/*
* Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef IR3_H_
#define IR3_H_
#include <stdint.h>
#include <stdbool.h>
#include "util/u_debug.h"
#include "util/list.h"
#include "instr-a3xx.h"
#include "disasm.h" /* TODO move 'enum shader_t' somewhere else.. */
/* low level intermediate representation of an adreno shader program */
struct ir3_compiler;
struct ir3;
struct ir3_instruction;
struct ir3_block;
struct ir3_info {
uint32_t gpu_id;
uint16_t sizedwords;
uint16_t instrs_count; /* expanded to account for rpt's */
/* NOTE: max_reg, etc, does not include registers not touched
* by the shader (ie. vertex fetched via VFD_DECODE but not
* touched by shader)
*/
int8_t max_reg; /* highest GPR # used by shader */
int8_t max_half_reg;
int16_t max_const;
};
struct ir3_register {
enum {
IR3_REG_CONST = 0x001,
IR3_REG_IMMED = 0x002,
IR3_REG_HALF = 0x004,
/* high registers are used for some things in compute shaders,
* for example. Seems to be for things that are global to all
* threads in a wave, so possibly these are global/shared by
* all the threads in the wave?
*/
IR3_REG_HIGH = 0x008,
IR3_REG_RELATIV= 0x010,
IR3_REG_R = 0x020,
/* Most instructions, it seems, can do float abs/neg but not
* integer. The CP pass needs to know what is intended (int or
* float) in order to do the right thing. For this reason the
* abs/neg flags are split out into float and int variants. In
* addition, .b (bitwise) operations, the negate is actually a
* bitwise not, so split that out into a new flag to make it
* more clear.
*/
IR3_REG_FNEG = 0x040,
IR3_REG_FABS = 0x080,
IR3_REG_SNEG = 0x100,
IR3_REG_SABS = 0x200,
IR3_REG_BNOT = 0x400,
IR3_REG_EVEN = 0x800,
IR3_REG_POS_INF= 0x1000,
/* (ei) flag, end-input? Set on last bary, presumably to signal
* that the shader needs no more input:
*/
IR3_REG_EI = 0x2000,
/* meta-flags, for intermediate stages of IR, ie.
* before register assignment is done:
*/
IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
IR3_REG_ARRAY = 0x8000,
IR3_REG_PHI_SRC= 0x10000, /* phi src, regs[0]->instr points to phi */
} flags;
union {
/* normal registers:
* the component is in the low two bits of the reg #, so
* rN.x becomes: (N << 2) | x
*/
int num;
/* immediate: */
int32_t iim_val;
uint32_t uim_val;
float fim_val;
/* relative: */
struct {
uint16_t id;
int16_t offset;
} array;
};
/* For IR3_REG_SSA, src registers contain ptr back to assigning
* instruction.
*
* For IR3_REG_ARRAY, the pointer is back to the last dependent
* array access (although the net effect is the same, it points
* back to a previous instruction that we depend on).
*/
struct ir3_instruction *instr;
union {
/* used for cat5 instructions, but also for internal/IR level
* tracking of what registers are read/written by an instruction.
* wrmask may be a bad name since it is used to represent both
* src and dst that touch multiple adjacent registers.
*/
unsigned wrmask;
/* for relative addressing, 32bits for array size is too small,
* but otoh we don't need to deal with disjoint sets, so instead
* use a simple size field (number of scalar components).
*/
unsigned size;
};
};
/*
* Stupid/simple growable array implementation:
*/
#define DECLARE_ARRAY(type, name) \
unsigned name ## _count, name ## _sz; \
type * name;
#define array_insert(ctx, arr, val) do { \
if (arr ## _count == arr ## _sz) { \
arr ## _sz = MAX2(2 * arr ## _sz, 16); \
arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
} \
arr[arr ##_count++] = val; \
} while (0)
struct ir3_instruction {
struct ir3_block *block;
opc_t opc;
enum {
/* (sy) flag is set on first instruction, and after sample
* instructions (probably just on RAW hazard).
*/
IR3_INSTR_SY = 0x001,
/* (ss) flag is set on first instruction, and first instruction
* to depend on the result of "long" instructions (RAW hazard):
*
* rcp, rsq, log2, exp2, sin, cos, sqrt
*
* It seems to synchronize until all in-flight instructions are
* completed, for example:
*
* rsq hr1.w, hr1.w
* add.f hr2.z, (neg)hr2.z, hc0.y
* mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
* rsq hr2.x, hr2.x
* (rpt1)nop
* mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
* nop
* mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
* (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
* (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
*
* The last mul.f does not have (ss) set, presumably because the
* (ss) on the previous instruction does the job.
