ffs(src->u[2]) - 1;
dst->i[3] = ffs(src->u[3]) - 1;
}
static void
micro_imsb(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i[0] = util_last_bit_signed(src->i[0]) - 1;
dst->i[1] = util_last_bit_signed(src->i[1]) - 1;
dst->i[2] = util_last_bit_signed(src->i[2]) - 1;
dst->i[3] = util_last_bit_signed(src->i[3]) - 1;
}
static void
micro_umsb(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
dst->i[0] = util_last_bit(src->u[0]) - 1;
dst->i[1] = util_last_bit(src->u[1]) - 1;
dst->i[2] = util_last_bit(src->u[2]) - 1;
dst->i[3] = util_last_bit(src->u[3]) - 1;
}
/**
* Execute a TGSI instruction.
* Returns TRUE if a barrier instruction is hit,
* otherwise FALSE.
*/
static boolean
exec_instruction(
struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
int *pc )
{
union tgsi_exec_channel r[10];
(*pc)++;
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_ARL:
exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_MOV:
exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_LIT:
exec_lit(mach, inst);
break;
case TGSI_OPCODE_RCP:
exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_RSQ:
exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_EXP:
exec_exp(mach, inst);
break;
case TGSI_OPCODE_LOG:
exec_log(mach, inst);
break;
case TGSI_OPCODE_MUL:
exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_ADD:
exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_DP3:
exec_dp3(mach, inst);
break;
case TGSI_OPCODE_DP4:
exec_dp4(mach, inst);
break;
case TGSI_OPCODE_DST:
exec_dst(mach, inst);
break;
case TGSI_OPCODE_MIN:
exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_MAX:
exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_SLT:
exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_SGE:
exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_MAD:
exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_LRP:
exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_SQRT:
exec_scalar_unary(mach, inst, micro_sqrt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_FRC:
exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_FLR:
exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_ROUND:
exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_EX2:
exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_LG2:
exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_POW:
exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_LDEXP:
exec_vector_binary(mach, inst, micro_ldexp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_COS:
exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_DDX:
exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_DDY:
exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_KILL:
exec_kill (mach, inst);
break;
case TGSI_OPCODE_KILL_IF:
exec_kill_if (mach, inst);
break;
case TGSI_OPCODE_PK2H:
exec_pk2h(mach, inst);
break;
case TGSI_OPCODE_PK2US:
assert (0);
break;
case TGSI_OPCODE_PK4B:
assert (0);
break;
case TGSI_OPCODE_PK4UB:
assert (0);
break;
case TGSI_OPCODE_SEQ:
exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_SGT:
exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_SIN:
exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_SLE:
exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_SNE:
exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_TEX:
/* simple texture lookup */
/* src[0] = texcoord */
/* src[1] = sampler unit */
exec_tex(mach, inst, TEX_MODIFIER_NONE, 1);
break;
case TGSI_OPCODE_TXB:
/* Texture lookup with lod bias */
/* src[0] = texcoord (src[0].w = LOD bias) */
/* src[1] = sampler unit */
exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 1);
break;
case TGSI_OPCODE_TXD:
/* Texture lookup with explict partial derivatives */
/* src[0] = texcoord */
/* src[1] = d[strq]/dx */
/* src[2] = d[strq]/dy */
/* src[3] = sampler unit */
exec_txd(mach, inst);
break;
case TGSI_OPCODE_TXL:
/* Texture lookup with explit LOD */
/* src[0] = texcoord (src[0].w = LOD) */
/* src[1] = sampler unit */
exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 1);
break;
case TGSI_OPCODE_TXP:
/* Texture lookup with projection */
/* src[0] = texcoord (src[0].w = projection) */
/* src[1] = sampler unit */
exec_tex(mach, inst, TEX_MODIFIER_PROJECTED, 1);
break;
case TGSI_OPCODE_TG4:
/* src[0] = texcoord */
/* src[1] = component */
/* src[2] = sampler unit */
exec_tex(mach, inst, TEX_MODIFIER_GATHER, 2);
break;
case TGSI_OPCODE_LODQ:
/* src[0] = texcoord */
/* src[1] = sampler unit */
exec_lodq(mach, inst);
break;
case TGSI_OPCODE_UP2H:
exec_up2h(mach, inst);
break;
case TGSI_OPCODE_UP2US:
assert (0);
break;
case TGSI_OPCODE_UP4B:
assert (0);
break;
case TGSI_OPCODE_UP4UB:
assert (0);
break;
case TGSI_OPCODE_ARR:
exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_CAL:
/* skip the call if no execution channels are enabled */
if (mach->ExecMask) {
/* do the call */
/* First, record the depths of the execution stacks.
