/*
* Copyright 2003 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* VMWARE AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keithw@vmware.com>
*/
#include "pipe/p_config.h"
#include "pipe/p_compiler.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "util/u_format.h"
#include "translate.h"
#if (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)) && !defined(PIPE_SUBSYSTEM_EMBEDDED)
#include "rtasm/rtasm_cpu.h"
#include "rtasm/rtasm_x86sse.h"
#define X 0
#define Y 1
#define Z 2
#define W 3
struct translate_buffer
{
const void *base_ptr;
uintptr_t stride;
unsigned max_index;
};
struct translate_buffer_variant
{
unsigned buffer_index;
unsigned instance_divisor;
void *ptr; /* updated either per vertex or per instance */
};
#define ELEMENT_BUFFER_INSTANCE_ID 1001
#define NUM_CONSTS 7
enum
{
CONST_IDENTITY,
CONST_INV_127,
CONST_INV_255,
CONST_INV_32767,
CONST_INV_65535,
CONST_INV_2147483647,
CONST_255
};
#define C(v) {(float)(v), (float)(v), (float)(v), (float)(v)}
static float consts[NUM_CONSTS][4] = {
{0, 0, 0, 1},
C(1.0 / 127.0),
C(1.0 / 255.0),
C(1.0 / 32767.0),
C(1.0 / 65535.0),
C(1.0 / 2147483647.0),
C(255.0)
};
#undef C
struct translate_sse
{
struct translate translate;
struct x86_function linear_func;
struct x86_function elt_func;
struct x86_function elt16_func;
struct x86_function elt8_func;
struct x86_function *func;
PIPE_ALIGN_VAR(16) float consts[NUM_CONSTS][4];
int8_t reg_to_const[16];
int8_t const_to_reg[NUM_CONSTS];
struct translate_buffer buffer[TRANSLATE_MAX_ATTRIBS];
unsigned nr_buffers;
/* Multiple buffer variants can map to a single buffer. */
struct translate_buffer_variant buffer_variant[TRANSLATE_MAX_ATTRIBS];
unsigned nr_buffer_variants;
/* Multiple elements can map to a single buffer variant. */
unsigned element_to_buffer_variant[TRANSLATE_MAX_ATTRIBS];
boolean use_instancing;
unsigned instance_id;
unsigned start_instance;
/* these are actually known values, but putting them in a struct
* like this is helpful to keep them in sync across the file.
*/
struct x86_reg tmp_EAX;
struct x86_reg tmp2_EDX;
struct x86_reg src_ECX;
struct x86_reg idx_ESI; /* either start+i or &elt[i] */
struct x86_reg machine_EDI;
struct x86_reg outbuf_EBX;
struct x86_reg count_EBP; /* decrements to zero */
};
static int
get_offset(const void *a, const void *b)
{
return (const char *) b - (const char *) a;
}
static struct x86_reg
get_const(struct translate_sse *p, unsigned id)
{
struct x86_reg reg;
unsigned i;
if (p->const_to_reg[id] >= 0)
return x86_make_reg(file_XMM, p->const_to_reg[id]);
for (i = 2; i < 8; ++i) {
if (p->reg_to_const[i] < 0)
break;
}
/* TODO: be smarter here */
if (i == 8)
--i;
reg = x86_make_reg(file_XMM, i);
if (p->reg_to_const[i] >= 0)
p->const_to_reg[p->reg_to_const[i]] = -1;
p->reg_to_const[i] = id;
p->const_to_reg[id] = i;
/* TODO: this should happen outside the loop, if possible */
sse_movaps(p->func, reg,
x86_make_disp(p->machine_EDI,
get_offset(p, &p->consts[id][0])));
return reg;
}
/* load the data in a SSE2 register, padding with zeros */
static boolean
emit_load_sse2(struct translate_sse *p,
struct x86_reg data, struct x86_reg src, unsigned size)
{
struct x86_reg tmpXMM = x86_make_reg(file_XMM, 1);
struct x86_reg tmp = p->tmp_EAX;
switch (size) {
case 1:
x86_movzx8(p->func, tmp, src);
sse2_movd(p->func, data, tmp);
break;
case 2:
x86_movzx16(p->func, tmp, src);
sse2_movd(p->func, data, tmp);
break;
case 3:
x86_movzx8(p->func, tmp, x86_make_disp(src, 2));
x86_shl_imm(p->func, tmp, 16);
x86_mov16(p->func, tmp, src);
sse2_movd(p->func, data, tmp);
break;
case 4:
sse2_movd(p->func, data, src);
break;
case 6:
sse2_movd(p->func, data, src);
x86_movzx16(p->func, tmp, x86_make_disp(src, 4));
sse2_movd(p->func, tmpXMM, tmp);
sse2_punpckldq(p->func, data, tmpXMM);
break;
case 8:
sse2_movq(p->func, data, src);
break;
case 12:
sse2_movq(p->func, data, src);
sse2_movd(p->func, tmpXMM, x86_make_disp(src, 8));
sse2_punpcklqdq(p->func, data, tmpXMM);
break;
case 16:
sse2_movdqu(p->func, data, src);
break;
default:
return FALSE;
}
return TRUE;
}
/* this value can be passed for the out_chans argument */
#define CHANNELS_0001 5
/* this function will load #chans float values, and will
* pad the register with zeroes at least up to out_chans.
*
* If out_chans is set to CHANNELS_0001, then the fourth
* value will be padded with 1. Only pass this value if
* chans < 4 or results are undefined.