*
* The blob driver also seems to set it on WAR hazards, although
* not really clear if this is needed or just blob compiler being
* sloppy. So far I haven't found a case where removing the (ss)
* causes problems for WAR hazard, but I could just be getting
* lucky:
*
* rcp r1.y, r3.y
* (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
*
*/
IR3_INSTR_SS = 0x002,
/* (jp) flag is set on jump targets:
*/
IR3_INSTR_JP = 0x004,
IR3_INSTR_UL = 0x008,
IR3_INSTR_3D = 0x010,
IR3_INSTR_A = 0x020,
IR3_INSTR_O = 0x040,
IR3_INSTR_P = 0x080,
IR3_INSTR_S = 0x100,
IR3_INSTR_S2EN = 0x200,
IR3_INSTR_G = 0x400,
/* meta-flags, for intermediate stages of IR, ie.
* before register assignment is done:
*/
IR3_INSTR_MARK = 0x1000,
IR3_INSTR_UNUSED= 0x2000,
} flags;
int repeat;
#ifdef DEBUG
unsigned regs_max;
#endif
unsigned regs_count;
struct ir3_register **regs;
union {
struct {
char inv;
char comp;
int immed;
struct ir3_block *target;
} cat0;
struct {
type_t src_type, dst_type;
} cat1;
struct {
enum {
IR3_COND_LT = 0,
IR3_COND_LE = 1,
IR3_COND_GT = 2,
IR3_COND_GE = 3,
IR3_COND_EQ = 4,
IR3_COND_NE = 5,
} condition;
} cat2;
struct {
unsigned samp, tex;
type_t type;
} cat5;
struct {
type_t type;
int src_offset;
int dst_offset;
int iim_val : 3; /* for ldgb/stgb, # of components */
int d : 3;
bool typed : 1;
} cat6;
struct {
unsigned w : 1; /* write */
unsigned r : 1; /* read */
unsigned l : 1; /* local */
unsigned g : 1; /* global */
} cat7;
/* for meta-instructions, just used to hold extra data
* before instruction scheduling, etc
*/
struct {
int off; /* component/offset */
} fo;
struct {
/* used to temporarily hold reference to nir_phi_instr
* until we resolve the phi srcs
*/
void *nphi;
} phi;
struct {
struct ir3_block *block;
} inout;
};
/* transient values used during various algorithms: */
union {
/* The instruction depth is the max dependency distance to output.
*
* You can also think of it as the "cost", if we did any sort of
* optimization for register footprint. Ie. a value that is just
* result of moving a const to a reg would have a low cost, so to
* it could make sense to duplicate the instruction at various
* points where the result is needed to reduce register footprint.
*/
unsigned depth;
/* When we get to the RA stage, we no longer need depth, but
* we do need instruction's position/name:
*/
struct {
uint16_t ip;
uint16_t name;
};
};
/* used for per-pass extra instruction data.
*/
void *data;
/* Used during CP and RA stages. For fanin and shader inputs/
* outputs where we need a sequence of consecutive registers,
* keep track of each src instructions left (ie 'n-1') and right
* (ie 'n+1') neighbor. The front-end must insert enough mov's
* to ensure that each instruction has at most one left and at
* most one right neighbor. During the copy-propagation pass,
* we only remove mov's when we can preserve this constraint.
* And during the RA stage, we use the neighbor information to
* allocate a block of registers in one shot.
*
* TODO: maybe just add something like:
* struct ir3_instruction_ref {
* struct ir3_instruction *instr;
* unsigned cnt;
* }
*
* Or can we get away without the refcnt stuff? It seems like
* it should be overkill.. the problem is if, potentially after
* already eliminating some mov's, if you have a single mov that
* needs to be grouped with it's neighbors in two different
* places (ex. shader output and a fanin).
*/
struct {
struct ir3_instruction *left, *right;
uint16_t left_cnt, right_cnt;
} cp;
/* an instruction can reference at most one address register amongst
* it's src/dst registers. Beyond that, you need to insert mov's.
*
* NOTE: do not write this directly, use ir3_instr_set_address()
*/
struct ir3_instruction *address;
/* Tracking for additional dependent instructions. Used to handle
* barriers, WAR hazards for arrays/SSBOs/etc.