* This is important for deeply nested/looped return statements.
* We have to unwind the stacks by the correct amount. For a
* real code generator, we could determine the number of entries
* to pop off each stack with simple static analysis and avoid
* implementing this data structure at run time.
*/
mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
/* note that PC was already incremented above */
mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
mach->CallStackTop++;
/* Second, push the Cond, Loop, Cont, Func stacks */
assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
mach->CondStack[mach->CondStackTop++] = mach->CondMask;
mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
mach->ContStack[mach->ContStackTop++] = mach->ContMask;
mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
/* Finally, jump to the subroutine. The label is a pointer
* (an instruction number) to the BGNSUB instruction.
*/
*pc = inst->Label.Label;
assert(mach->Instructions[*pc].Instruction.Opcode
== TGSI_OPCODE_BGNSUB);
}
break;
case TGSI_OPCODE_RET:
mach->FuncMask &= ~mach->ExecMask;
UPDATE_EXEC_MASK(mach);
if (mach->FuncMask == 0x0) {
/* really return now (otherwise, keep executing */
if (mach->CallStackTop == 0) {
/* returning from main() */
mach->CondStackTop = 0;
mach->LoopStackTop = 0;
mach->ContStackTop = 0;
mach->LoopLabelStackTop = 0;
mach->SwitchStackTop = 0;
mach->BreakStackTop = 0;
*pc = -1;
return FALSE;
}
assert(mach->CallStackTop > 0);
mach->CallStackTop--;
mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
mach->CondMask = mach->CondStack[mach->CondStackTop];
mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
mach->ContMask = mach->ContStack[mach->ContStackTop];
mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
mach->BreakType = mach->BreakStack[mach->BreakStackTop];
assert(mach->FuncStackTop > 0);
mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
*pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
UPDATE_EXEC_MASK(mach);
}
break;
case TGSI_OPCODE_SSG:
exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_CMP:
exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_DIV:
exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_DP2:
exec_dp2(mach, inst);
break;
case TGSI_OPCODE_IF:
/* push CondMask */
assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
mach->CondStack[mach->CondStackTop++] = mach->CondMask;
FETCH( &r[0], 0, TGSI_CHAN_X );
/* update CondMask */
if( ! r[0].f[0] ) {
mach->CondMask &= ~0x1;
}
if( ! r[0].f[1] ) {
mach->CondMask &= ~0x2;
}
if( ! r[0].f[2] ) {
mach->CondMask &= ~0x4;
}
if( ! r[0].f[3] ) {
mach->CondMask &= ~0x8;
}
UPDATE_EXEC_MASK(mach);
/* Todo: If CondMask==0, jump to ELSE */
break;
case TGSI_OPCODE_UIF:
/* push CondMask */
assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
mach->CondStack[mach->CondStackTop++] = mach->CondMask;
IFETCH( &r[0], 0, TGSI_CHAN_X );
/* update CondMask */
if( ! r[0].u[0] ) {
mach->CondMask &= ~0x1;
}
if( ! r[0].u[1] ) {
mach->CondMask &= ~0x2;
}
if( ! r[0].u[2] ) {
mach->CondMask &= ~0x4;
}
if( ! r[0].u[3] ) {
mach->CondMask &= ~0x8;
}
UPDATE_EXEC_MASK(mach);
/* Todo: If CondMask==0, jump to ELSE */
break;
case TGSI_OPCODE_ELSE:
/* invert CondMask wrt previous mask */
{
uint prevMask;
assert(mach->CondStackTop > 0);
prevMask = mach->CondStack[mach->CondStackTop - 1];
mach->CondMask = ~mach->CondMask & prevMask;
UPDATE_EXEC_MASK(mach);
/* Todo: If CondMask==0, jump to ENDIF */
}
break;
case TGSI_OPCODE_ENDIF:
/* pop CondMask */
assert(mach->CondStackTop > 0);
mach->CondMask = mach->CondStack[--mach->CondStackTop];
UPDATE_EXEC_MASK(mach);
break;
case TGSI_OPCODE_END:
/* make sure we end primitives which haven't
* been explicitly emitted */
conditional_emit_primitive(mach);
/* halt execution */
*pc = -1;
break;
case TGSI_OPCODE_CEIL:
exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_I2F:
exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_NOT:
exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_TRUNC:
exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_SHL:
exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_AND:
exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_OR:
exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_MOD:
exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_XOR:
exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_TXF:
exec_txf(mach, inst);
break;
case TGSI_OPCODE_TXQ:
exec_txq(mach, inst);
break;
case TGSI_OPCODE_EMIT:
emit_vertex(mach);
break;
case TGSI_OPCODE_ENDPRIM:
emit_primitive(mach);
break;
case TGSI_OPCODE_BGNLOOP:
/* push LoopMask and ContMasks */
assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
mach->ContStack[mach->ContStackTop++] = mach->ContMask;
mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
break;
case TGSI_OPCODE_ENDLOOP:
/* Restore ContMask, but don't pop */
assert(mach->ContStackTop > 0);
mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
UPDATE_EXEC_MASK(mach);
if (mach->ExecMask) {
/* repeat loop: jump to instruction just past BGNLOOP */
assert(mach->LoopLabelStackTop > 0);
*pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
}
else {
/* exit loop: pop LoopMask */
assert(mach->LoopStackTop > 0);
mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
/* pop ContMask */
assert(mach->ContStackTop > 0);
mach->ContMask = mach->ContStack[--mach->ContStackTop];
assert(mach->LoopLabelStackTop > 0);
--mach->LoopLabelStackTop;
mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
}
UPDATE_EXEC_MASK(mach);
break;
case TGSI_OPCODE_BRK:
exec_break(mach);
break;
case TGSI_OPCODE_CONT:
/* turn off cont channels for each enabled exec channel */
mach->ContMask &= ~mach->ExecMask;
/* Todo: if mach->LoopMask == 0, jump to end of loop */
UPDATE_EXEC_MASK(mach);
break;
case TGSI_OPCODE_BGNSUB:
/* no-op */
break;
case TGSI_OPCODE_ENDSUB:
/*
* XXX: This really should be a no-op. We should never reach this opcode.
*/
assert(mach->CallStackTop > 0);
mach->CallStackTop--;
mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
mach->CondMask = mach->CondStack[mach->CondStackTop];
mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
mach->ContMask = mach->ContStack[mach->ContStackTop];
mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
mach->BreakType = mach->BreakStack[mach->BreakStackTop];
assert(mach->FuncStackTop > 0);
mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
*pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
UPDATE_EXEC_MASK(mach);
break;
case TGSI_OPCODE_NOP:
break;
case TGSI_OPCODE_F2I:
exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_FSEQ:
exec_vector_binary(mach, inst, micro_fseq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_FSGE:
exec_vector_binary(mach, inst, micro_fsge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_FSLT:
exec_vector_binary(mach, inst, micro_fslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_FSNE:
exec_vector_binary(mach, inst, micro_fsne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_IDIV:
exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_IMAX:
exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_IMIN:
exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_INEG:
exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_ISGE:
exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_ISHR:
exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_ISLT:
exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_F2U:
exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_U2F:
exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_UADD:
exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_UDIV:
exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_UMAD:
exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_UMAX:
exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_UMIN:
exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_UMOD:
exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_UMUL:
exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_IMUL_HI:
exec_vector_binary(mach, inst, micro_imul_hi, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_UMUL_HI:
exec_vector_binary(mach, inst, micro_umul_hi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_USEQ:
exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_USGE:
exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_USHR:
exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_USLT:
exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_USNE:
exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_SWITCH:
exec_switch(mach, inst);
break;
case TGSI_OPCODE_CASE:
exec_case(mach, inst);
break;
case TGSI_OPCODE_DEFAULT:
exec_default(mach);
break;
case TGSI_OPCODE_ENDSWITCH:
exec_endswitch(mach);
break;
case TGSI_OPCODE_SAMPLE_I:
exec_txf(mach, inst);
break;
case TGSI_OPCODE_SAMPLE_I_MS:
exec_txf(mach, inst);
break;
case TGSI_OPCODE_SAMPLE:
exec_sample(mach, inst, TEX_MODIFIER_NONE, FALSE);
break;
case TGSI_OPCODE_SAMPLE_B:
exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS, FALSE);
break;
case TGSI_OPCODE_SAMPLE_C:
exec_sample(mach, inst, TEX_MODIFIER_NONE, TRUE);
break;
case TGSI_OPCODE_SAMPLE_C_LZ:
exec_sample(mach, inst, TEX_MODIFIER_LEVEL_ZERO, TRUE);
break;
case TGSI_OPCODE_SAMPLE_D:
exec_sample_d(mach, inst);
break;
case TGSI_OPCODE_SAMPLE_L:
exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, FALSE);
break;
case TGSI_OPCODE_GATHER4:
exec_sample(mach, inst, TEX_MODIFIER_GATHER, FALSE);
break;
case TGSI_OPCODE_SVIEWINFO:
exec_txq(mach, inst);
break;
case TGSI_OPCODE_SAMPLE_POS:
assert(0);
break;
case TGSI_OPCODE_SAMPLE_INFO:
assert(0);
break;
case TGSI_OPCODE_LOD:
exec_lodq(mach, inst);
break;
case TGSI_OPCODE_UARL:
exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_UCMP:
exec_ucmp(mach, inst);
break;
case TGSI_OPCODE_IABS:
exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_ISSG:
exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_TEX2:
/* simple texture lookup */
/* src[0] = texcoord */
/* src[1] = compare */
/* src[2] = sampler unit */
exec_tex(mach, inst, TEX_MODIFIER_NONE, 2);
break;
case TGSI_OPCODE_TXB2:
/* simple texture lookup */
/* src[0] = texcoord */
/* src[1] = bias */
/* src[2] = sampler unit */
exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 2);
break;
case TGSI_OPCODE_TXL2:
/* simple texture lookup */
/* src[0] = texcoord */
/* src[1] = lod */
/* src[2] = sampler unit */
exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 2);
break;
case TGSI_OPCODE_IBFE:
exec_vector_trinary(mach, inst, micro_ibfe, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_UBFE:
exec_vector_trinary(mach, inst, micro_ubfe, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_BFI:
exec_vector_quaternary(mach, inst, micro_bfi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_BREV:
exec_vector_unary(mach, inst, micro_brev, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_POPC:
exec_vector_unary(mach, inst, micro_popc, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_LSB:
exec_vector_unary(mach, inst, micro_lsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_IMSB:
exec_vector_unary(mach, inst, micro_imsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_UMSB:
exec_vector_unary(mach, inst, micro_umsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_F2D:
exec_t_2_64(mach, inst, micro_f2d, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_D2F:
exec_64_2_t(mach, inst, micro_d2f, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_DABS:
exec_double_unary(mach, inst, micro_dabs);
break;
case TGSI_OPCODE_DNEG:
exec_double_unary(mach, inst, micro_dneg);
break;
case TGSI_OPCODE_DADD:
exec_double_binary(mach, inst, micro_dadd, TGSI_EXEC_DATA_DOUBLE);
break;
case TGSI_OPCODE_DDIV:
exec_double_binary(mach, inst, micro_ddiv, TGSI_EXEC_DATA_DOUBLE);
break;
case TGSI_OPCODE_DMUL:
exec_double_binary(mach, inst, micro_dmul, TGSI_EXEC_DATA_DOUBLE);
break;
case TGSI_OPCODE_DMAX:
exec_double_binary(mach, inst, micro_dmax, TGSI_EXEC_DATA_DOUBLE);
break;
