/*
* Copyright (C) 2009 Nicolai Haehnle.
*
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "radeon_program_pair.h"
#include <stdio.h>
#include "radeon_compiler.h"
#include "radeon_compiler_util.h"
#include "radeon_dataflow.h"
#include "radeon_list.h"
#include "radeon_variable.h"
#include "util/u_debug.h"
#define VERBOSE 0
#define DBG(...) do { if (VERBOSE) fprintf(stderr, __VA_ARGS__); } while(0)
struct schedule_instruction {
struct rc_instruction * Instruction;
/** Next instruction in the linked list of ready instructions. */
struct schedule_instruction *NextReady;
/** Values that this instruction reads and writes */
struct reg_value * WriteValues[4];
struct reg_value * ReadValues[12];
unsigned int NumWriteValues:3;
unsigned int NumReadValues:4;
/**
* Number of (read and write) dependencies that must be resolved before
* this instruction can be scheduled.
*/
unsigned int NumDependencies:5;
/** List of all readers (see rc_get_readers() for the definition of
* "all readers"), even those outside the basic block this instruction
* lives in. */
struct rc_reader_data GlobalReaders;
/** If the scheduler has paired an RGB and an Alpha instruction together,
* PairedInst references the alpha insturction's dependency information.
*/
struct schedule_instruction * PairedInst;
/** This scheduler uses the value of Score to determine which
* instruction to schedule. Instructions with a higher value of Score
* will be scheduled first. */
int Score;
/** The number of components that read from a TEX instruction. */
unsigned TexReadCount;
/** For TEX instructions a list of readers */
struct rc_list * TexReaders;
};
/**
* Used to keep track of which instructions read a value.
*/
struct reg_value_reader {
struct schedule_instruction *Reader;
struct reg_value_reader *Next;
};
/**
* Used to keep track which values are stored in each component of a
* RC_FILE_TEMPORARY.
*/
struct reg_value {
struct schedule_instruction * Writer;
/**
* Unordered linked list of instructions that read from this value.
* When this value becomes available, we increase all readers'
* dependency count.
*/
struct reg_value_reader *Readers;
/**
* Number of readers of this value. This is decremented each time
* a reader of the value is committed.
* When the reader cound reaches zero, the dependency count
* of the instruction writing \ref Next is decremented.
*/
unsigned int NumReaders;
struct reg_value *Next; /**< Pointer to the next value to be written to the same register */
};
struct register_state {
struct reg_value * Values[4];
};
struct remap_reg {
struct rc_instruciont * Inst;
unsigned int OldIndex:(RC_REGISTER_INDEX_BITS+1);
unsigned int OldSwizzle:3;
unsigned int NewIndex:(RC_REGISTER_INDEX_BITS+1);
unsigned int NewSwizzle:3;
unsigned int OnlyTexReads:1;
struct remap_reg * Next;
};
struct schedule_state {
struct radeon_compiler * C;
struct schedule_instruction * Current;
/** Array of the previous writers of Current's destination register
* indexed by channel. */
struct schedule_instruction * PrevWriter[4];
struct register_state Temporary[RC_REGISTER_MAX_INDEX];
/**
* Linked lists of instructions that can be scheduled right now,
* based on which ALU/TEX resources they require.
*/
/*@{*/
struct schedule_instruction *ReadyFullALU;
struct schedule_instruction *ReadyRGB;
struct schedule_instruction *ReadyAlpha;
struct schedule_instruction *ReadyTEX;
/*@}*/
struct rc_list *PendingTEX;
void (*CalcScore)(struct schedule_instruction *);
long max_tex_group;
unsigned PrevBlockHasTex:1;
unsigned TEXCount;
unsigned Opt:1;
};
static struct reg_value ** get_reg_valuep(struct schedule_state * s,
rc_register_file file, unsigned int index, unsigned int chan)
{
if (file != RC_FILE_TEMPORARY)
return 0;
if (index >= RC_REGISTER_MAX_INDEX) {
rc_error(s->C, "%s: index %i out of bounds\n", __FUNCTION__, index);
return 0;
}
return &s->Temporary[index].Values[chan];
}
static unsigned get_tex_read_count(struct schedule_instruction * sinst)
{
unsigned tex_read_count = sinst->TexReadCount;
if (sinst->PairedInst) {
tex_read_count += sinst->PairedInst->TexReadCount;
}
return tex_read_count;
}
#if VERBOSE
static void print_list(struct schedule_instruction * sinst)
{
struct schedule_instruction * ptr;
