/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
/*
* Copyright (C) 2013 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include "pipe/p_state.h"
#include "util/u_string.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/u_inlines.h"
#include "util/u_format.h"
#include "freedreno_program.h"
#include "fd3_program.h"
#include "fd3_emit.h"
#include "fd3_texture.h"
#include "fd3_format.h"
static void
delete_shader_stateobj(struct fd3_shader_stateobj *so)
{
ir3_shader_destroy(so->shader);
free(so);
}
static struct fd3_shader_stateobj *
create_shader_stateobj(struct pipe_context *pctx, const struct pipe_shader_state *cso,
enum shader_t type)
{
struct fd_context *ctx = fd_context(pctx);
struct ir3_compiler *compiler = ctx->screen->compiler;
struct fd3_shader_stateobj *so = CALLOC_STRUCT(fd3_shader_stateobj);
so->shader = ir3_shader_create(compiler, cso, type, &ctx->debug);
return so;
}
static void *
fd3_fp_state_create(struct pipe_context *pctx,
const struct pipe_shader_state *cso)
{
return create_shader_stateobj(pctx, cso, SHADER_FRAGMENT);
}
static void
fd3_fp_state_delete(struct pipe_context *pctx, void *hwcso)
{
struct fd3_shader_stateobj *so = hwcso;
delete_shader_stateobj(so);
}
static void *
fd3_vp_state_create(struct pipe_context *pctx,
const struct pipe_shader_state *cso)
{
return create_shader_stateobj(pctx, cso, SHADER_VERTEX);
}
static void
fd3_vp_state_delete(struct pipe_context *pctx, void *hwcso)
{
struct fd3_shader_stateobj *so = hwcso;
delete_shader_stateobj(so);
}
bool
fd3_needs_manual_clipping(const struct fd3_shader_stateobj *so,
const struct pipe_rasterizer_state *rast)
{
uint64_t outputs = ir3_shader_outputs(so->shader);
return (!rast->depth_clip ||
util_bitcount(rast->clip_plane_enable) > 6 ||
outputs & ((1ULL << VARYING_SLOT_CLIP_VERTEX) |
(1ULL << VARYING_SLOT_CLIP_DIST0) |
(1ULL << VARYING_SLOT_CLIP_DIST1)));
}
static void
emit_shader(struct fd_ringbuffer *ring, const struct ir3_shader_variant *so)
{
const struct ir3_info *si = &so->info;
enum adreno_state_block sb;
enum adreno_state_src src;
uint32_t i, sz, *bin;
if (so->type == SHADER_VERTEX) {
sb = SB_VERT_SHADER;
} else {
sb = SB_FRAG_SHADER;
}
if (fd_mesa_debug & FD_DBG_DIRECT) {
sz = si->sizedwords;
src = SS_DIRECT;
bin = fd_bo_map(so->bo);
} else {
sz = 0;
src = SS_INDIRECT;
bin = NULL;
}
OUT_PKT3(ring, CP_LOAD_STATE, 2 + sz);
OUT_RING(ring, CP_LOAD_STATE_0_DST_OFF(0) |
CP_LOAD_STATE_0_STATE_SRC(src) |
CP_LOAD_STATE_0_STATE_BLOCK(sb) |
CP_LOAD_STATE_0_NUM_UNIT(so->instrlen));
if (bin) {
OUT_RING(ring, CP_LOAD_STATE_1_EXT_SRC_ADDR(0) |
CP_LOAD_STATE_1_STATE_TYPE(ST_SHADER));
} else {
OUT_RELOC(ring, so->bo, 0,
CP_LOAD_STATE_1_STATE_TYPE(ST_SHADER), 0);
}
for (i = 0; i < sz; i++) {
OUT_RING(ring, bin[i]);
}
}
void
fd3_program_emit(struct fd_ringbuffer *ring, struct fd3_emit *emit,
int nr, struct pipe_surface **bufs)
{
const struct ir3_shader_variant *vp, *fp;
const struct ir3_info *vsi, *fsi;
enum a3xx_instrbuffermode fpbuffer, vpbuffer;
uint32_t fpbuffersz, vpbuffersz, fsoff;
uint32_t pos_regid, posz_regid, psize_regid, color_regid[4] = {0};
int constmode;
int i, j;
debug_assert(nr <= ARRAY_SIZE(color_regid));
vp = fd3_emit_get_vp(emit);
fp = fd3_emit_get_fp(emit);
vsi = &vp->info;
fsi = &fp->info;
fpbuffer = BUFFER;
vpbuffer = BUFFER;
fpbuffersz = fp->instrlen;
vpbuffersz = vp->instrlen;
/*
* Decide whether to use BUFFER or CACHE mode for VS and FS. It
* appears like 256 is the hard limit, but when the combined size
* exceeds 128 then blob will try to keep FS in BUFFER mode and
* switch to CACHE for VS until VS is too large. The blob seems
* to switch FS out of BUFFER mode at slightly under 128. But
* a bit fuzzy on the decision tree, so use slightly conservative
* limits.