*/
static void
emit_load_float32(struct translate_sse *p, struct x86_reg data,
struct x86_reg arg0, unsigned out_chans, unsigned chans)
{
switch (chans) {
case 1:
/* a 0 0 0
* a 0 0 1
*/
sse_movss(p->func, data, arg0);
if (out_chans == CHANNELS_0001)
sse_orps(p->func, data, get_const(p, CONST_IDENTITY));
break;
case 2:
/* 0 0 0 1
* a b 0 1
*/
if (out_chans == CHANNELS_0001)
sse_shufps(p->func, data, get_const(p, CONST_IDENTITY),
SHUF(X, Y, Z, W));
else if (out_chans > 2)
sse_movlhps(p->func, data, get_const(p, CONST_IDENTITY));
sse_movlps(p->func, data, arg0);
break;
case 3:
/* Have to jump through some hoops:
*
* c 0 0 0
* c 0 0 1 if out_chans == CHANNELS_0001
* 0 0 c 0/1
* a b c 0/1
*/
sse_movss(p->func, data, x86_make_disp(arg0, 8));
if (out_chans == CHANNELS_0001)
sse_shufps(p->func, data, get_const(p, CONST_IDENTITY),
SHUF(X, Y, Z, W));
sse_shufps(p->func, data, data, SHUF(Y, Z, X, W));
sse_movlps(p->func, data, arg0);
break;
case 4:
sse_movups(p->func, data, arg0);
break;
}
}
/* this function behaves like emit_load_float32, but loads
64-bit floating point numbers, converting them to 32-bit
ones */
static void
emit_load_float64to32(struct translate_sse *p, struct x86_reg data,
struct x86_reg arg0, unsigned out_chans, unsigned chans)
{
struct x86_reg tmpXMM = x86_make_reg(file_XMM, 1);
switch (chans) {
case 1:
sse2_movsd(p->func, data, arg0);
if (out_chans > 1)
sse2_cvtpd2ps(p->func, data, data);
else
sse2_cvtsd2ss(p->func, data, data);
if (out_chans == CHANNELS_0001)
sse_shufps(p->func, data, get_const(p, CONST_IDENTITY),
SHUF(X, Y, Z, W));
break;
case 2:
sse2_movupd(p->func, data, arg0);
sse2_cvtpd2ps(p->func, data, data);
if (out_chans == CHANNELS_0001)
sse_shufps(p->func, data, get_const(p, CONST_IDENTITY),
SHUF(X, Y, Z, W));
else if (out_chans > 2)
sse_movlhps(p->func, data, get_const(p, CONST_IDENTITY));
break;
case 3:
sse2_movupd(p->func, data, arg0);
sse2_cvtpd2ps(p->func, data, data);
sse2_movsd(p->func, tmpXMM, x86_make_disp(arg0, 16));
if (out_chans > 3)
sse2_cvtpd2ps(p->func, tmpXMM, tmpXMM);
else
sse2_cvtsd2ss(p->func, tmpXMM, tmpXMM);
sse_movlhps(p->func, data, tmpXMM);
if (out_chans == CHANNELS_0001)
sse_orps(p->func, data, get_const(p, CONST_IDENTITY));
break;
case 4:
sse2_movupd(p->func, data, arg0);
sse2_cvtpd2ps(p->func, data, data);
sse2_movupd(p->func, tmpXMM, x86_make_disp(arg0, 16));
sse2_cvtpd2ps(p->func, tmpXMM, tmpXMM);
sse_movlhps(p->func, data, tmpXMM);
break;
}
}
static void
emit_mov64(struct translate_sse *p, struct x86_reg dst_gpr,
struct x86_reg dst_xmm, struct x86_reg src_gpr,
struct x86_reg src_xmm)
{
if (x86_target(p->func) != X86_32)
x64_mov64(p->func, dst_gpr, src_gpr);
else {
/* TODO: when/on which CPUs is SSE2 actually better than SSE? */
if (x86_target_caps(p->func) & X86_SSE2)
sse2_movq(p->func, dst_xmm, src_xmm);
else
sse_movlps(p->func, dst_xmm, src_xmm);
}
}
static void
emit_load64(struct translate_sse *p, struct x86_reg dst_gpr,
struct x86_reg dst_xmm, struct x86_reg src)
{
emit_mov64(p, dst_gpr, dst_xmm, src, src);
}
static void
emit_store64(struct translate_sse *p, struct x86_reg dst,
struct x86_reg src_gpr, struct x86_reg src_xmm)
{
emit_mov64(p, dst, dst, src_gpr, src_xmm);
}
static void
emit_mov128(struct translate_sse *p, struct x86_reg dst, struct x86_reg src)
{
if (x86_target_caps(p->func) & X86_SSE2)
sse2_movdqu(p->func, dst, src);
else
sse_movups(p->func, dst, src);
}
/* TODO: this uses unaligned accesses liberally, which is great on Nehalem,
* but may or may not be good on older processors
* TODO: may perhaps want to use non-temporal stores here if possible
*/
static void
emit_memcpy(struct translate_sse *p, struct x86_reg dst, struct x86_reg src,
unsigned size)
{
struct x86_reg dataXMM = x86_make_reg(file_XMM, 0);
struct x86_reg dataXMM2 = x86_make_reg(file_XMM, 1);
struct x86_reg dataGPR = p->tmp_EAX;
struct x86_reg dataGPR2 = p->tmp2_EDX;
if (size < 8) {
switch (size) {
case 1:
x86_mov8(p->func, dataGPR, src);
x86_mov8(p->func, dst, dataGPR);
break;
case 2:
x86_mov16(p->func, dataGPR, src);
x86_mov16(p->func, dst, dataGPR);
break;
case 3:
x86_mov16(p->func, dataGPR, src);
x86_mov8(p->func, dataGPR2, x86_make_disp(src, 2));
x86_mov16(p->func, dst, dataGPR);
x86_mov8(p->func, x86_make_disp(dst, 2), dataGPR2);
break;
case 4:
x86_mov(p->func, dataGPR, src);
x86_mov(p->func, dst, dataGPR);
break;
case 6:
x86_mov(p->func, dataGPR, src);
x86_mov16(p->func, dataGPR2, x86_make_disp(src, 4));
x86_mov(p->func, dst, dataGPR);
x86_mov16(p->func, x86_make_disp(dst, 4), dataGPR2);
break;
}
}
else if (!(x86_target_caps(p->func) & X86_SSE)) {
unsigned i = 0;
assert((size & 3) == 0);
for (i = 0; i < size; i += 4) {
