/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Unit tests for type conversion.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "util/u_pointer.h"
#include "gallivm/lp_bld_init.h"
#include "gallivm/lp_bld_type.h"
#include "gallivm/lp_bld_const.h"
#include "gallivm/lp_bld_conv.h"
#include "gallivm/lp_bld_debug.h"
#include "lp_test.h"
typedef void (*conv_test_ptr_t)(const void *src, const void *dst);
void
write_tsv_header(FILE *fp)
{
fprintf(fp,
"result\t"
"cycles_per_channel\t"
"src_type\t"
"dst_type\n");
fflush(fp);
}
static void
write_tsv_row(FILE *fp,
struct lp_type src_type,
struct lp_type dst_type,
double cycles,
boolean success)
{
fprintf(fp, "%s\t", success ? "pass" : "fail");
fprintf(fp, "%.1f\t", cycles / MAX2(src_type.length, dst_type.length));
dump_type(fp, src_type);
fprintf(fp, "\t");
dump_type(fp, dst_type);
fprintf(fp, "\n");
fflush(fp);
}
static void
dump_conv_types(FILE *fp,
struct lp_type src_type,
struct lp_type dst_type)
{
fprintf(fp, "src_type=");
dump_type(fp, src_type);
fprintf(fp, " dst_type=");
dump_type(fp, dst_type);
fprintf(fp, " ...\n");
fflush(fp);
}
static LLVMValueRef
add_conv_test(struct gallivm_state *gallivm,
struct lp_type src_type, unsigned num_srcs,
struct lp_type dst_type, unsigned num_dsts)
{
LLVMModuleRef module = gallivm->module;
LLVMContextRef context = gallivm->context;
LLVMBuilderRef builder = gallivm->builder;
LLVMTypeRef args[2];
LLVMValueRef func;
LLVMValueRef src_ptr;
LLVMValueRef dst_ptr;
LLVMBasicBlockRef block;
LLVMValueRef src[LP_MAX_VECTOR_LENGTH];
LLVMValueRef dst[LP_MAX_VECTOR_LENGTH];
unsigned i;
args[0] = LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0);
args[1] = LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0);
func = LLVMAddFunction(module, "test",
LLVMFunctionType(LLVMVoidTypeInContext(context),
args, 2, 0));
LLVMSetFunctionCallConv(func, LLVMCCallConv);
src_ptr = LLVMGetParam(func, 0);
dst_ptr = LLVMGetParam(func, 1);
block = LLVMAppendBasicBlockInContext(context, func, "entry");
LLVMPositionBuilderAtEnd(builder, block);
for(i = 0; i < num_srcs; ++i) {
LLVMValueRef index = LLVMConstInt(LLVMInt32TypeInContext(context), i, 0);
LLVMValueRef ptr = LLVMBuildGEP(builder, src_ptr, &index, 1, "");
src[i] = LLVMBuildLoad(builder, ptr, "");
}
lp_build_conv(gallivm, src_type, dst_type, src, num_srcs, dst, num_dsts);
for(i = 0; i < num_dsts; ++i) {
LLVMValueRef index = LLVMConstInt(LLVMInt32TypeInContext(context), i, 0);
LLVMValueRef ptr = LLVMBuildGEP(builder, dst_ptr, &index, 1, "");
LLVMBuildStore(builder, dst[i], ptr);
}
LLVMBuildRetVoid(builder);
gallivm_verify_function(gallivm, func);
return func;
}
PIPE_ALIGN_STACK
static boolean
test_one(unsigned verbose,
FILE *fp,
struct lp_type src_type,
struct lp_type dst_type)
{
LLVMContextRef context;
struct gallivm_state *gallivm;
LLVMValueRef func = NULL;
conv_test_ptr_t conv_test_ptr;
boolean success;
const unsigned n = LP_TEST_NUM_SAMPLES;
int64_t cycles[LP_TEST_NUM_SAMPLES];
double cycles_avg = 0.0;
unsigned num_srcs;
unsigned num_dsts;
double eps;
unsigned i, j;
if ((src_type.width >= dst_type.width && src_type.length > dst_type.length) ||
(src_type.width <= dst_type.width && src_type.length < dst_type.length)) {
return TRUE;
}
/* Known failures
* - fixed point 32 -> float 32
* - float 32 -> signed normalised integer 32