*
* TODO check if these thresholds for BUFFER vs CACHE mode are the
* same for all a3xx or whether we need to consider the gpuid
*/
if ((fpbuffersz + vpbuffersz) > 128) {
if (fpbuffersz < 112) {
/* FP:BUFFER VP:CACHE */
vpbuffer = CACHE;
vpbuffersz = 256 - fpbuffersz;
} else if (vpbuffersz < 112) {
/* FP:CACHE VP:BUFFER */
fpbuffer = CACHE;
fpbuffersz = 256 - vpbuffersz;
} else {
/* FP:CACHE VP:CACHE */
vpbuffer = fpbuffer = CACHE;
vpbuffersz = fpbuffersz = 192;
}
}
if (fpbuffer == BUFFER) {
fsoff = 128 - fpbuffersz;
} else {
fsoff = 256 - fpbuffersz;
}
/* seems like vs->constlen + fs->constlen > 256, then CONSTMODE=1 */
constmode = ((vp->constlen + fp->constlen) > 256) ? 1 : 0;
pos_regid = ir3_find_output_regid(vp, VARYING_SLOT_POS);
posz_regid = ir3_find_output_regid(fp, FRAG_RESULT_DEPTH);
psize_regid = ir3_find_output_regid(vp, VARYING_SLOT_PSIZ);
if (fp->color0_mrt) {
color_regid[0] = color_regid[1] = color_regid[2] = color_regid[3] =
ir3_find_output_regid(fp, FRAG_RESULT_COLOR);
} else {
color_regid[0] = ir3_find_output_regid(fp, FRAG_RESULT_DATA0);
color_regid[1] = ir3_find_output_regid(fp, FRAG_RESULT_DATA1);
color_regid[2] = ir3_find_output_regid(fp, FRAG_RESULT_DATA2);
color_regid[3] = ir3_find_output_regid(fp, FRAG_RESULT_DATA3);
}
/* adjust regids for alpha output formats. there is no alpha render
* format, so it's just treated like red
*/
for (i = 0; i < nr; i++)
if (util_format_is_alpha(pipe_surface_format(bufs[i])))
color_regid[i] += 3;
/* we could probably divide this up into things that need to be
* emitted if frag-prog is dirty vs if vert-prog is dirty..
*/
OUT_PKT0(ring, REG_A3XX_HLSQ_CONTROL_0_REG, 6);
OUT_RING(ring, A3XX_HLSQ_CONTROL_0_REG_FSTHREADSIZE(FOUR_QUADS) |
A3XX_HLSQ_CONTROL_0_REG_CONSTMODE(constmode) |
/* NOTE: I guess SHADERRESTART and CONSTFULLUPDATE maybe
* flush some caches? I think we only need to set those
* bits if we have updated const or shader..