x86_mov(p->func, dataGPR, x86_make_disp(src, i));
x86_mov(p->func, x86_make_disp(dst, i), dataGPR);
}
}
else {
switch (size) {
case 8:
emit_load64(p, dataGPR, dataXMM, src);
emit_store64(p, dst, dataGPR, dataXMM);
break;
case 12:
emit_load64(p, dataGPR2, dataXMM, src);
x86_mov(p->func, dataGPR, x86_make_disp(src, 8));
emit_store64(p, dst, dataGPR2, dataXMM);
x86_mov(p->func, x86_make_disp(dst, 8), dataGPR);
break;
case 16:
emit_mov128(p, dataXMM, src);
emit_mov128(p, dst, dataXMM);
break;
case 24:
emit_mov128(p, dataXMM, src);
emit_load64(p, dataGPR, dataXMM2, x86_make_disp(src, 16));
emit_mov128(p, dst, dataXMM);
emit_store64(p, x86_make_disp(dst, 16), dataGPR, dataXMM2);
break;
case 32:
emit_mov128(p, dataXMM, src);
emit_mov128(p, dataXMM2, x86_make_disp(src, 16));
emit_mov128(p, dst, dataXMM);
emit_mov128(p, x86_make_disp(dst, 16), dataXMM2);
break;
default:
assert(0);
}
}
}
static boolean
translate_attr_convert(struct translate_sse *p,
const struct translate_element *a,
struct x86_reg src, struct x86_reg dst)
{
const struct util_format_description *input_desc =
util_format_description(a->input_format);
const struct util_format_description *output_desc =
util_format_description(a->output_format);
unsigned i;
boolean id_swizzle = TRUE;
unsigned swizzle[4] =
{ PIPE_SWIZZLE_NONE, PIPE_SWIZZLE_NONE,
PIPE_SWIZZLE_NONE, PIPE_SWIZZLE_NONE };
unsigned needed_chans = 0;
unsigned imms[2] = { 0, 0x3f800000 };
if (a->output_format == PIPE_FORMAT_NONE
|| a->input_format == PIPE_FORMAT_NONE)
return FALSE;
if (input_desc->channel[0].size & 7)
return FALSE;
if (input_desc->colorspace != output_desc->colorspace)
return FALSE;
for (i = 1; i < input_desc->nr_channels; ++i) {
if (memcmp
(&input_desc->channel[i], &input_desc->channel[0],
sizeof(input_desc->channel[0])))
return FALSE;
}
for (i = 1; i < output_desc->nr_channels; ++i) {
if (memcmp
(&output_desc->channel[i], &output_desc->channel[0],
sizeof(output_desc->channel[0]))) {
return FALSE;
}
}
for (i = 0; i < output_desc->nr_channels; ++i) {
if (output_desc->swizzle[i] < 4)
swizzle[output_desc->swizzle[i]] = input_desc->swizzle[i];
}
if ((x86_target_caps(p->func) & X86_SSE) &&
(0 || a->output_format == PIPE_FORMAT_R32_FLOAT
|| a->output_format == PIPE_FORMAT_R32G32_FLOAT
|| a->output_format == PIPE_FORMAT_R32G32B32_FLOAT
|| a->output_format == PIPE_FORMAT_R32G32B32A32_FLOAT)) {
struct x86_reg dataXMM = x86_make_reg(file_XMM, 0);
for (i = 0; i < output_desc->nr_channels; ++i) {
if (swizzle[i] == PIPE_SWIZZLE_0
&& i >= input_desc->nr_channels)
swizzle[i] = i;
}
for (i = 0; i < output_desc->nr_channels; ++i) {
if (swizzle[i] < 4)
needed_chans = MAX2(needed_chans, swizzle[i] + 1);
if (swizzle[i] < PIPE_SWIZZLE_0 && swizzle[i] != i)
id_swizzle = FALSE;
}
if (needed_chans > 0) {
switch (input_desc->channel[0].type) {
case UTIL_FORMAT_TYPE_UNSIGNED:
if (!(x86_target_caps(p->func) & X86_SSE2))
return FALSE;
emit_load_sse2(p, dataXMM, src,
input_desc->channel[0].size *
input_desc->nr_channels >> 3);
/* TODO: add support for SSE4.1 pmovzx */
switch (input_desc->channel[0].size) {
case 8:
/* TODO: this may be inefficient due to get_identity() being
* used both as a float and integer register.
*/
sse2_punpcklbw(p->func, dataXMM, get_const(p, CONST_IDENTITY));
sse2_punpcklbw(p->func, dataXMM, get_const(p, CONST_IDENTITY));
break;
case 16:
sse2_punpcklwd(p->func, dataXMM, get_const(p, CONST_IDENTITY));
break;
case 32: /* we lose precision here */
sse2_psrld_imm(p->func, dataXMM, 1);
break;
default:
return FALSE;
}
sse2_cvtdq2ps(p->func, dataXMM, dataXMM);
if (input_desc->channel[0].normalized) {
struct x86_reg factor;
switch (input_desc->channel[0].size) {
case 8:
factor = get_const(p, CONST_INV_255);
break;
case 16:
factor = get_const(p, CONST_INV_65535);
break;
case 32:
factor = get_const(p, CONST_INV_2147483647);
break;
default:
assert(0);
factor.disp = 0;
factor.file = 0;
factor.idx = 0;
factor.mod = 0;
break;
}
sse_mulps(p->func, dataXMM, factor);
}
else if (input_desc->channel[0].size == 32)
/* compensate for the bit we threw away to fit u32 into s32 */
sse_addps(p->func, dataXMM, dataXMM);
break;
case UTIL_FORMAT_TYPE_SIGNED:
if (!(x86_target_caps(p->func) & X86_SSE2))
return FALSE;
emit_load_sse2(p, dataXMM, src,
input_desc->channel[0].size *
input_desc->nr_channels >> 3);
/* TODO: add support for SSE4.1 pmovsx */
switch (input_desc->channel[0].size) {
case 8:
sse2_punpcklbw(p->func, dataXMM, dataXMM);
sse2_punpcklbw(p->func, dataXMM, dataXMM);
sse2_psrad_imm(p->func, dataXMM, 24);
break;
case 16:
sse2_punpcklwd(p->func, dataXMM, dataXMM);
sse2_psrad_imm(p->func, dataXMM, 16);
break;
case 32: /* we lose precision here */
break;