*/
if ((src_type.floating && !dst_type.floating && dst_type.sign && dst_type.norm && src_type.width == dst_type.width) ||
(!src_type.floating && dst_type.floating && src_type.fixed && src_type.width == dst_type.width)) {
return TRUE;
}
/* Known failures
* - fixed point 32 -> float 32
* - float 32 -> signed normalised integer 32
*/
if ((src_type.floating && !dst_type.floating && dst_type.sign && dst_type.norm && src_type.width == dst_type.width) ||
(!src_type.floating && dst_type.floating && src_type.fixed && src_type.width == dst_type.width)) {
return TRUE;
}
if(verbose >= 1)
dump_conv_types(stderr, src_type, dst_type);
if (src_type.length > dst_type.length) {
num_srcs = 1;
num_dsts = src_type.length/dst_type.length;
}
else if (src_type.length < dst_type.length) {
num_dsts = 1;
num_srcs = dst_type.length/src_type.length;
}
else {
num_dsts = 1;
num_srcs = 1;
}
/* We must not loose or gain channels. Only precision */
assert(src_type.length * num_srcs == dst_type.length * num_dsts);
eps = MAX2(lp_const_eps(src_type), lp_const_eps(dst_type));
context = LLVMContextCreate();
gallivm = gallivm_create("test_module", context);
func = add_conv_test(gallivm, src_type, num_srcs, dst_type, num_dsts);
gallivm_compile_module(gallivm);
conv_test_ptr = (conv_test_ptr_t)gallivm_jit_function(gallivm, func);
gallivm_free_ir(gallivm);
success = TRUE;
for(i = 0; i < n && success; ++i) {
unsigned src_stride = src_type.length*src_type.width/8;
unsigned dst_stride = dst_type.length*dst_type.width/8;
PIPE_ALIGN_VAR(LP_MIN_VECTOR_ALIGN) uint8_t src[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
PIPE_ALIGN_VAR(LP_MIN_VECTOR_ALIGN) uint8_t dst[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
double fref[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
uint8_t ref[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
int64_t start_counter = 0;
int64_t end_counter = 0;
for(j = 0; j < num_srcs; ++j) {
random_vec(src_type, src + j*src_stride);
read_vec(src_type, src + j*src_stride, fref + j*src_type.length);
}
for(j = 0; j < num_dsts; ++j) {
write_vec(dst_type, ref + j*dst_stride, fref + j*dst_type.length);
}
start_counter = rdtsc();
conv_test_ptr(src, dst);
end_counter = rdtsc();
cycles[i] = end_counter - start_counter;
for(j = 0; j < num_dsts; ++j) {
if(!compare_vec_with_eps(dst_type, dst + j*dst_stride, ref + j*dst_stride, eps))
success = FALSE;
}
if (!success || verbose >= 3) {
if(verbose < 1)
dump_conv_types(stderr, src_type, dst_type);
if (success) {
fprintf(stderr, "PASS\n");
}
else {
fprintf(stderr, "MISMATCH\n");
}
for(j = 0; j < num_srcs; ++j) {
fprintf(stderr, " Src%u: ", j);
dump_vec(stderr, src_type, src + j*src_stride);
fprintf(stderr, "\n");
}
#if 1
fprintf(stderr, " Ref: ");
for(j = 0; j < src_type.length*num_srcs; ++j)
fprintf(stderr, " %f", fref[j]);
fprintf(stderr, "\n");
#endif
for(j = 0; j < num_dsts; ++j) {
fprintf(stderr, " Dst%u: ", j);
dump_vec(stderr, dst_type, dst + j*dst_stride);
fprintf(stderr, "\n");
fprintf(stderr, " Ref%u: ", j);
dump_vec(stderr, dst_type, ref + j*dst_stride);
fprintf(stderr, "\n");
}
}
}
/*
* Unfortunately the output of cycle counter is not very reliable as it comes
* -- sometimes we get outliers (due IRQs perhaps?) which are
* better removed to avoid random or biased data.