*/
A3XX_HLSQ_CONTROL_0_REG_SPSHADERRESTART |
A3XX_HLSQ_CONTROL_0_REG_SPCONSTFULLUPDATE);
OUT_RING(ring, A3XX_HLSQ_CONTROL_1_REG_VSTHREADSIZE(TWO_QUADS) |
A3XX_HLSQ_CONTROL_1_REG_VSSUPERTHREADENABLE |
COND(fp->frag_coord, A3XX_HLSQ_CONTROL_1_REG_FRAGCOORDXYREGID(regid(0,0)) |
A3XX_HLSQ_CONTROL_1_REG_FRAGCOORDZWREGID(regid(0,2))));
OUT_RING(ring, A3XX_HLSQ_CONTROL_2_REG_PRIMALLOCTHRESHOLD(31));
OUT_RING(ring, A3XX_HLSQ_CONTROL_3_REG_REGID(fp->pos_regid));
OUT_RING(ring, A3XX_HLSQ_VS_CONTROL_REG_CONSTLENGTH(vp->constlen) |
A3XX_HLSQ_VS_CONTROL_REG_CONSTSTARTOFFSET(0) |
A3XX_HLSQ_VS_CONTROL_REG_INSTRLENGTH(vpbuffersz));
OUT_RING(ring, A3XX_HLSQ_FS_CONTROL_REG_CONSTLENGTH(fp->constlen) |
A3XX_HLSQ_FS_CONTROL_REG_CONSTSTARTOFFSET(128) |
A3XX_HLSQ_FS_CONTROL_REG_INSTRLENGTH(fpbuffersz));
OUT_PKT0(ring, REG_A3XX_SP_SP_CTRL_REG, 1);
OUT_RING(ring, A3XX_SP_SP_CTRL_REG_CONSTMODE(constmode) |
COND(emit->key.binning_pass, A3XX_SP_SP_CTRL_REG_BINNING) |
A3XX_SP_SP_CTRL_REG_SLEEPMODE(1) |
A3XX_SP_SP_CTRL_REG_L0MODE(0));
OUT_PKT0(ring, REG_A3XX_SP_VS_LENGTH_REG, 1);
OUT_RING(ring, A3XX_SP_VS_LENGTH_REG_SHADERLENGTH(vp->instrlen));
OUT_PKT0(ring, REG_A3XX_SP_VS_CTRL_REG0, 3);
OUT_RING(ring, A3XX_SP_VS_CTRL_REG0_THREADMODE(MULTI) |
A3XX_SP_VS_CTRL_REG0_INSTRBUFFERMODE(vpbuffer) |
COND(vpbuffer == CACHE, A3XX_SP_VS_CTRL_REG0_CACHEINVALID) |
A3XX_SP_VS_CTRL_REG0_HALFREGFOOTPRINT(vsi->max_half_reg + 1) |
A3XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vsi->max_reg + 1) |
A3XX_SP_VS_CTRL_REG0_THREADSIZE(TWO_QUADS) |
A3XX_SP_VS_CTRL_REG0_SUPERTHREADMODE |
A3XX_SP_VS_CTRL_REG0_LENGTH(vpbuffersz));
OUT_RING(ring, A3XX_SP_VS_CTRL_REG1_CONSTLENGTH(vp->constlen) |
A3XX_SP_VS_CTRL_REG1_INITIALOUTSTANDING(vp->total_in) |
A3XX_SP_VS_CTRL_REG1_CONSTFOOTPRINT(MAX2(vp->constlen + 1, 0)));
OUT_RING(ring, A3XX_SP_VS_PARAM_REG_POSREGID(pos_regid) |
A3XX_SP_VS_PARAM_REG_PSIZEREGID(psize_regid) |
A3XX_SP_VS_PARAM_REG_TOTALVSOUTVAR(fp->varying_in));
struct ir3_shader_linkage l = {0};
ir3_link_shaders(&l, vp, fp);
for (i = 0, j = 0; (i < 16) && (j < l.cnt); i++) {
uint32_t reg = 0;
OUT_PKT0(ring, REG_A3XX_SP_VS_OUT_REG(i), 1);
reg |= A3XX_SP_VS_OUT_REG_A_REGID(l.var[j].regid);
reg |= A3XX_SP_VS_OUT_REG_A_COMPMASK(l.var[j].compmask);