default:
return FALSE;
}
sse2_cvtdq2ps(p->func, dataXMM, dataXMM);
if (input_desc->channel[0].normalized) {
struct x86_reg factor;
switch (input_desc->channel[0].size) {
case 8:
factor = get_const(p, CONST_INV_127);
break;
case 16:
factor = get_const(p, CONST_INV_32767);
break;
case 32:
factor = get_const(p, CONST_INV_2147483647);
break;
default:
assert(0);
factor.disp = 0;
factor.file = 0;
factor.idx = 0;
factor.mod = 0;
break;
}
sse_mulps(p->func, dataXMM, factor);
}
break;
break;
case UTIL_FORMAT_TYPE_FLOAT:
if (input_desc->channel[0].size != 32
&& input_desc->channel[0].size != 64) {
return FALSE;
}
if (swizzle[3] == PIPE_SWIZZLE_1
&& input_desc->nr_channels <= 3) {
swizzle[3] = PIPE_SWIZZLE_W;
needed_chans = CHANNELS_0001;
}
switch (input_desc->channel[0].size) {
case 32:
emit_load_float32(p, dataXMM, src, needed_chans,
input_desc->nr_channels);
break;
case 64: /* we lose precision here */
if (!(x86_target_caps(p->func) & X86_SSE2))
return FALSE;
emit_load_float64to32(p, dataXMM, src, needed_chans,
input_desc->nr_channels);
break;
default:
return FALSE;
}
break;
default:
return FALSE;
}
if (!id_swizzle) {
sse_shufps(p->func, dataXMM, dataXMM,
SHUF(swizzle[0], swizzle[1], swizzle[2], swizzle[3]));
}
}
if (output_desc->nr_channels >= 4
&& swizzle[0] < PIPE_SWIZZLE_0
&& swizzle[1] < PIPE_SWIZZLE_0
&& swizzle[2] < PIPE_SWIZZLE_0
&& swizzle[3] < PIPE_SWIZZLE_0) {
sse_movups(p->func, dst, dataXMM);
}
else {
if (output_desc->nr_channels >= 2
&& swizzle[0] < PIPE_SWIZZLE_0
&& swizzle[1] < PIPE_SWIZZLE_0) {
sse_movlps(p->func, dst, dataXMM);
}
else {
if (swizzle[0] < PIPE_SWIZZLE_0) {
sse_movss(p->func, dst, dataXMM);
}
else {
x86_mov_imm(p->func, dst,
imms[swizzle[0] - PIPE_SWIZZLE_0]);
}
if (output_desc->nr_channels >= 2) {
if (swizzle[1] < PIPE_SWIZZLE_0) {
sse_shufps(p->func, dataXMM, dataXMM, SHUF(1, 1, 2, 3));
sse_movss(p->func, x86_make_disp(dst, 4), dataXMM);
}
else {
x86_mov_imm(p->func, x86_make_disp(dst, 4),
imms[swizzle[1] - PIPE_SWIZZLE_0]);
}
}
}
if (output_desc->nr_channels >= 3) {
if (output_desc->nr_channels >= 4
&& swizzle[2] < PIPE_SWIZZLE_0
&& swizzle[3] < PIPE_SWIZZLE_0) {
sse_movhps(p->func, x86_make_disp(dst, 8), dataXMM);
}
else {
if (swizzle[2] < PIPE_SWIZZLE_0) {
sse_shufps(p->func, dataXMM, dataXMM, SHUF(2, 2, 2, 3));
sse_movss(p->func, x86_make_disp(dst, 8), dataXMM);
}
else {
x86_mov_imm(p->func, x86_make_disp(dst, 8),
imms[swizzle[2] - PIPE_SWIZZLE_0]);
}
if (output_desc->nr_channels >= 4) {
if (swizzle[3] < PIPE_SWIZZLE_0) {
sse_shufps(p->func, dataXMM, dataXMM, SHUF(3, 3, 3, 3));
sse_movss(p->func, x86_make_disp(dst, 12), dataXMM);
}
else {
x86_mov_imm(p->func, x86_make_disp(dst, 12),
imms[swizzle[3] - PIPE_SWIZZLE_0]);
}
}
}
}
}
return TRUE;
}
else if ((x86_target_caps(p->func) & X86_SSE2)
&& input_desc->channel[0].size == 8
&& output_desc->channel[0].size == 16
&& output_desc->channel[0].normalized ==
input_desc->channel[0].normalized &&
(0 || (input_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED
&& output_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED)
|| (input_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED
&& output_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED)
|| (input_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED
&& output_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED))) {
struct x86_reg dataXMM = x86_make_reg(file_XMM, 0);
struct x86_reg tmpXMM = x86_make_reg(file_XMM, 1);
struct x86_reg tmp = p->tmp_EAX;
unsigned imms[2] = { 0, 1 };
for (i = 0; i < output_desc->nr_channels; ++i) {
if (swizzle[i] == PIPE_SWIZZLE_0
&& i >= input_desc->nr_channels) {
swizzle[i] = i;
}
}
for (i = 0; i < output_desc->nr_channels; ++i) {
if (swizzle[i] < 4)
needed_chans = MAX2(needed_chans, swizzle[i] + 1);
if (swizzle[i] < PIPE_SWIZZLE_0 && swizzle[i] != i)
id_swizzle = FALSE;
}
if (needed_chans > 0) {
emit_load_sse2(p, dataXMM, src,
input_desc->channel[0].size *
input_desc->nr_channels >> 3);
switch (input_desc->channel[0].type) {
case UTIL_FORMAT_TYPE_UNSIGNED:
if (input_desc->channel[0].normalized) {
sse2_punpcklbw(p->func, dataXMM, dataXMM);
if (output_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED)
sse2_psrlw_imm(p->func, dataXMM, 1);
}
else
sse2_punpcklbw(p->func, dataXMM, get_const(p, CONST_IDENTITY));
break;
case UTIL_FORMAT_TYPE_SIGNED:
if (input_desc->channel[0].normalized) {
sse2_movq(p->func, tmpXMM, get_const(p, CONST_IDENTITY));
sse2_punpcklbw(p->func, tmpXMM, dataXMM);
sse2_psllw_imm(p->func, dataXMM, 9);
sse2_psrlw_imm(p->func, dataXMM, 8);
sse2_por(p->func, tmpXMM, dataXMM);
sse2_psrlw_imm(p->func, dataXMM, 7);
sse2_por(p->func, tmpXMM, dataXMM);
{