case TGSI_OPCODE_DMIN:
exec_double_binary(mach, inst, micro_dmin, TGSI_EXEC_DATA_DOUBLE);
break;
case TGSI_OPCODE_DSLT:
exec_double_binary(mach, inst, micro_dslt, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_DSGE:
exec_double_binary(mach, inst, micro_dsge, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_DSEQ:
exec_double_binary(mach, inst, micro_dseq, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_DSNE:
exec_double_binary(mach, inst, micro_dsne, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_DRCP:
exec_double_unary(mach, inst, micro_drcp);
break;
case TGSI_OPCODE_DSQRT:
exec_double_unary(mach, inst, micro_dsqrt);
break;
case TGSI_OPCODE_DRSQ:
exec_double_unary(mach, inst, micro_drsq);
break;
case TGSI_OPCODE_DMAD:
exec_double_trinary(mach, inst, micro_dmad);
break;
case TGSI_OPCODE_DFRAC:
exec_double_unary(mach, inst, micro_dfrac);
break;
case TGSI_OPCODE_DLDEXP:
exec_dldexp(mach, inst);
break;
case TGSI_OPCODE_DFRACEXP:
exec_dfracexp(mach, inst);
break;
case TGSI_OPCODE_I2D:
exec_t_2_64(mach, inst, micro_i2d, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_D2I:
exec_64_2_t(mach, inst, micro_d2i, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_U2D:
exec_t_2_64(mach, inst, micro_u2d, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_D2U:
exec_64_2_t(mach, inst, micro_d2u, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_LOAD:
exec_load(mach, inst);
break;
case TGSI_OPCODE_STORE:
exec_store(mach, inst);
break;
case TGSI_OPCODE_ATOMUADD:
case TGSI_OPCODE_ATOMXCHG:
case TGSI_OPCODE_ATOMCAS:
case TGSI_OPCODE_ATOMAND:
case TGSI_OPCODE_ATOMOR:
case TGSI_OPCODE_ATOMXOR:
case TGSI_OPCODE_ATOMUMIN:
case TGSI_OPCODE_ATOMUMAX:
case TGSI_OPCODE_ATOMIMIN:
case TGSI_OPCODE_ATOMIMAX:
exec_atomop(mach, inst);
break;
case TGSI_OPCODE_RESQ:
exec_resq(mach, inst);
break;
case TGSI_OPCODE_BARRIER:
case TGSI_OPCODE_MEMBAR:
return TRUE;
break;
case TGSI_OPCODE_I64ABS:
exec_double_unary(mach, inst, micro_i64abs);
break;
case TGSI_OPCODE_I64SSG:
exec_double_unary(mach, inst, micro_i64sgn);
break;
case TGSI_OPCODE_I64NEG:
exec_double_unary(mach, inst, micro_i64neg);
break;
case TGSI_OPCODE_U64SEQ:
exec_double_binary(mach, inst, micro_u64seq, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_U64SNE:
exec_double_binary(mach, inst, micro_u64sne, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_I64SLT:
exec_double_binary(mach, inst, micro_i64slt, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_U64SLT:
exec_double_binary(mach, inst, micro_u64slt, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_I64SGE:
exec_double_binary(mach, inst, micro_i64sge, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_U64SGE:
exec_double_binary(mach, inst, micro_u64sge, TGSI_EXEC_DATA_UINT);
break;
case TGSI_OPCODE_I64MIN:
exec_double_binary(mach, inst, micro_i64min, TGSI_EXEC_DATA_INT64);
break;
case TGSI_OPCODE_U64MIN:
exec_double_binary(mach, inst, micro_u64min, TGSI_EXEC_DATA_UINT64);
break;
case TGSI_OPCODE_I64MAX:
exec_double_binary(mach, inst, micro_i64max, TGSI_EXEC_DATA_INT64);
break;
case TGSI_OPCODE_U64MAX:
exec_double_binary(mach, inst, micro_u64max, TGSI_EXEC_DATA_UINT64);
break;
case TGSI_OPCODE_U64ADD:
exec_double_binary(mach, inst, micro_u64add, TGSI_EXEC_DATA_UINT64);
break;
case TGSI_OPCODE_U64MUL:
exec_double_binary(mach, inst, micro_u64mul, TGSI_EXEC_DATA_UINT64);
break;
case TGSI_OPCODE_U64SHL:
exec_arg0_64_arg1_32(mach, inst, micro_u64shl);
break;
case TGSI_OPCODE_I64SHR:
exec_arg0_64_arg1_32(mach, inst, micro_i64shr);
break;
case TGSI_OPCODE_U64SHR:
exec_arg0_64_arg1_32(mach, inst, micro_u64shr);
break;
case TGSI_OPCODE_U64DIV:
exec_double_binary(mach, inst, micro_u64div, TGSI_EXEC_DATA_UINT64);
break;
case TGSI_OPCODE_I64DIV:
exec_double_binary(mach, inst, micro_i64div, TGSI_EXEC_DATA_INT64);
break;
case TGSI_OPCODE_U64MOD:
exec_double_binary(mach, inst, micro_u64mod, TGSI_EXEC_DATA_UINT64);
break;
case TGSI_OPCODE_I64MOD:
exec_double_binary(mach, inst, micro_i64mod, TGSI_EXEC_DATA_INT64);