*/
DECLARE_ARRAY(struct ir3_instruction *, deps);
/*
* From PoV of instruction scheduling, not execution (ie. ignores global/
* local distinction):
* shared image atomic SSBO everything
* barrier()/ - R/W R/W R/W R/W X
* groupMemoryBarrier()
* memoryBarrier() - R/W R/W
* (but only images declared coherent?)
* memoryBarrierAtomic() - R/W
* memoryBarrierBuffer() - R/W
* memoryBarrierImage() - R/W
* memoryBarrierShared() - R/W
*
* TODO I think for SSBO/image/shared, in cases where we can determine
* which variable is accessed, we don't need to care about accesses to
* different variables (unless declared coherent??)
*/
enum {
IR3_BARRIER_EVERYTHING = 1 << 0,
IR3_BARRIER_SHARED_R = 1 << 1,
IR3_BARRIER_SHARED_W = 1 << 2,
IR3_BARRIER_IMAGE_R = 1 << 3,
IR3_BARRIER_IMAGE_W = 1 << 4,
IR3_BARRIER_BUFFER_R = 1 << 5,
IR3_BARRIER_BUFFER_W = 1 << 6,
IR3_BARRIER_ARRAY_R = 1 << 7,
IR3_BARRIER_ARRAY_W = 1 << 8,
} barrier_class, barrier_conflict;
/* Entry in ir3_block's instruction list: */
struct list_head node;
#ifdef DEBUG
uint32_t serialno;
#endif
};
static inline struct ir3_instruction *
ir3_neighbor_first(struct ir3_instruction *instr)
{
int cnt = 0;
while (instr->cp.left) {
instr = instr->cp.left;
if (++cnt > 0xffff) {
debug_assert(0);
break;
}
}
return instr;
}
static inline int ir3_neighbor_count(struct ir3_instruction *instr)
{
int num = 1;
debug_assert(!instr->cp.left);
while (instr->cp.right) {
num++;
instr = instr->cp.right;
if (num > 0xffff) {
debug_assert(0);
break;
}
}
return num;
}
struct ir3 {
struct ir3_compiler *compiler;
unsigned ninputs, noutputs;
struct ir3_instruction **inputs;
struct ir3_instruction **outputs;
/* Track bary.f (and ldlv) instructions.. this is needed in
* scheduling to ensure that all varying fetches happen before
* any potential kill instructions. The hw gets grumpy if all
* threads in a group are killed before the last bary.f gets
* a chance to signal end of input (ei).
*/
DECLARE_ARRAY(struct ir3_instruction *, baryfs);
/* Track all indirect instructions (read and write). To avoid
* deadlock scenario where an address register gets scheduled,
* but other dependent src instructions cannot be scheduled due
* to dependency on a *different* address register value, the
* scheduler needs to ensure that all dependencies other than
* the instruction other than the address register are scheduled
* before the one that writes the address register. Having a
* convenient list of instructions that reference some address
* register simplifies this.
*/
DECLARE_ARRAY(struct ir3_instruction *, indirects);
/* and same for instructions that consume predicate register: */
DECLARE_ARRAY(struct ir3_instruction *, predicates);
/* Track texture sample instructions which need texture state
* patched in (for astc-srgb workaround):
*/
DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
/* List of blocks: */
struct list_head block_list;
/* List of ir3_array's: */
struct list_head array_list;
};
typedef struct nir_register nir_register;
struct ir3_array {
struct list_head node;
unsigned length;
unsigned id;
nir_register *r;
/* To avoid array write's from getting DCE'd, keep track of the
* most recent write. Any array access depends on the most
* recent write. This way, nothing depends on writes after the
* last read. But all the writes that happen before that have
* something depending on them
*/
struct ir3_instruction *last_write;
/* extra stuff used in RA pass: */
unsigned base; /* base vreg name */
unsigned reg; /* base physical reg */
uint16_t start_ip, end_ip;
};
struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
typedef struct nir_block nir_block;
struct ir3_block {
struct list_head node;
struct ir3 *shader;
nir_block *nblock;
struct list_head instr_list; /* list of ir3_instruction */
/* each block has either one or two successors.. in case of
* two successors, 'condition' decides which one to follow.
* A block preceding an if/else has two successors.