struct x86_reg t = dataXMM;
dataXMM = tmpXMM;
tmpXMM = t;
}
}
else {
sse2_punpcklbw(p->func, dataXMM, dataXMM);
sse2_psraw_imm(p->func, dataXMM, 8);
}
break;
default:
assert(0);
}
if (output_desc->channel[0].normalized)
imms[1] =
(output_desc->channel[0].type ==
UTIL_FORMAT_TYPE_UNSIGNED) ? 0xffff : 0x7ffff;
if (!id_swizzle)
sse2_pshuflw(p->func, dataXMM, dataXMM,
(swizzle[0] & 3) | ((swizzle[1] & 3) << 2) |
((swizzle[2] & 3) << 4) | ((swizzle[3] & 3) << 6));
}
if (output_desc->nr_channels >= 4
&& swizzle[0] < PIPE_SWIZZLE_0
&& swizzle[1] < PIPE_SWIZZLE_0
&& swizzle[2] < PIPE_SWIZZLE_0
&& swizzle[3] < PIPE_SWIZZLE_0) {
sse2_movq(p->func, dst, dataXMM);
}
else {
if (swizzle[0] < PIPE_SWIZZLE_0) {
if (output_desc->nr_channels >= 2
&& swizzle[1] < PIPE_SWIZZLE_0) {
sse2_movd(p->func, dst, dataXMM);
}
else {
sse2_movd(p->func, tmp, dataXMM);
x86_mov16(p->func, dst, tmp);
if (output_desc->nr_channels >= 2)
x86_mov16_imm(p->func, x86_make_disp(dst, 2),
imms[swizzle[1] - PIPE_SWIZZLE_0]);
}
}
else {
if (output_desc->nr_channels >= 2
&& swizzle[1] >= PIPE_SWIZZLE_0) {
x86_mov_imm(p->func, dst,
(imms[swizzle[1] - PIPE_SWIZZLE_0] << 16) |
imms[swizzle[0] - PIPE_SWIZZLE_0]);
}
else {
x86_mov16_imm(p->func, dst,
imms[swizzle[0] - PIPE_SWIZZLE_0]);
if (output_desc->nr_channels >= 2) {
sse2_movd(p->func, tmp, dataXMM);
x86_shr_imm(p->func, tmp, 16);
x86_mov16(p->func, x86_make_disp(dst, 2), tmp);
}
}
}
if (output_desc->nr_channels >= 3) {
if (swizzle[2] < PIPE_SWIZZLE_0) {
if (output_desc->nr_channels >= 4
&& swizzle[3] < PIPE_SWIZZLE_0) {
sse2_psrlq_imm(p->func, dataXMM, 32);
sse2_movd(p->func, x86_make_disp(dst, 4), dataXMM);
}
else {
sse2_psrlq_imm(p->func, dataXMM, 32);
sse2_movd(p->func, tmp, dataXMM);
x86_mov16(p->func, x86_make_disp(dst, 4), tmp);
if (output_desc->nr_channels >= 4) {
x86_mov16_imm(p->func, x86_make_disp(dst, 6),
imms[swizzle[3] - PIPE_SWIZZLE_0]);
}
}
}
else {
if (output_desc->nr_channels >= 4
&& swizzle[3] >= PIPE_SWIZZLE_0) {
x86_mov_imm(p->func, x86_make_disp(dst, 4),
(imms[swizzle[3] - PIPE_SWIZZLE_0] << 16)
| imms[swizzle[2] - PIPE_SWIZZLE_0]);
}
else {
x86_mov16_imm(p->func, x86_make_disp(dst, 4),
imms[swizzle[2] - PIPE_SWIZZLE_0]);
if (output_desc->nr_channels >= 4) {
sse2_psrlq_imm(p->func, dataXMM, 48);
sse2_movd(p->func, tmp, dataXMM);
x86_mov16(p->func, x86_make_disp(dst, 6), tmp);
}
}
}
}
}
return TRUE;
}
else if (!memcmp(&output_desc->channel[0], &input_desc->channel[0],
sizeof(output_desc->channel[0]))) {
struct x86_reg tmp = p->tmp_EAX;
unsigned i;
if (input_desc->channel[0].size == 8 && input_desc->nr_channels == 4
&& output_desc->nr_channels == 4
&& swizzle[0] == PIPE_SWIZZLE_W
&& swizzle[1] == PIPE_SWIZZLE_Z
&& swizzle[2] == PIPE_SWIZZLE_Y
&& swizzle[3] == PIPE_SWIZZLE_X) {
/* TODO: support movbe */
x86_mov(p->func, tmp, src);
x86_bswap(p->func, tmp);
x86_mov(p->func, dst, tmp);
return TRUE;
}
for (i = 0; i < output_desc->nr_channels; ++i) {
switch (output_desc->channel[0].size) {
case 8:
if (swizzle[i] >= PIPE_SWIZZLE_0) {
unsigned v = 0;
if (swizzle[i] == PIPE_SWIZZLE_1) {
switch (output_desc->channel[0].type) {
case UTIL_FORMAT_TYPE_UNSIGNED:
v = output_desc->channel[0].normalized ? 0xff : 1;
break;
case UTIL_FORMAT_TYPE_SIGNED:
v = output_desc->channel[0].normalized ? 0x7f : 1;
break;
default:
return FALSE;
}
}
x86_mov8_imm(p->func, x86_make_disp(dst, i * 1), v);
}
else {
x86_mov8(p->func, tmp, x86_make_disp(src, swizzle[i] * 1));
x86_mov8(p->func, x86_make_disp(dst, i * 1), tmp);
}
break;
case 16:
if (swizzle[i] >= PIPE_SWIZZLE_0) {
unsigned v = 0;
if (swizzle[i] == PIPE_SWIZZLE_1) {
switch (output_desc->channel[1].type) {
case UTIL_FORMAT_TYPE_UNSIGNED:
v = output_desc->channel[1].normalized ? 0xffff : 1;
break;
case UTIL_FORMAT_TYPE_SIGNED:
v = output_desc->channel[1].normalized ? 0x7fff : 1;
break;
case UTIL_FORMAT_TYPE_FLOAT:
v = 0x3c00;
break;
default:
return FALSE;
}
}
x86_mov16_imm(p->func, x86_make_disp(dst, i * 2), v);
}
else if (swizzle[i] == PIPE_SWIZZLE_0) {
x86_mov16_imm(p->func, x86_make_disp(dst, i * 2), 0);
}
else {
x86_mov16(p->func, tmp, x86_make_disp(src, swizzle[i] * 2));
x86_mov16(p->func, x86_make_disp(dst, i * 2), tmp);
}
break;
case 32:
if (swizzle[i] >= PIPE_SWIZZLE_0) {
unsigned v = 0;
if (swizzle[i] == PIPE_SWIZZLE_1) {
switch (output_desc->channel[1].type) {
case UTIL_FORMAT_TYPE_UNSIGNED:
v = output_desc->channel[1].normalized ? 0xffffffff : 1;
break;
case UTIL_FORMAT_TYPE_SIGNED:
v = output_desc->channel[1].normalized ? 0x7fffffff : 1;
break;
case UTIL_FORMAT_TYPE_FLOAT:
v = 0x3f800000;
break;
default:
return FALSE;
}
}
x86_mov_imm(p->func, x86_make_disp(dst, i * 4), v);
}
else {