*/
{
double sum = 0.0, sum2 = 0.0;
double avg, std;
unsigned m;
for(i = 0; i < n; ++i) {
sum += cycles[i];
sum2 += cycles[i]*cycles[i];
}
avg = sum/n;
std = sqrtf((sum2 - n*avg*avg)/n);
m = 0;
sum = 0.0;
for(i = 0; i < n; ++i) {
if(fabs(cycles[i] - avg) <= 4.0*std) {
sum += cycles[i];
++m;
}
}
cycles_avg = sum/m;
}
if(fp)
write_tsv_row(fp, src_type, dst_type, cycles_avg, success);
gallivm_destroy(gallivm);
LLVMContextDispose(context);
return success;
}
const struct lp_type conv_types[] = {
/* float, fixed, sign, norm, width, len */
/* Float */
{ TRUE, FALSE, TRUE, TRUE, 32, 4 },
{ TRUE, FALSE, TRUE, FALSE, 32, 4 },
{ TRUE, FALSE, FALSE, TRUE, 32, 4 },
{ TRUE, FALSE, FALSE, FALSE, 32, 4 },
{ TRUE, FALSE, TRUE, TRUE, 32, 8 },
{ TRUE, FALSE, TRUE, FALSE, 32, 8 },
{ TRUE, FALSE, FALSE, TRUE, 32, 8 },
{ TRUE, FALSE, FALSE, FALSE, 32, 8 },
/* Fixed */
{ FALSE, TRUE, TRUE, TRUE, 32, 4 },
{ FALSE, TRUE, TRUE, FALSE, 32, 4 },
{ FALSE, TRUE, FALSE, TRUE, 32, 4 },
{ FALSE, TRUE, FALSE, FALSE, 32, 4 },
{ FALSE, TRUE, TRUE, TRUE, 32, 8 },
{ FALSE, TRUE, TRUE, FALSE, 32, 8 },
{ FALSE, TRUE, FALSE, TRUE, 32, 8 },
{ FALSE, TRUE, FALSE, FALSE, 32, 8 },
/* Integer */
{ FALSE, FALSE, TRUE, TRUE, 32, 4 },
{ FALSE, FALSE, TRUE, FALSE, 32, 4 },
{ FALSE, FALSE, FALSE, TRUE, 32, 4 },
{ FALSE, FALSE, FALSE, FALSE, 32, 4 },
{ FALSE, FALSE, TRUE, TRUE, 32, 8 },
{ FALSE, FALSE, TRUE, FALSE, 32, 8 },
{ FALSE, FALSE, FALSE, TRUE, 32, 8 },
{ FALSE, FALSE, FALSE, FALSE, 32, 8 },
{ FALSE, FALSE, TRUE, TRUE, 16, 8 },
{ FALSE, FALSE, TRUE, FALSE, 16, 8 },
{ FALSE, FALSE, FALSE, TRUE, 16, 8 },
{ FALSE, FALSE, FALSE, FALSE, 16, 8 },
{ FALSE, FALSE, TRUE, TRUE, 8, 16 },
{ FALSE, FALSE, TRUE, FALSE, 8, 16 },
{ FALSE, FALSE, FALSE, TRUE, 8, 16 },
{ FALSE, FALSE, FALSE, FALSE, 8, 16 },
{ FALSE, FALSE, TRUE, TRUE, 8, 4 },
{ FALSE, FALSE, TRUE, FALSE, 8, 4 },
{ FALSE, FALSE, FALSE, TRUE, 8, 4 },
{ FALSE, FALSE, FALSE, FALSE, 8, 4 },
{ FALSE, FALSE, FALSE, TRUE, 8, 8 },
};
const unsigned num_types = ARRAY_SIZE(conv_types);
boolean
test_all(unsigned verbose, FILE *fp)
{
const struct lp_type *src_type;
const struct lp_type *dst_type;
boolean success = TRUE;
int error_count = 0;
for(src_type = conv_types; src_type < &conv_types[num_types]; ++src_type) {
for(dst_type = conv_types; dst_type < &conv_types[num_types]; ++dst_type) {
if(src_type == dst_type)
continue;
if(!test_one(verbose, fp, *src_type, *dst_type)){
success = FALSE;
++error_count;
}
}
}
fprintf(stderr, "%d failures\n", error_count);
return success;
}
boolean
test_some(unsigned verbose, FILE *fp,
unsigned long n)
{
const struct lp_type *src_type;
const struct lp_type *dst_type;
unsigned long i;
boolean success = TRUE;
for(i = 0; i < n; ++i) {
src_type = &conv_types[rand() % num_types];
do {
dst_type = &conv_types[rand() % num_types];
} while (src_type == dst_type || src_type->norm != dst_type->norm);
if(!test_one(verbose, fp, *src_type, *dst_type))
success = FALSE;
}
return success;
}
boolean
test_single(unsigned verbose, FILE *fp)
{
/* float, fixed, sign, norm, width, len */
struct lp_type f32x4_type =
{ TRUE, FALSE, TRUE, TRUE, 32, 4 };
struct lp_type ub8x4_type =
{ FALSE, FALSE, FALSE, TRUE, 8, 16 };
boolean success;
success = test_one(verbose, fp, f32x4_type, ub8x4_type);
return success;
}