*/
struct ir3_instruction *condition;
struct ir3_block *successors[2];
uint16_t start_ip, end_ip;
/* Track instructions which do not write a register but other-
* wise must not be discarded (such as kill, stg, etc)
*/
DECLARE_ARRAY(struct ir3_instruction *, keeps);
/* used for per-pass extra block data. Mainly used right
* now in RA step to track livein/liveout.
*/
void *data;
#ifdef DEBUG
uint32_t serialno;
#endif
};
static inline uint32_t
block_id(struct ir3_block *block)
{
#ifdef DEBUG
return block->serialno;
#else
return (uint32_t)(unsigned long)block;
#endif
}
struct ir3 * ir3_create(struct ir3_compiler *compiler,
unsigned nin, unsigned nout);
void ir3_destroy(struct ir3 *shader);
void * ir3_assemble(struct ir3 *shader,
struct ir3_info *info, uint32_t gpu_id);
void * ir3_alloc(struct ir3 *shader, int sz);
struct ir3_block * ir3_block_create(struct ir3 *shader);
struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
opc_t opc, int nreg);
struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
const char *ir3_instr_name(struct ir3_instruction *instr);
struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
int num, int flags);
struct ir3_register * ir3_reg_clone(struct ir3 *shader,
struct ir3_register *reg);
void ir3_instr_set_address(struct ir3_instruction *instr,
struct ir3_instruction *addr);
static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
{
if (instr->flags & IR3_INSTR_MARK)
return true; /* already visited */
instr->flags |= IR3_INSTR_MARK;
return false;
}
void ir3_block_clear_mark(struct ir3_block *block);
void ir3_clear_mark(struct ir3 *shader);
unsigned ir3_count_instructions(struct ir3 *ir);
static inline int ir3_instr_regno(struct ir3_instruction *instr,
struct ir3_register *reg)
{
unsigned i;
for (i = 0; i < instr->regs_count; i++)
if (reg == instr->regs[i])
return i;
return -1;
}
#define MAX_ARRAYS 16
/* comp:
* 0 - x
* 1 - y
* 2 - z
* 3 - w
*/
static inline uint32_t regid(int num, int comp)
{
return (num << 2) | (comp & 0x3);
}
static inline uint32_t reg_num(struct ir3_register *reg)
{
return reg->num >> 2;
}
static inline uint32_t reg_comp(struct ir3_register *reg)
{
return reg->num & 0x3;
}
static inline bool is_flow(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 0);
}
static inline bool is_kill(struct ir3_instruction *instr)
{
return instr->opc == OPC_KILL;
}
static inline bool is_nop(struct ir3_instruction *instr)
{
return instr->opc == OPC_NOP;
}
/* Is it a non-transformative (ie. not type changing) mov? This can
* also include absneg.s/absneg.f, which for the most part can be
* treated as a mov (single src argument).
*/
static inline bool is_same_type_mov(struct ir3_instruction *instr)
{
struct ir3_register *dst;
switch (instr->opc) {
case OPC_MOV:
if (instr->cat1.src_type != instr->cat1.dst_type)
return false;
break;
case OPC_ABSNEG_F:
case OPC_ABSNEG_S:
break;
default:
return false;
}
dst = instr->regs[0];
/* mov's that write to a0.x or p0.x are special: */
if (dst->num == regid(REG_P0, 0))
return false;
if (dst->num == regid(REG_A0, 0))
return false;
if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
return false;
return true;
}
static inline bool is_alu(struct ir3_instruction *instr)
{
return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
}
static inline bool is_sfu(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 4);
}
static inline bool is_tex(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 5);
}
static inline bool is_mem(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 6);
}
static inline bool is_barrier(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 7);
}
static inline bool
is_store(struct ir3_instruction *instr)
{
/* these instructions, the "destination" register is
* actually a source, the address to store to.
*/
switch (instr->opc) {
case OPC_STG:
case OPC_STGB:
case OPC_STIB:
case OPC_STP:
case OPC_STL:
case OPC_STLW:
case OPC_L2G:
case OPC_G2L:
return true;
default:
return false;
}
}
static inline bool is_load(struct ir3_instruction *instr)
{
switch (instr->opc) {
case OPC_LDG:
case OPC_LDGB:
case OPC_LDL:
case OPC_LDP:
case OPC_L2G:
case OPC_LDLW:
case OPC_LDC:
case OPC_LDLV:
/* probably some others too.. */
return true;
default:
return false;
}
}
static inline bool is_input(struct ir3_instruction *instr)
{
/* in some cases, ldlv is used to fetch varying without
* interpolation.. fortunately inloc is the first src
* register in either case
*/
switch (instr->opc) {
case OPC_LDLV:
case OPC_BARY_F:
return true;
default:
return false;
}
}
static inline bool is_bool(struct ir3_instruction *instr)
{
switch (instr->opc) {
case OPC_CMPS_F:
case OPC_CMPS_S:
case OPC_CMPS_U:
return true;
default:
return false;
}
}
static inline bool is_meta(struct ir3_instruction *instr)
{
/* TODO how should we count PHI (and maybe fan-in/out) which
* might actually contribute some instructions to the final
* result?