for (ptr = sinst; ptr; ptr=ptr->NextReady) {
unsigned tex_read_count = get_tex_read_count(ptr);
unsigned score = sinst->Score;
fprintf(stderr,"%u (%d) [%u],", ptr->Instruction->IP, score,
tex_read_count);
}
fprintf(stderr, "\n");
}
#endif
static void remove_inst_from_list(struct schedule_instruction ** list,
struct schedule_instruction * inst)
{
struct schedule_instruction * prev = NULL;
struct schedule_instruction * list_ptr;
for (list_ptr = *list; list_ptr; prev = list_ptr,
list_ptr = list_ptr->NextReady) {
if (list_ptr == inst) {
if (prev) {
prev->NextReady = inst->NextReady;
} else {
*list = inst->NextReady;
}
inst->NextReady = NULL;
break;
}
}
}
static void add_inst_to_list(struct schedule_instruction ** list, struct schedule_instruction * inst)
{
inst->NextReady = *list;
*list = inst;
}
static void add_inst_to_list_score(struct schedule_instruction ** list,
struct schedule_instruction * inst)
{
struct schedule_instruction * temp;
struct schedule_instruction * prev;
if (!*list) {
*list = inst;
return;
}
temp = *list;
prev = NULL;
while(temp && inst->Score <= temp->Score) {
prev = temp;
temp = temp->NextReady;
}
if (!prev) {
inst->NextReady = temp;
*list = inst;
} else {
prev->NextReady = inst;
inst->NextReady = temp;
}
}
static void instruction_ready(struct schedule_state * s, struct schedule_instruction * sinst)
{
DBG("%i is now ready\n", sinst->Instruction->IP);
/* Adding Ready TEX instructions to the end of the "Ready List" helps
* us emit TEX instructions in blocks without losing our place. */
if (sinst->Instruction->Type == RC_INSTRUCTION_NORMAL)
add_inst_to_list_score(&s->ReadyTEX, sinst);
else if (sinst->Instruction->U.P.Alpha.Opcode == RC_OPCODE_NOP)
add_inst_to_list_score(&s->ReadyRGB, sinst);
else if (sinst->Instruction->U.P.RGB.Opcode == RC_OPCODE_NOP)
add_inst_to_list_score(&s->ReadyAlpha, sinst);
else
add_inst_to_list_score(&s->ReadyFullALU, sinst);
}
static void decrease_dependencies(struct schedule_state * s, struct schedule_instruction * sinst)
{
assert(sinst->NumDependencies > 0);
sinst->NumDependencies--;
if (!sinst->NumDependencies)
instruction_ready(s, sinst);
}
/* These functions provide different heuristics for scheduling instructions.
* The default is calc_score_readers. */
#if 0
static void calc_score_zero(struct schedule_instruction * sinst)
{
sinst->Score = 0;
}
static void calc_score_deps(struct schedule_instruction * sinst)
{
int i;
sinst->Score = 0;
for (i = 0; i < sinst->NumWriteValues; i++) {
struct reg_value * v = sinst->WriteValues[i];
if (v->NumReaders) {
struct reg_value_reader * r;
for (r = v->Readers; r; r = r->Next) {
if (r->Reader->NumDependencies == 1) {
sinst->Score += 100;
}
sinst->Score += r->Reader->NumDependencies;
}
}
}
}
#endif
#define NO_OUTPUT_SCORE (1 << 24)
static void score_no_output(struct schedule_instruction * sinst)
{
assert(sinst->Instruction->Type != RC_INSTRUCTION_NORMAL);
if (!sinst->Instruction->U.P.RGB.OutputWriteMask &&
!sinst->Instruction->U.P.Alpha.OutputWriteMask) {
if (sinst->PairedInst) {
if (!sinst->PairedInst->Instruction->U.P.
RGB.OutputWriteMask
&& !sinst->PairedInst->Instruction->U.P.
Alpha.OutputWriteMask) {
sinst->Score |= NO_OUTPUT_SCORE;
}
} else {
sinst->Score |= NO_OUTPUT_SCORE;
}
}
}
#define PAIRED_SCORE (1 << 16)
static void calc_score_r300(struct schedule_instruction * sinst)
{
unsigned src_idx;
if (sinst->Instruction->Type == RC_INSTRUCTION_NORMAL) {
sinst->Score = 0;
return;
}
score_no_output(sinst);
if (sinst->PairedInst) {
sinst->Score |= PAIRED_SCORE;
return;
}
for (src_idx = 0; src_idx < 4; src_idx++) {
sinst->Score += sinst->Instruction->U.P.RGB.Src[src_idx].Used +
sinst->Instruction->U.P.Alpha.Src[src_idx].Used;
}
}
#define NO_READ_TEX_SCORE (1 << 16)
static void calc_score_readers(struct schedule_instruction * sinst)
{
if (sinst->Instruction->Type == RC_INSTRUCTION_NORMAL) {
sinst->Score = 0;
} else {
sinst->Score = sinst->NumReadValues;
if (sinst->PairedInst) {
sinst->Score += sinst->PairedInst->NumReadValues;
}
if (get_tex_read_count(sinst) == 0) {
sinst->Score |= NO_READ_TEX_SCORE;
}
score_no_output(sinst);
}
}
/**
* This function decreases the dependencies of the next instruction that
* wants to write to each of sinst's read values.