x86_mov(p->func, tmp, x86_make_disp(src, swizzle[i] * 4));
x86_mov(p->func, x86_make_disp(dst, i * 4), tmp);
}
break;
case 64:
if (swizzle[i] >= PIPE_SWIZZLE_0) {
unsigned l = 0;
unsigned h = 0;
if (swizzle[i] == PIPE_SWIZZLE_1) {
switch (output_desc->channel[1].type) {
case UTIL_FORMAT_TYPE_UNSIGNED:
h = output_desc->channel[1].normalized ? 0xffffffff : 0;
l = output_desc->channel[1].normalized ? 0xffffffff : 1;
break;
case UTIL_FORMAT_TYPE_SIGNED:
h = output_desc->channel[1].normalized ? 0x7fffffff : 0;
l = output_desc->channel[1].normalized ? 0xffffffff : 1;
break;
case UTIL_FORMAT_TYPE_FLOAT:
h = 0x3ff00000;
l = 0;
break;
default:
return FALSE;
}
}
x86_mov_imm(p->func, x86_make_disp(dst, i * 8), l);
x86_mov_imm(p->func, x86_make_disp(dst, i * 8 + 4), h);
}
else {
if (x86_target_caps(p->func) & X86_SSE) {
struct x86_reg tmpXMM = x86_make_reg(file_XMM, 0);
emit_load64(p, tmp, tmpXMM,
x86_make_disp(src, swizzle[i] * 8));
emit_store64(p, x86_make_disp(dst, i * 8), tmp, tmpXMM);
}
else {
x86_mov(p->func, tmp, x86_make_disp(src, swizzle[i] * 8));
x86_mov(p->func, x86_make_disp(dst, i * 8), tmp);
x86_mov(p->func, tmp,
x86_make_disp(src, swizzle[i] * 8 + 4));
x86_mov(p->func, x86_make_disp(dst, i * 8 + 4), tmp);
}
}
break;
default:
return FALSE;
}
}
return TRUE;
}
/* special case for draw's EMIT_4UB (RGBA) and EMIT_4UB_BGRA */
else if ((x86_target_caps(p->func) & X86_SSE2) &&
a->input_format == PIPE_FORMAT_R32G32B32A32_FLOAT &&
(0 || a->output_format == PIPE_FORMAT_B8G8R8A8_UNORM
|| a-> output_format == PIPE_FORMAT_R8G8B8A8_UNORM)) {
struct x86_reg dataXMM = x86_make_reg(file_XMM, 0);
/* load */
sse_movups(p->func, dataXMM, src);
if (a->output_format == PIPE_FORMAT_B8G8R8A8_UNORM) {
sse_shufps(p->func, dataXMM, dataXMM, SHUF(2, 1, 0, 3));
}
/* scale by 255.0 */
sse_mulps(p->func, dataXMM, get_const(p, CONST_255));
/* pack and emit */
sse2_cvtps2dq(p->func, dataXMM, dataXMM);
sse2_packssdw(p->func, dataXMM, dataXMM);
sse2_packuswb(p->func, dataXMM, dataXMM);
sse2_movd(p->func, dst, dataXMM);
return TRUE;
}
return FALSE;
}
static boolean
translate_attr(struct translate_sse *p,
const struct translate_element *a,
struct x86_reg src, struct x86_reg dst)
{
if (a->input_format == a->output_format) {
emit_memcpy(p, dst, src, util_format_get_stride(a->input_format, 1));
return TRUE;
}
return translate_attr_convert(p, a, src, dst);
}
static boolean
init_inputs(struct translate_sse *p, unsigned index_size)
{
unsigned i;
struct x86_reg instance_id =
x86_make_disp(p->machine_EDI, get_offset(p, &p->instance_id));
struct x86_reg start_instance =
x86_make_disp(p->machine_EDI, get_offset(p, &p->start_instance));
for (i = 0; i < p->nr_buffer_variants; i++) {
struct translate_buffer_variant *variant = &p->buffer_variant[i];
struct translate_buffer *buffer = &p->buffer[variant->buffer_index];
if (!index_size || variant->instance_divisor) {
struct x86_reg buf_max_index =
x86_make_disp(p->machine_EDI, get_offset(p, &buffer->max_index));
struct x86_reg buf_stride =
x86_make_disp(p->machine_EDI, get_offset(p, &buffer->stride));
struct x86_reg buf_ptr =
x86_make_disp(p->machine_EDI, get_offset(p, &variant->ptr));
struct x86_reg buf_base_ptr =
x86_make_disp(p->machine_EDI, get_offset(p, &buffer->base_ptr));
struct x86_reg elt = p->idx_ESI;
struct x86_reg tmp_EAX = p->tmp_EAX;
/* Calculate pointer to first attrib:
* base_ptr + stride * index, where index depends on instance divisor
*/
if (variant->instance_divisor) {
struct x86_reg tmp_EDX = p->tmp2_EDX;
/* Start with instance = instance_id
* which is true if divisor is 1.
*/
x86_mov(p->func, tmp_EAX, instance_id);
if (variant->instance_divisor != 1) {
struct x86_reg tmp_ECX = p->src_ECX;
/* TODO: Add x86_shr() to rtasm and use it whenever
* instance divisor is power of two.
*/
x86_xor(p->func, tmp_EDX, tmp_EDX);
x86_mov_reg_imm(p->func, tmp_ECX, variant->instance_divisor);
x86_div(p->func, tmp_ECX); /* EAX = EDX:EAX / ECX */
}
/* instance = (instance_id / divisor) + start_instance
*/
x86_mov(p->func, tmp_EDX, start_instance);
x86_add(p->func, tmp_EAX, tmp_EDX);
/* XXX we need to clamp the index here too, but to a
* per-array max value, not the draw->pt.max_index value
* that's being given to us via translate->set_buffer().
*/
}
else {
x86_mov(p->func, tmp_EAX, elt);
/* Clamp to max_index
*/
x86_cmp(p->func, tmp_EAX, buf_max_index);
x86_cmovcc(p->func, tmp_EAX, buf_max_index, cc_AE);
}
x86_mov(p->func, p->tmp2_EDX, buf_stride);
x64_rexw(p->func);
x86_imul(p->func, tmp_EAX, p->tmp2_EDX);
x64_rexw(p->func);
x86_add(p->func, tmp_EAX, buf_base_ptr);
x86_cmp(p->func, p->count_EBP, p->tmp_EAX);
/* In the linear case, keep the buffer pointer instead of the
* index number.