*/
return (opc_cat(instr->opc) == -1);
}
static inline bool writes_addr(struct ir3_instruction *instr)
{
if (instr->regs_count > 0) {
struct ir3_register *dst = instr->regs[0];
return reg_num(dst) == REG_A0;
}
return false;
}
static inline bool writes_pred(struct ir3_instruction *instr)
{
if (instr->regs_count > 0) {
struct ir3_register *dst = instr->regs[0];
return reg_num(dst) == REG_P0;
}
return false;
}
/* returns defining instruction for reg */
/* TODO better name */
static inline struct ir3_instruction *ssa(struct ir3_register *reg)
{
if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
debug_assert(!(reg->instr && (reg->instr->flags & IR3_INSTR_UNUSED)));
return reg->instr;
}
return NULL;
}
static inline bool conflicts(struct ir3_instruction *a,
struct ir3_instruction *b)
{
return (a && b) && (a != b);
}
static inline bool reg_gpr(struct ir3_register *r)
{
if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
return false;
if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
return false;
return true;
}
static inline type_t half_type(type_t type)
{
switch (type) {
case TYPE_F32: return TYPE_F16;
case TYPE_U32: return TYPE_U16;
case TYPE_S32: return TYPE_S16;
case TYPE_F16:
case TYPE_U16:
case TYPE_S16:
return type;
default:
assert(0);
return ~0;
}
}
/* some cat2 instructions (ie. those which are not float) can embed an
* immediate:
*/
static inline bool ir3_cat2_int(opc_t opc)
{
switch (opc) {
case OPC_ADD_U:
case OPC_ADD_S:
case OPC_SUB_U:
case OPC_SUB_S:
case OPC_CMPS_U:
case OPC_CMPS_S:
case OPC_MIN_U:
case OPC_MIN_S:
case OPC_MAX_U:
case OPC_MAX_S:
case OPC_CMPV_U:
case OPC_CMPV_S:
case OPC_MUL_U:
case OPC_MUL_S:
case OPC_MULL_U:
case OPC_CLZ_S:
case OPC_ABSNEG_S:
case OPC_AND_B:
case OPC_OR_B:
case OPC_NOT_B:
case OPC_XOR_B:
case OPC_BFREV_B:
case OPC_CLZ_B:
case OPC_SHL_B:
case OPC_SHR_B:
case OPC_ASHR_B:
case OPC_MGEN_B:
case OPC_GETBIT_B:
case OPC_CBITS_B:
case OPC_BARY_F:
return true;
default:
return false;
}
}
/* map cat2 instruction to valid abs/neg flags: */
static inline unsigned ir3_cat2_absneg(opc_t opc)
{
switch (opc) {
case OPC_ADD_F:
case OPC_MIN_F:
case OPC_MAX_F:
case OPC_MUL_F:
case OPC_SIGN_F:
case OPC_CMPS_F:
case OPC_ABSNEG_F:
case OPC_CMPV_F:
case OPC_FLOOR_F:
case OPC_CEIL_F:
case OPC_RNDNE_F:
case OPC_RNDAZ_F:
case OPC_TRUNC_F:
case OPC_BARY_F:
return IR3_REG_FABS | IR3_REG_FNEG;
case OPC_ADD_U:
case OPC_ADD_S:
case OPC_SUB_U:
case OPC_SUB_S:
case OPC_CMPS_U:
case OPC_CMPS_S:
case OPC_MIN_U:
case OPC_MIN_S:
case OPC_MAX_U:
case OPC_MAX_S:
case OPC_CMPV_U:
case OPC_CMPV_S:
case OPC_MUL_U:
case OPC_MUL_S:
case OPC_MULL_U:
case OPC_CLZ_S:
return 0;
case OPC_ABSNEG_S:
return IR3_REG_SABS | IR3_REG_SNEG;
case OPC_AND_B:
case OPC_OR_B:
case OPC_NOT_B:
case OPC_XOR_B:
case OPC_BFREV_B:
case OPC_CLZ_B:
case OPC_SHL_B:
case OPC_SHR_B:
case OPC_ASHR_B:
case OPC_MGEN_B:
case OPC_GETBIT_B:
case OPC_CBITS_B:
return IR3_REG_BNOT;
default:
return 0;
}
}
/* map cat3 instructions to valid abs/neg flags: */
static inline unsigned ir3_cat3_absneg(opc_t opc)
{
switch (opc) {
case OPC_MAD_F16:
case OPC_MAD_F32:
case OPC_SEL_F16:
case OPC_SEL_F32:
return IR3_REG_FNEG;
case OPC_MAD_U16:
case OPC_MADSH_U16:
case OPC_MAD_S16:
case OPC_MADSH_M16:
case OPC_MAD_U24:
case OPC_MAD_S24:
case OPC_SEL_S16:
case OPC_SEL_S32:
case OPC_SAD_S16:
case OPC_SAD_S32:
/* neg *may* work on 3rd src.. */
case OPC_SEL_B16:
case OPC_SEL_B32:
default:
return 0;
}
}
#define MASK(n) ((1 << (n)) - 1)
/* iterator for an instructions's sources (reg), also returns src #: */
#define foreach_src_n(__srcreg, __n, __instr) \
if ((__instr)->regs_count) \
for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
if ((__srcreg = (__instr)->regs[__n + 1]))
/* iterator for an instructions's sources (reg): */
#define foreach_src(__srcreg, __instr) \
foreach_src_n(__srcreg, __i, __instr)
static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
{
unsigned cnt = instr->regs_count + instr->deps_count;
if (instr->address)
cnt++;
return cnt;
}
static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
{
if (n == (instr->regs_count + instr->deps_count))
return instr->address;
if (n >= instr->regs_count)
return instr->deps[n - instr->regs_count];
return ssa(instr->regs[n]);
}
static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
{
if (n == (instr->regs_count + instr->deps_count))
return false;
if (n >= instr->regs_count)
return true;
return false;
}
#define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
/* iterator for an instruction's SSA sources (instr), also returns src #: */
#define foreach_ssa_src_n(__srcinst, __n, __instr) \
for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
if ((__srcinst = __ssa_src_n(__instr, __n)))
/* iterator for an instruction's SSA sources (instr): */
#define foreach_ssa_src(__srcinst, __instr) \
foreach_ssa_src_n(__srcinst, __i, __instr)
/* dump: */
void ir3_print(struct ir3 *ir);
void ir3_print_instr(struct ir3_instruction *instr);
/* depth calculation: */
int ir3_delayslots(struct ir3_instruction *assigner,
struct ir3_instruction *consumer, unsigned n);
void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
void ir3_depth(struct ir3 *ir);
/* copy-propagate: */
struct ir3_shader_variant;
void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
/* group neighbors and insert mov's to resolve conflicts: */
void ir3_group(struct ir3 *ir);
/* scheduling: */
void ir3_sched_add_deps(struct ir3 *ir);
int ir3_sched(struct ir3 *ir);
/* register assignment: */
struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(void *memctx);
int ir3_ra(struct ir3 *ir3, enum shader_t type,
bool frag_coord, bool frag_face);
/* legalize: */
void ir3_legalize(struct ir3 *ir, bool *has_samp, bool *has_ssbo, int *max_bary);
/* ************************************************************************* */
/* instruction helpers */
static inline struct ir3_instruction *
ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
{
struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
ir3_reg_create(instr, 0, 0); /* dst */
if (src->regs[0]->flags & IR3_REG_ARRAY) {
struct ir3_register *src_reg =
ir3_reg_create(instr, 0, IR3_REG_ARRAY);
src_reg->array = src->regs[0]->array;
src_reg->instr = src;
} else {
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
}
debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
instr->cat1.src_type = type;
instr->cat1.dst_type = type;
return instr;
}
static inline struct ir3_instruction *
ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
type_t src_type, type_t dst_type)
{
struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
ir3_reg_create(instr, 0, 0); /* dst */
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