*/
static void commit_update_reads(struct schedule_state * s,
struct schedule_instruction * sinst){
unsigned int i;
for(i = 0; i < sinst->NumReadValues; ++i) {
struct reg_value * v = sinst->ReadValues[i];
assert(v->NumReaders > 0);
v->NumReaders--;
if (!v->NumReaders) {
if (v->Next) {
decrease_dependencies(s, v->Next->Writer);
}
}
}
if (sinst->PairedInst) {
commit_update_reads(s, sinst->PairedInst);
}
}
static void commit_update_writes(struct schedule_state * s,
struct schedule_instruction * sinst){
unsigned int i;
for(i = 0; i < sinst->NumWriteValues; ++i) {
struct reg_value * v = sinst->WriteValues[i];
if (v->NumReaders) {
for(struct reg_value_reader * r = v->Readers; r; r = r->Next) {
decrease_dependencies(s, r->Reader);
}
} else {
/* This happens in instruction sequences of the type
* OP r.x, ...;
* OP r.x, r.x, ...;
* See also the subtlety in how instructions that both
* read and write the same register are scanned.
*/
if (v->Next)
decrease_dependencies(s, v->Next->Writer);
}
}
if (sinst->PairedInst) {
commit_update_writes(s, sinst->PairedInst);
}
}
static void notify_sem_wait(struct schedule_state *s)
{
struct rc_list * pend_ptr;
for (pend_ptr = s->PendingTEX; pend_ptr; pend_ptr = pend_ptr->Next) {
struct rc_list * read_ptr;
struct schedule_instruction * pending = pend_ptr->Item;
for (read_ptr = pending->TexReaders; read_ptr;
read_ptr = read_ptr->Next) {
struct schedule_instruction * reader = read_ptr->Item;
reader->TexReadCount--;
}
}
s->PendingTEX = NULL;
}
static void commit_alu_instruction(struct schedule_state * s, struct schedule_instruction * sinst)
{
DBG("%i: commit score = %d\n", sinst->Instruction->IP, sinst->Score);
commit_update_reads(s, sinst);
commit_update_writes(s, sinst);
if (get_tex_read_count(sinst) > 0) {
sinst->Instruction->U.P.SemWait = 1;
notify_sem_wait(s);
}
}
/**
* Emit all ready texture instructions in a single block.
*
* Emit as a single block to (hopefully) sample many textures in parallel,
* and to avoid hardware indirections on R300.
*/
static void emit_all_tex(struct schedule_state * s, struct rc_instruction * before)
{
struct schedule_instruction *readytex;
struct rc_instruction * inst_begin;
assert(s->ReadyTEX);
notify_sem_wait(s);
/* Node marker for R300 */
inst_begin = rc_insert_new_instruction(s->C, before->Prev);
inst_begin->U.I.Opcode = RC_OPCODE_BEGIN_TEX;
/* Link texture instructions back in */
readytex = s->ReadyTEX;
while(readytex) {
rc_insert_instruction(before->Prev, readytex->Instruction);
DBG("%i: commit TEX reads\n", readytex->Instruction->IP);
/* All of the TEX instructions in the same TEX block have
* their source registers read from before any of the
* instructions in that block write to their destination
* registers. This means that when we commit a TEX
* instruction, any other TEX instruction that wants to write
* to one of the committed instruction's source register can be
* marked as ready and should be emitted in the same TEX
* block. This prevents the following sequence from being
* emitted in two different TEX blocks:
* 0: TEX temp[0].xyz, temp[1].xy__, 2D[0];
* 1: TEX temp[1].xyz, temp[2].xy__, 2D[0];
*/
commit_update_reads(s, readytex);
readytex = readytex->NextReady;
}
readytex = s->ReadyTEX;
s->ReadyTEX = 0;
while(readytex){
DBG("%i: commit TEX writes\n", readytex->Instruction->IP);
commit_update_writes(s, readytex);
/* Set semaphore bits for last TEX instruction in the block */
if (!readytex->NextReady) {
readytex->Instruction->U.I.TexSemAcquire = 1;
readytex->Instruction->U.I.TexSemWait = 1;
}
rc_list_add(&s->PendingTEX, rc_list(&s->C->Pool, readytex));
readytex = readytex->NextReady;
}
}
/* This is a helper function for destructive_merge_instructions(). It helps
* merge presubtract sources from two instructions and makes sure the
* presubtract sources end up in the correct spot. This function assumes that
* dst_full is an rgb instruction, meaning that it has a vector instruction(rgb)
* but no scalar instruction (alpha).