*/
if (!index_size && p->nr_buffer_variants == 1) {
x64_rexw(p->func);
x86_mov(p->func, elt, tmp_EAX);
}
else {
x64_rexw(p->func);
x86_mov(p->func, buf_ptr, tmp_EAX);
}
}
}
return TRUE;
}
static struct x86_reg
get_buffer_ptr(struct translate_sse *p,
unsigned index_size, unsigned var_idx, struct x86_reg elt)
{
if (var_idx == ELEMENT_BUFFER_INSTANCE_ID) {
return x86_make_disp(p->machine_EDI, get_offset(p, &p->instance_id));
}
if (!index_size && p->nr_buffer_variants == 1) {
return p->idx_ESI;
}
else if (!index_size || p->buffer_variant[var_idx].instance_divisor) {
struct x86_reg ptr = p->src_ECX;
struct x86_reg buf_ptr =
x86_make_disp(p->machine_EDI,
get_offset(p, &p->buffer_variant[var_idx].ptr));
x64_rexw(p->func);
x86_mov(p->func, ptr, buf_ptr);
return ptr;
}
else {
struct x86_reg ptr = p->src_ECX;
const struct translate_buffer_variant *variant =
&p->buffer_variant[var_idx];
struct x86_reg buf_stride =
x86_make_disp(p->machine_EDI,
get_offset(p, &p->buffer[variant->buffer_index].stride));
struct x86_reg buf_base_ptr =
x86_make_disp(p->machine_EDI,
get_offset(p, &p->buffer[variant->buffer_index].base_ptr));
struct x86_reg buf_max_index =
x86_make_disp(p->machine_EDI,
get_offset(p, &p->buffer[variant->buffer_index].max_index));
/* Calculate pointer to current attrib:
*/
switch (index_size) {
case 1:
x86_movzx8(p->func, ptr, elt);
break;
case 2:
x86_movzx16(p->func, ptr, elt);
break;
case 4:
x86_mov(p->func, ptr, elt);
break;
}
/* Clamp to max_index
*/
x86_cmp(p->func, ptr, buf_max_index);
x86_cmovcc(p->func, ptr, buf_max_index, cc_AE);
x86_mov(p->func, p->tmp2_EDX, buf_stride);
x64_rexw(p->func);
x86_imul(p->func, ptr, p->tmp2_EDX);
x64_rexw(p->func);
x86_add(p->func, ptr, buf_base_ptr);
return ptr;
}
}
static boolean
incr_inputs(struct translate_sse *p, unsigned index_size)
{
if (!index_size && p->nr_buffer_variants == 1) {
const unsigned buffer_index = p->buffer_variant[0].buffer_index;
struct x86_reg stride =
x86_make_disp(p->machine_EDI,
get_offset(p, &p->buffer[buffer_index].stride));
if (p->buffer_variant[0].instance_divisor == 0) {
x64_rexw(p->func);
x86_add(p->func, p->idx_ESI, stride);
sse_prefetchnta(p->func, x86_make_disp(p->idx_ESI, 192));
}
}
else if (!index_size) {
unsigned i;
/* Is this worthwhile??
*/
for (i = 0; i < p->nr_buffer_variants; i++) {
struct translate_buffer_variant *variant = &p->buffer_variant[i];
struct x86_reg buf_ptr = x86_make_disp(p->machine_EDI,
get_offset(p, &variant->ptr));
struct x86_reg buf_stride =
x86_make_disp(p->machine_EDI,
get_offset(p, &p->buffer[variant->buffer_index].stride));
if (variant->instance_divisor == 0) {
x86_mov(p->func, p->tmp_EAX, buf_stride);
x64_rexw(p->func);
x86_add(p->func, p->tmp_EAX, buf_ptr);
if (i == 0)
sse_prefetchnta(p->func, x86_make_disp(p->tmp_EAX, 192));
x64_rexw(p->func);
x86_mov(p->func, buf_ptr, p->tmp_EAX);
}
}
}
else {
x64_rexw(p->func);
x86_lea(p->func, p->idx_ESI, x86_make_disp(p->idx_ESI, index_size));
}
return TRUE;
}
/* Build run( struct translate *machine,
* unsigned start,
* unsigned count,
* void *output_buffer )
* or
* run_elts( struct translate *machine,
* unsigned *elts,
* unsigned count,
* void *output_buffer )
*
* Lots of hardcoding
*
* EAX -- pointer to current output vertex
* ECX -- pointer to current attribute
*
*/
static boolean
build_vertex_emit(struct translate_sse *p,
struct x86_function *func, unsigned index_size)
{
int fixup, label;
unsigned j;
memset(p->reg_to_const, 0xff, sizeof(p->reg_to_const));
memset(p->const_to_reg, 0xff, sizeof(p->const_to_reg));
p->tmp_EAX = x86_make_reg(file_REG32, reg_AX);
p->idx_ESI = x86_make_reg(file_REG32, reg_SI);
p->outbuf_EBX = x86_make_reg(file_REG32, reg_BX);
p->machine_EDI = x86_make_reg(file_REG32, reg_DI);
p->count_EBP = x86_make_reg(file_REG32, reg_BP);
p->tmp2_EDX = x86_make_reg(file_REG32, reg_DX);
p->src_ECX = x86_make_reg(file_REG32, reg_CX);
p->func = func;
x86_init_func(p->func);
if (x86_target(p->func) == X86_64_WIN64_ABI) {
/* the ABI guarantees a 16-byte aligned 32-byte "shadow space"
* above the return address
*/
sse2_movdqa(p->func, x86_make_disp(x86_make_reg(file_REG32, reg_SP), 8),
x86_make_reg(file_XMM, 6));
sse2_movdqa(p->func,
x86_make_disp(x86_make_reg(file_REG32, reg_SP), 24),
x86_make_reg(file_XMM, 7));
}
x86_push(p->func, p->outbuf_EBX);
x86_push(p->func, p->count_EBP);
/* on non-Win64 x86-64, these are already in the right registers */
if (x86_target(p->func) != X86_64_STD_ABI) {
x86_push(p->func, p->machine_EDI);
x86_push(p->func, p->idx_ESI);
if (x86_target(p->func) != X86_32) {
x64_mov64(p->func, p->machine_EDI, x86_fn_arg(p->func, 1));
x64_mov64(p->func, p->idx_ESI, x86_fn_arg(p->func, 2));
}
else {
x86_mov(p->func, p->machine_EDI, x86_fn_arg(p->func, 1));
x86_mov(p->func, p->idx_ESI, x86_fn_arg(p->func, 2));
}
}
x86_mov(p->func, p->count_EBP, x86_fn_arg(p->func, 3));
if (x86_target(p->func) != X86_32)
x64_mov64(p->func, p->outbuf_EBX, x86_fn_arg(p->func, 6));
else
x86_mov(p->func, p->outbuf_EBX, x86_fn_arg(p->func, 6));
/* Load instance ID.