instr->cat1.src_type = src_type;
instr->cat1.dst_type = dst_type;
debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
return instr;
}
static inline struct ir3_instruction *
ir3_NOP(struct ir3_block *block)
{
return ir3_instr_create(block, OPC_NOP);
}
#define INSTR0(name) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, OPC_##name); \
return instr; \
}
#define INSTR1(name) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, OPC_##name); \
ir3_reg_create(instr, 0, 0); /* dst */ \
ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
return instr; \
}
#define INSTR2(name) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, OPC_##name); \
ir3_reg_create(instr, 0, 0); /* dst */ \
ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
return instr; \
}
#define INSTR3(name) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags, \
struct ir3_instruction *c, unsigned cflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, OPC_##name); \
ir3_reg_create(instr, 0, 0); /* dst */ \
ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c; \
return instr; \
}
#define INSTR4(name) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags, \
struct ir3_instruction *c, unsigned cflags, \
struct ir3_instruction *d, unsigned dflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create2(block, OPC_##name, 5); \
ir3_reg_create(instr, 0, 0); /* dst */ \
ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c; \
ir3_reg_create(instr, 0, IR3_REG_SSA | dflags)->instr = d; \
return instr; \
}
#define INSTR4F(f, name) \
static inline struct ir3_instruction * \
ir3_##name##_##f(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags, \
struct ir3_instruction *c, unsigned cflags, \
struct ir3_instruction *d, unsigned dflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create2(block, OPC_##name, 5); \
ir3_reg_create(instr, 0, 0); /* dst */ \
ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c; \
ir3_reg_create(instr, 0, IR3_REG_SSA | dflags)->instr = d; \
instr->flags |= IR3_INSTR_##f; \
return instr; \
}
/* cat0 instructions: */
INSTR0(BR)
INSTR0(JUMP)
INSTR1(KILL)
INSTR0(END)
/* cat2 instructions, most 2 src but some 1 src: */
INSTR2(ADD_F)
INSTR2(MIN_F)
INSTR2(MAX_F)
INSTR2(MUL_F)
INSTR1(SIGN_F)
INSTR2(CMPS_F)
INSTR1(ABSNEG_F)
INSTR2(CMPV_F)
INSTR1(FLOOR_F)
INSTR1(CEIL_F)
INSTR1(RNDNE_F)
INSTR1(RNDAZ_F)
INSTR1(TRUNC_F)
INSTR2(ADD_U)
INSTR2(ADD_S)
INSTR2(SUB_U)
INSTR2(SUB_S)
INSTR2(CMPS_U)
INSTR2(CMPS_S)
INSTR2(MIN_U)
INSTR2(MIN_S)
INSTR2(MAX_U)
INSTR2(MAX_S)
INSTR1(ABSNEG_S)
INSTR2(AND_B)
INSTR2(OR_B)
INSTR1(NOT_B)
INSTR2(XOR_B)
INSTR2(CMPV_U)
INSTR2(CMPV_S)
INSTR2(MUL_U)
INSTR2(MUL_S)
INSTR2(MULL_U)
INSTR1(BFREV_B)
INSTR1(CLZ_S)
INSTR1(CLZ_B)
INSTR2(SHL_B)
INSTR2(SHR_B)
INSTR2(ASHR_B)
INSTR2(BARY_F)
INSTR2(MGEN_B)
INSTR2(GETBIT_B)
INSTR1(SETRM)
INSTR1(CBITS_B)
INSTR2(SHB)
INSTR2(MSAD)
/* cat3 instructions: */
INSTR3(MAD_U16)
INSTR3(MADSH_U16)
INSTR3(MAD_S16)
INSTR3(MADSH_M16)
INSTR3(MAD_U24)
INSTR3(MAD_S24)
INSTR3(MAD_F16)
INSTR3(MAD_F32)
INSTR3(SEL_B16)
INSTR3(SEL_B32)
INSTR3(SEL_S16)
INSTR3(SEL_S32)
INSTR3(SEL_F16)
INSTR3(SEL_F32)
INSTR3(SAD_S16)
INSTR3(SAD_S32)
/* cat4 instructions: */
INSTR1(RCP)
INSTR1(RSQ)
INSTR1(LOG2)
INSTR1(EXP2)
INSTR1(SIN)
INSTR1(COS)
INSTR1(SQRT)
/* cat5 instructions: */
INSTR1(DSX)
INSTR1(DSY)
static inline struct ir3_instruction *
ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