* @return 0 if merging the presubtract sources fails.
* @retrun 1 if merging the presubtract sources succeeds.
*/
static int merge_presub_sources(
struct rc_pair_instruction * dst_full,
struct rc_pair_sub_instruction src,
unsigned int type)
{
unsigned int srcp_src, srcp_regs, is_rgb, is_alpha;
struct rc_pair_sub_instruction * dst_sub;
const struct rc_opcode_info * info;
assert(dst_full->Alpha.Opcode == RC_OPCODE_NOP);
switch(type) {
case RC_SOURCE_RGB:
is_rgb = 1;
is_alpha = 0;
dst_sub = &dst_full->RGB;
break;
case RC_SOURCE_ALPHA:
is_rgb = 0;
is_alpha = 1;
dst_sub = &dst_full->Alpha;
break;
default:
assert(0);
return 0;
}
info = rc_get_opcode_info(dst_full->RGB.Opcode);
if (dst_sub->Src[RC_PAIR_PRESUB_SRC].Used)
return 0;
srcp_regs = rc_presubtract_src_reg_count(
src.Src[RC_PAIR_PRESUB_SRC].Index);
for(srcp_src = 0; srcp_src < srcp_regs; srcp_src++) {
unsigned int arg;
int free_source;
unsigned int one_way = 0;
struct rc_pair_instruction_source srcp = src.Src[srcp_src];
struct rc_pair_instruction_source temp;
free_source = rc_pair_alloc_source(dst_full, is_rgb, is_alpha,
srcp.File, srcp.Index);
/* If free_source < 0 then there are no free source
* slots. */
if (free_source < 0)
return 0;
temp = dst_sub->Src[srcp_src];
dst_sub->Src[srcp_src] = dst_sub->Src[free_source];
/* srcp needs src0 and src1 to be the same */
if (free_source < srcp_src) {
if (!temp.Used)
continue;
free_source = rc_pair_alloc_source(dst_full, is_rgb,
is_alpha, temp.File, temp.Index);
if (free_source < 0)
return 0;
one_way = 1;
} else {
dst_sub->Src[free_source] = temp;
}
/* If free_source == srcp_src, then the presubtract
* source is already in the correct place. */
if (free_source == srcp_src)
continue;
/* Shuffle the sources, so we can put the
* presubtract source in the correct place. */
for(arg = 0; arg < info->NumSrcRegs; arg++) {
/*If this arg does not read from an rgb source,
* do nothing. */
if (!(rc_source_type_swz(dst_full->RGB.Arg[arg].Swizzle)
& type)) {
continue;
}
if (dst_full->RGB.Arg[arg].Source == srcp_src)
dst_full->RGB.Arg[arg].Source = free_source;
/* We need to do this just in case register
* is one of the sources already, but in the
* wrong spot. */
else if(dst_full->RGB.Arg[arg].Source == free_source
&& !one_way) {
dst_full->RGB.Arg[arg].Source = srcp_src;
}
}
}
return 1;
}
/* This function assumes that rgb.Alpha and alpha.RGB are unused */
static int destructive_merge_instructions(
struct rc_pair_instruction * rgb,
struct rc_pair_instruction * alpha)
{
const struct rc_opcode_info * opcode;
assert(rgb->Alpha.Opcode == RC_OPCODE_NOP);
assert(alpha->RGB.Opcode == RC_OPCODE_NOP);
/* Presubtract registers need to be merged first so that registers
* needed by the presubtract operation can be placed in src0 and/or
* src1. */
/* Merge the rgb presubtract registers. */
if (alpha->RGB.Src[RC_PAIR_PRESUB_SRC].Used) {
if (!merge_presub_sources(rgb, alpha->RGB, RC_SOURCE_RGB)) {
return 0;
}
}
/* Merge the alpha presubtract registers */
if (alpha->Alpha.Src[RC_PAIR_PRESUB_SRC].Used) {
if(!merge_presub_sources(rgb, alpha->Alpha, RC_SOURCE_ALPHA)){
return 0;
}
}
/* Copy alpha args into rgb */
opcode = rc_get_opcode_info(alpha->Alpha.Opcode);
for(unsigned int arg = 0; arg < opcode->NumSrcRegs; ++arg) {