*/
if (p->use_instancing) {
x86_mov(p->func, p->tmp2_EDX, x86_fn_arg(p->func, 4));
x86_mov(p->func,
x86_make_disp(p->machine_EDI,
get_offset(p, &p->start_instance)), p->tmp2_EDX);
x86_mov(p->func, p->tmp_EAX, x86_fn_arg(p->func, 5));
x86_mov(p->func,
x86_make_disp(p->machine_EDI, get_offset(p, &p->instance_id)),
p->tmp_EAX);
}
/* Get vertex count, compare to zero
*/
x86_xor(p->func, p->tmp_EAX, p->tmp_EAX);
x86_cmp(p->func, p->count_EBP, p->tmp_EAX);
fixup = x86_jcc_forward(p->func, cc_E);
/* always load, needed or not:
*/
init_inputs(p, index_size);
/* Note address for loop jump
*/
label = x86_get_label(p->func);
{
struct x86_reg elt = !index_size ? p->idx_ESI : x86_deref(p->idx_ESI);
int last_variant = -1;
struct x86_reg vb;
for (j = 0; j < p->translate.key.nr_elements; j++) {
const struct translate_element *a = &p->translate.key.element[j];
unsigned variant = p->element_to_buffer_variant[j];
/* Figure out source pointer address:
*/
if (variant != last_variant) {
last_variant = variant;
vb = get_buffer_ptr(p, index_size, variant, elt);
}
if (!translate_attr(p, a,
x86_make_disp(vb, a->input_offset),
x86_make_disp(p->outbuf_EBX, a->output_offset)))
return FALSE;
}
/* Next output vertex:
*/
x64_rexw(p->func);
x86_lea(p->func, p->outbuf_EBX,
x86_make_disp(p->outbuf_EBX, p->translate.key.output_stride));
/* Incr index
*/
incr_inputs(p, index_size);
}
/* decr count, loop if not zero
*/
x86_dec(p->func, p->count_EBP);
x86_jcc(p->func, cc_NZ, label);
/* Exit mmx state?
*/
if (p->func->need_emms)
mmx_emms(p->func);
/* Land forward jump here:
*/
x86_fixup_fwd_jump(p->func, fixup);
/* Pop regs and return
*/
if (x86_target(p->func) != X86_64_STD_ABI) {
x86_pop(p->func, p->idx_ESI);
x86_pop(p->func, p->machine_EDI);
}
x86_pop(p->func, p->count_EBP);
x86_pop(p->func, p->outbuf_EBX);
if (x86_target(p->func) == X86_64_WIN64_ABI) {
sse2_movdqa(p->func, x86_make_reg(file_XMM, 6),
x86_make_disp(x86_make_reg(file_REG32, reg_SP), 8));
sse2_movdqa(p->func, x86_make_reg(file_XMM, 7),
x86_make_disp(x86_make_reg(file_REG32, reg_SP), 24));
}
x86_ret(p->func);
return TRUE;
}
static void
translate_sse_set_buffer(struct translate *translate,
unsigned buf,
const void *ptr, unsigned stride, unsigned max_index)
{
struct translate_sse *p = (struct translate_sse *) translate;
if (buf < p->nr_buffers) {
p->buffer[buf].base_ptr = (char *) ptr;
p->buffer[buf].stride = stride;
p->buffer[buf].max_index = max_index;
}
if (0)
debug_printf("%s %d/%d: %p %d\n",
__FUNCTION__, buf, p->nr_buffers, ptr, stride);
}
static void
translate_sse_release(struct translate *translate)
{
struct translate_sse *p = (struct translate_sse *) translate;
x86_release_func(&p->elt8_func);
x86_release_func(&p->elt16_func);
x86_release_func(&p->elt_func);
x86_release_func(&p->linear_func);
os_free_aligned(p);
}
struct translate *
translate_sse2_create(const struct translate_key *key)
{
struct translate_sse *p = NULL;
unsigned i;
/* this is misnamed, it actually refers to whether rtasm is enabled or not */
if (!rtasm_cpu_has_sse())
goto fail;
p = os_malloc_aligned(sizeof(struct translate_sse), 16);
if (!p)
goto fail;
memset(p, 0, sizeof(*p));
memcpy(p->consts, consts, sizeof(consts));
p->translate.key = *key;
p->translate.release = translate_sse_release;
p->translate.set_buffer = translate_sse_set_buffer;
assert(key->nr_elements <= TRANSLATE_MAX_ATTRIBS);
for (i = 0; i < key->nr_elements; i++) {
if (key->element[i].type == TRANSLATE_ELEMENT_NORMAL) {
unsigned j;
p->nr_buffers =
MAX2(p->nr_buffers, key->element[i].input_buffer + 1);
if (key->element[i].instance_divisor) {
p->use_instancing = TRUE;
}
/*
* Map vertex element to vertex buffer variant.
*/
for (j = 0; j < p->nr_buffer_variants; j++) {
if (p->buffer_variant[j].buffer_index ==
key->element[i].input_buffer
&& p->buffer_variant[j].instance_divisor ==
key->element[i].instance_divisor) {
break;
}
}
if (j == p->nr_buffer_variants) {
p->buffer_variant[j].buffer_index = key->element[i].input_buffer;
p->buffer_variant[j].instance_divisor =
key->element[i].instance_divisor;
p->nr_buffer_variants++;
}
p->element_to_buffer_variant[i] = j;
}
else {
assert(key->element[i].type == TRANSLATE_ELEMENT_INSTANCE_ID);
p->element_to_buffer_variant[i] = ELEMENT_BUFFER_INSTANCE_ID;
}
}
if (0)
debug_printf("nr_buffers: %d\n", p->nr_buffers);
if (!build_vertex_emit(p, &p->linear_func, 0))
goto fail;
if (!build_vertex_emit(p, &p->elt_func, 4))
goto fail;
if (!build_vertex_emit(p, &p->elt16_func, 2))
goto fail;
if (!build_vertex_emit(p, &p->elt8_func, 1))
goto fail;
p->translate.run = (run_func) x86_get_func(&p->linear_func);
if (p->translate.run == NULL)
goto fail;
p->translate.run_elts = (run_elts_func) x86_get_func(&p->elt_func);
if (p->translate.run_elts == NULL)
goto fail;
p->translate.run_elts16 = (run_elts16_func) x86_get_func(&p->elt16_func);
if (p->translate.run_elts16 == NULL)
goto fail;
p->translate.run_elts8 = (run_elts8_func) x86_get_func(&p->elt8_func);
if (p->translate.run_elts8 == NULL)
goto fail;
return &p->translate;
fail:
if (p)
translate_sse_release(&p->translate);
return NULL;
}
#else
struct translate *
translate_sse2_create(const struct translate_key *key)
{
return NULL;
}
#endif