break;
case TGSI_OPCODE_F2U64:
exec_t_2_64(mach, inst, micro_f2u64, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_F2I64:
exec_t_2_64(mach, inst, micro_f2i64, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_U2I64:
exec_t_2_64(mach, inst, micro_u2i64, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_I2I64:
exec_t_2_64(mach, inst, micro_i2i64, TGSI_EXEC_DATA_INT);
break;
case TGSI_OPCODE_D2U64:
exec_double_unary(mach, inst, micro_d2u64);
break;
case TGSI_OPCODE_D2I64:
exec_double_unary(mach, inst, micro_d2i64);
break;
case TGSI_OPCODE_U642F:
exec_64_2_t(mach, inst, micro_u642f, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_I642F:
exec_64_2_t(mach, inst, micro_i642f, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_U642D:
exec_double_unary(mach, inst, micro_u642d);
break;
case TGSI_OPCODE_I642D:
exec_double_unary(mach, inst, micro_i642d);
break;
default:
assert( 0 );
}
return FALSE;
}
static void
tgsi_exec_machine_setup_masks(struct tgsi_exec_machine *mach)
{
uint default_mask = 0xf;
mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
mach->Primitives[0] = 0;
/* GS runs on a single primitive for now */
default_mask = 0x1;
}
if (mach->NonHelperMask == 0)
mach->NonHelperMask = default_mask;
mach->CondMask = default_mask;
mach->LoopMask = default_mask;
mach->ContMask = default_mask;
mach->FuncMask = default_mask;
mach->ExecMask = default_mask;
mach->Switch.mask = default_mask;
assert(mach->CondStackTop == 0);
assert(mach->LoopStackTop == 0);
assert(mach->ContStackTop == 0);
assert(mach->SwitchStackTop == 0);
assert(mach->BreakStackTop == 0);
assert(mach->CallStackTop == 0);
}
/**
* Run TGSI interpreter.
* \return bitmask of "alive" quad components
*/
uint
tgsi_exec_machine_run( struct tgsi_exec_machine *mach, int start_pc )
{
uint i;
mach->pc = start_pc;
if (!start_pc) {
tgsi_exec_machine_setup_masks(mach);
/* execute declarations (interpolants) */
for (i = 0; i < mach->NumDeclarations; i++) {
exec_declaration( mach, mach->Declarations+i );
}
}
{
#if DEBUG_EXECUTION
struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
uint inst = 1;
if (!start_pc) {
memset(mach->Temps, 0, sizeof(temps));
if (mach->Outputs)
memset(mach->Outputs, 0, sizeof(outputs));
memset(temps, 0, sizeof(temps));
memset(outputs, 0, sizeof(outputs));
}
#endif
/* execute instructions, until pc is set to -1 */
while (mach->pc != -1) {
boolean barrier_hit;
#if DEBUG_EXECUTION
uint i;
tgsi_dump_instruction(&mach->Instructions[mach->pc], inst++);
#endif
assert(mach->pc < (int) mach->NumInstructions);
barrier_hit = exec_instruction(mach, mach->Instructions + mach->pc, &mach->pc);
/* for compute shaders if we hit a barrier return now for later rescheduling */
if (barrier_hit && mach->ShaderType == PIPE_SHADER_COMPUTE)
return 0;
#if DEBUG_EXECUTION
for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
uint j;
memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
debug_printf("TEMP[%2u] = ", i);
for (j = 0; j < 4; j++) {
if (j > 0) {
debug_printf(" ");
}
debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
}
}
}
if (mach->Outputs) {
for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
uint j;
memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
debug_printf("OUT[%2u] = ", i);
for (j = 0; j < 4; j++) {
if (j > 0) {
debug_printf(" ");
}
debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
}
}
}
}
#endif
}
}
#if 0
/* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
/*
* Scale back depth component.
*/
for (i = 0; i < 4; i++)
mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
}
#endif
/* Strictly speaking, these assertions aren't really needed but they
* can potentially catch some bugs in the control flow code.
*/
assert(mach->CondStackTop == 0);
assert(mach->LoopStackTop == 0);
assert(mach->ContStackTop == 0);
assert(mach->SwitchStackTop == 0);
assert(mach->BreakStackTop == 0);
assert(mach->CallStackTop == 0);
return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
}