unsigned wrmask, unsigned flags, unsigned samp, unsigned tex,
struct ir3_instruction *src0, struct ir3_instruction *src1)
{
struct ir3_instruction *sam;
struct ir3_register *reg;
sam = ir3_instr_create(block, opc);
sam->flags |= flags;
ir3_reg_create(sam, 0, 0)->wrmask = wrmask;
if (src0) {
reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
reg->instr = src0;
}
if (src1) {
reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
reg->instr = src1;
reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
}
sam->cat5.samp = samp;
sam->cat5.tex = tex;
sam->cat5.type = type;
return sam;
}
/* cat6 instructions: */
INSTR2(LDLV)
INSTR2(LDG)
INSTR2(LDL)
INSTR3(STG)
INSTR3(STL)
INSTR3(LDGB)
INSTR4(STGB)
INSTR4(STIB)
INSTR1(RESINFO)
INSTR1(RESFMT)
INSTR2(ATOMIC_ADD)
INSTR2(ATOMIC_SUB)
INSTR2(ATOMIC_XCHG)
INSTR2(ATOMIC_INC)
INSTR2(ATOMIC_DEC)
INSTR2(ATOMIC_CMPXCHG)
INSTR2(ATOMIC_MIN)
INSTR2(ATOMIC_MAX)
INSTR2(ATOMIC_AND)
INSTR2(ATOMIC_OR)
INSTR2(ATOMIC_XOR)
INSTR4F(G, ATOMIC_ADD)
INSTR4F(G, ATOMIC_SUB)
INSTR4F(G, ATOMIC_XCHG)
INSTR4F(G, ATOMIC_INC)
INSTR4F(G, ATOMIC_DEC)
INSTR4F(G, ATOMIC_CMPXCHG)
INSTR4F(G, ATOMIC_MIN)
INSTR4F(G, ATOMIC_MAX)
INSTR4F(G, ATOMIC_AND)
INSTR4F(G, ATOMIC_OR)
INSTR4F(G, ATOMIC_XOR)
/* cat7 instructions: */
INSTR0(BAR)
INSTR0(FENCE)
/* ************************************************************************* */
/* split this out or find some helper to use.. like main/bitset.h.. */
#include <string.h>
#define MAX_REG 256
typedef uint8_t regmask_t[2 * MAX_REG / 8];
static inline unsigned regmask_idx(struct ir3_register *reg)
{
unsigned num = (reg->flags & IR3_REG_RELATIV) ? reg->array.offset : reg->num;
debug_assert(num < MAX_REG);
if (reg->flags & IR3_REG_HALF)
num += MAX_REG;
return num;
}
static inline void regmask_init(regmask_t *regmask)
{
memset(regmask, 0, sizeof(*regmask));
}
static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
{
unsigned idx = regmask_idx(reg);
if (reg->flags & IR3_REG_RELATIV) {
unsigned i;
for (i = 0; i < reg->size; i++, idx++)
(*regmask)[idx / 8] |= 1 << (idx % 8);
} else {
unsigned mask;
for (mask = reg->wrmask; mask; mask >>= 1, idx++)
if (mask & 1)
(*regmask)[idx / 8] |= 1 << (idx % 8);
}
}
static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(*dst); i++)
(*dst)[i] = (*a)[i] | (*b)[i];
}
/* set bits in a if not set in b, conceptually:
* a |= (reg & ~b)
*/
static inline void regmask_set_if_not(regmask_t *a,
struct ir3_register *reg, regmask_t *b)
{
unsigned idx = regmask_idx(reg);
if (reg->flags & IR3_REG_RELATIV) {
unsigned i;
for (i = 0; i < reg->size; i++, idx++)
if (!((*b)[idx / 8] & (1 << (idx % 8))))
(*a)[idx / 8] |= 1 << (idx % 8);
} else {
unsigned mask;
for (mask = reg->wrmask; mask; mask >>= 1, idx++)
if (mask & 1)
if (!((*b)[idx / 8] & (1 << (idx % 8))))
(*a)[idx / 8] |= 1 << (idx % 8);
}
}
static inline bool regmask_get(regmask_t *regmask,
struct ir3_register *reg)
{
unsigned idx = regmask_idx(reg);
if (reg->flags & IR3_REG_RELATIV) {
unsigned i;
for (i = 0; i < reg->size; i++, idx++)
if ((*regmask)[idx / 8] & (1 << (idx % 8)))
return true;
} else {
unsigned mask;
for (mask = reg->wrmask; mask; mask >>= 1, idx++)
if (mask & 1)
if ((*regmask)[idx / 8] & (1 << (idx % 8)))
return true;
}
return false;
}
/* ************************************************************************* */
#endif /* IR3_H_ */