j++;
reg |= A3XX_SP_VS_OUT_REG_B_REGID(l.var[j].regid);
reg |= A3XX_SP_VS_OUT_REG_B_COMPMASK(l.var[j].compmask);
j++;
OUT_RING(ring, reg);
}
for (i = 0, j = 0; (i < 8) && (j < l.cnt); i++) {
uint32_t reg = 0;
OUT_PKT0(ring, REG_A3XX_SP_VS_VPC_DST_REG(i), 1);
reg |= A3XX_SP_VS_VPC_DST_REG_OUTLOC0(l.var[j++].loc + 8);
reg |= A3XX_SP_VS_VPC_DST_REG_OUTLOC1(l.var[j++].loc + 8);
reg |= A3XX_SP_VS_VPC_DST_REG_OUTLOC2(l.var[j++].loc + 8);
reg |= A3XX_SP_VS_VPC_DST_REG_OUTLOC3(l.var[j++].loc + 8);
OUT_RING(ring, reg);
}
OUT_PKT0(ring, REG_A3XX_SP_VS_OBJ_OFFSET_REG, 2);
OUT_RING(ring, A3XX_SP_VS_OBJ_OFFSET_REG_CONSTOBJECTOFFSET(0) |
A3XX_SP_VS_OBJ_OFFSET_REG_SHADEROBJOFFSET(0));
OUT_RELOC(ring, vp->bo, 0, 0, 0); /* SP_VS_OBJ_START_REG */
if (emit->key.binning_pass) {
OUT_PKT0(ring, REG_A3XX_SP_FS_LENGTH_REG, 1);
OUT_RING(ring, 0x00000000);
OUT_PKT0(ring, REG_A3XX_SP_FS_CTRL_REG0, 2);
OUT_RING(ring, A3XX_SP_FS_CTRL_REG0_THREADMODE(MULTI) |
A3XX_SP_FS_CTRL_REG0_INSTRBUFFERMODE(BUFFER));
OUT_RING(ring, 0x00000000);
OUT_PKT0(ring, REG_A3XX_SP_FS_OBJ_OFFSET_REG, 1);
OUT_RING(ring, A3XX_SP_FS_OBJ_OFFSET_REG_CONSTOBJECTOFFSET(128) |
A3XX_SP_FS_OBJ_OFFSET_REG_SHADEROBJOFFSET(0));
} else {
OUT_PKT0(ring, REG_A3XX_SP_FS_LENGTH_REG, 1);
OUT_RING(ring, A3XX_SP_FS_LENGTH_REG_SHADERLENGTH(fp->instrlen));
OUT_PKT0(ring, REG_A3XX_SP_FS_CTRL_REG0, 2);
OUT_RING(ring, A3XX_SP_FS_CTRL_REG0_THREADMODE(MULTI) |
A3XX_SP_FS_CTRL_REG0_INSTRBUFFERMODE(fpbuffer) |
COND(fpbuffer == CACHE, A3XX_SP_FS_CTRL_REG0_CACHEINVALID) |
A3XX_SP_FS_CTRL_REG0_HALFREGFOOTPRINT(fsi->max_half_reg + 1) |
A3XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fsi->max_reg + 1) |
A3XX_SP_FS_CTRL_REG0_INOUTREGOVERLAP |
A3XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
A3XX_SP_FS_CTRL_REG0_SUPERTHREADMODE |
COND(fp->has_samp > 0, A3XX_SP_FS_CTRL_REG0_PIXLODENABLE) |
A3XX_SP_FS_CTRL_REG0_LENGTH(fpbuffersz));
OUT_RING(ring, A3XX_SP_FS_CTRL_REG1_CONSTLENGTH(fp->constlen) |
A3XX_SP_FS_CTRL_REG1_INITIALOUTSTANDING(fp->total_in) |
A3XX_SP_FS_CTRL_REG1_CONSTFOOTPRINT(MAX2(fp->constlen + 1, 0)) |
A3XX_SP_FS_CTRL_REG1_HALFPRECVAROFFSET(63));
OUT_PKT0(ring, REG_A3XX_SP_FS_OBJ_OFFSET_REG, 2);
OUT_RING(ring, A3XX_SP_FS_OBJ_OFFSET_REG_CONSTOBJECTOFFSET(
MAX2(128, vp->constlen)) |
A3XX_SP_FS_OBJ_OFFSET_REG_SHADEROBJOFFSET(fsoff));
OUT_RELOC(ring, fp->bo, 0, 0, 0); /* SP_FS_OBJ_START_REG */
}
OUT_PKT0(ring, REG_A3XX_SP_FS_OUTPUT_REG, 1);
OUT_RING(ring,
COND(fp->writes_pos, A3XX_SP_FS_OUTPUT_REG_DEPTH_ENABLE) |
A3XX_SP_FS_OUTPUT_REG_DEPTH_REGID(posz_regid) |
A3XX_SP_FS_OUTPUT_REG_MRT(MAX2(1, nr) - 1));
OUT_PKT0(ring, REG_A3XX_SP_FS_MRT_REG(0), 4);
for (i = 0; i < 4; i++) {
uint32_t mrt_reg = A3XX_SP_FS_MRT_REG_REGID(color_regid[i]) |
COND(fp->key.half_precision, A3XX_SP_FS_MRT_REG_HALF_PRECISION);
if (i < nr) {
enum pipe_format fmt = pipe_surface_format(bufs[i]);
mrt_reg |= COND(util_format_is_pure_uint(fmt), A3XX_SP_FS_MRT_REG_UINT) |
COND(util_format_is_pure_sint(fmt), A3XX_SP_FS_MRT_REG_SINT);
}
OUT_RING(ring, mrt_reg);
}
if (emit->key.binning_pass) {
OUT_PKT0(ring, REG_A3XX_VPC_ATTR, 2);
OUT_RING(ring, A3XX_VPC_ATTR_THRDASSIGN(1) |
A3XX_VPC_ATTR_LMSIZE(1) |
COND(vp->writes_psize, A3XX_VPC_ATTR_PSIZE));
OUT_RING(ring, 0x00000000);
} else {
uint32_t vinterp[4], flatshade[2], vpsrepl[4];
memset(vinterp, 0, sizeof(vinterp));
memset(flatshade, 0, sizeof(flatshade));
memset(vpsrepl, 0, sizeof(vpsrepl));
/* figure out VARYING_INTERP / FLAT_SHAD register values: */
for (j = -1; (j = ir3_next_varying(fp, j)) < (int)fp->inputs_count; ) {
/* NOTE: varyings are packed, so if compmask is 0xb
* then first, third, and fourth component occupy
* three consecutive varying slots:
*/
unsigned compmask = fp->inputs[j].compmask;
uint32_t inloc = fp->inputs[j].inloc;
if ((fp->inputs[j].interpolate == INTERP_MODE_FLAT) ||
(fp->inputs[j].rasterflat && emit->rasterflat)) {
uint32_t loc = inloc;
for (i = 0; i < 4; i++) {
if (compmask & (1 << i)) {
vinterp[loc / 16] |= FLAT << ((loc % 16) * 2);
flatshade[loc / 32] |= 1 << (loc % 32);
loc++;
}
}
}
gl_varying_slot slot = fp->inputs[j].slot;
/* since we don't enable PIPE_CAP_TGSI_TEXCOORD: */
if (slot >= VARYING_SLOT_VAR0) {
unsigned texmask = 1 << (slot - VARYING_SLOT_VAR0);
/* Replace the .xy coordinates with S/T from the point sprite. Set
* interpolation bits for .zw such that they become .01
*/
if (emit->sprite_coord_enable & texmask) {
/* mask is two 2-bit fields, where:
* '01' -> S
* '10' -> T
* '11' -> 1 - T (flip mode)
*/
unsigned mask = emit->sprite_coord_mode ? 0b1101 : 0b1001;
uint32_t loc = inloc;
if (compmask & 0x1) {
vpsrepl[loc / 16] |= ((mask >> 0) & 0x3) << ((loc % 16) * 2);
loc++;
}
if (compmask & 0x2) {
vpsrepl[loc / 16] |= ((mask >> 2) & 0x3) << ((loc % 16) * 2);
loc++;
}
if (compmask & 0x4) {
/* .z <- 0.0f */
vinterp[loc / 16] |= 0b10 << ((loc % 16) * 2);
loc++;
}
if (compmask & 0x8) {
/* .w <- 1.0f */
vinterp[loc / 16] |= 0b11 << ((loc % 16) * 2);
loc++;
}
}
}
}
OUT_PKT0(ring, REG_A3XX_VPC_ATTR, 2);
OUT_RING(ring, A3XX_VPC_ATTR_TOTALATTR(fp->total_in) |
A3XX_VPC_ATTR_THRDASSIGN(1) |
A3XX_VPC_ATTR_LMSIZE(1) |
COND(vp->writes_psize, A3XX_VPC_ATTR_PSIZE));
OUT_RING(ring, A3XX_VPC_PACK_NUMFPNONPOSVAR(fp->total_in) |
A3XX_VPC_PACK_NUMNONPOSVSVAR(fp->total_in));
OUT_PKT0(ring, REG_A3XX_VPC_VARYING_INTERP_MODE(0), 4);
OUT_RING(ring, vinterp[0]); /* VPC_VARYING_INTERP[0].MODE */
OUT_RING(ring, vinterp[1]); /* VPC_VARYING_INTERP[1].MODE */
OUT_RING(ring, vinterp[2]); /* VPC_VARYING_INTERP[2].MODE */
OUT_RING(ring, vinterp[3]); /* VPC_VARYING_INTERP[3].MODE */
OUT_PKT0(ring, REG_A3XX_VPC_VARYING_PS_REPL_MODE(0), 4);
OUT_RING(ring, vpsrepl[0]); /* VPC_VARYING_PS_REPL[0].MODE */
OUT_RING(ring, vpsrepl[1]); /* VPC_VARYING_PS_REPL[1].MODE */
OUT_RING(ring, vpsrepl[2]); /* VPC_VARYING_PS_REPL[2].MODE */
OUT_RING(ring, vpsrepl[3]); /* VPC_VARYING_PS_REPL[3].MODE */
OUT_PKT0(ring, REG_A3XX_SP_FS_FLAT_SHAD_MODE_REG_0, 2);
OUT_RING(ring, flatshade[0]); /* SP_FS_FLAT_SHAD_MODE_REG_0 */
OUT_RING(ring, flatshade[1]); /* SP_FS_FLAT_SHAD_MODE_REG_1 */
}
if (vpbuffer == BUFFER)
emit_shader(ring, vp);
OUT_PKT0(ring, REG_A3XX_VFD_PERFCOUNTER0_SELECT, 1);
OUT_RING(ring, 0x00000000); /* VFD_PERFCOUNTER0_SELECT */
if (!emit->key.binning_pass) {
if (fpbuffer == BUFFER)
emit_shader(ring, fp);
OUT_PKT0(ring, REG_A3XX_VFD_PERFCOUNTER0_SELECT, 1);
OUT_RING(ring, 0x00000000); /* VFD_PERFCOUNTER0_SELECT */
}
}
void
fd3_prog_init(struct pipe_context *pctx)
{
pctx->create_fs_state = fd3_fp_state_create;
pctx->delete_fs_state = fd3_fp_state_delete;
pctx->create_vs_state = fd3_vp_state_create;
pctx->delete_vs_state = fd3_vp_state_delete;
fd_prog_init(pctx);
}