unsigned int srcrgb = 0;
unsigned int srcalpha = 0;
unsigned int oldsrc = alpha->Alpha.Arg[arg].Source;
rc_register_file file = 0;
unsigned int index = 0;
int source;
if (GET_SWZ(alpha->Alpha.Arg[arg].Swizzle, 0) < 3) {
srcrgb = 1;
file = alpha->RGB.Src[oldsrc].File;
index = alpha->RGB.Src[oldsrc].Index;
} else if (GET_SWZ(alpha->Alpha.Arg[arg].Swizzle, 0) < 4) {
srcalpha = 1;
file = alpha->Alpha.Src[oldsrc].File;
index = alpha->Alpha.Src[oldsrc].Index;
}
source = rc_pair_alloc_source(rgb, srcrgb, srcalpha, file, index);
if (source < 0)
return 0;
rgb->Alpha.Arg[arg].Source = source;
rgb->Alpha.Arg[arg].Swizzle = alpha->Alpha.Arg[arg].Swizzle;
rgb->Alpha.Arg[arg].Abs = alpha->Alpha.Arg[arg].Abs;
rgb->Alpha.Arg[arg].Negate = alpha->Alpha.Arg[arg].Negate;
}
/* Copy alpha opcode into rgb */
rgb->Alpha.Opcode = alpha->Alpha.Opcode;
rgb->Alpha.DestIndex = alpha->Alpha.DestIndex;
rgb->Alpha.WriteMask = alpha->Alpha.WriteMask;
rgb->Alpha.OutputWriteMask = alpha->Alpha.OutputWriteMask;
rgb->Alpha.DepthWriteMask = alpha->Alpha.DepthWriteMask;
rgb->Alpha.Saturate = alpha->Alpha.Saturate;
rgb->Alpha.Omod = alpha->Alpha.Omod;
/* Merge ALU result writing */
if (alpha->WriteALUResult) {
if (rgb->WriteALUResult)
return 0;
rgb->WriteALUResult = alpha->WriteALUResult;
rgb->ALUResultCompare = alpha->ALUResultCompare;
}
/* Copy SemWait */
rgb->SemWait |= alpha->SemWait;
return 1;
}
/**
* Try to merge the given instructions into the rgb instructions.
*
* Return true on success; on failure, return false, and keep
* the instructions untouched.
*/
static int merge_instructions(struct rc_pair_instruction * rgb, struct rc_pair_instruction * alpha)
{
struct rc_pair_instruction backup;
/*Instructions can't write output registers and ALU result at the
* same time. */
if ((rgb->WriteALUResult && alpha->Alpha.OutputWriteMask)
|| (rgb->RGB.OutputWriteMask && alpha->WriteALUResult)) {
return 0;
}
/* Writing output registers in the middle of shaders is slow, so
* we don't want to pair output writes with temp writes. */
if ((rgb->RGB.OutputWriteMask && !alpha->Alpha.OutputWriteMask)
|| (!rgb->RGB.OutputWriteMask && alpha->Alpha.OutputWriteMask)) {
return 0;
}
memcpy(&backup, rgb, sizeof(struct rc_pair_instruction));
if (destructive_merge_instructions(rgb, alpha))
return 1;
memcpy(rgb, &backup, sizeof(struct rc_pair_instruction));
return 0;
}
static void presub_nop(struct rc_instruction * emitted) {
int prev_rgb_index, prev_alpha_index, i, num_src;
/* We don't need a nop if the previous instruction is a TEX. */
if (emitted->Prev->Type != RC_INSTRUCTION_PAIR) {
return;
}
if (emitted->Prev->U.P.RGB.WriteMask)
prev_rgb_index = emitted->Prev->U.P.RGB.DestIndex;
else
prev_rgb_index = -1;
if (emitted->Prev->U.P.Alpha.WriteMask)
prev_alpha_index = emitted->Prev->U.P.Alpha.DestIndex;
else
prev_alpha_index = 1;
/* Check the previous rgb instruction */
if (emitted->U.P.RGB.Src[RC_PAIR_PRESUB_SRC].Used) {
num_src = rc_presubtract_src_reg_count(
emitted->U.P.RGB.Src[RC_PAIR_PRESUB_SRC].Index);
for (i = 0; i < num_src; i++) {
unsigned int index = emitted->U.P.RGB.Src[i].Index;
if (emitted->U.P.RGB.Src[i].File == RC_FILE_TEMPORARY
&& (index == prev_rgb_index
|| index == prev_alpha_index)) {
emitted->Prev->U.P.Nop = 1;
return;
}
}
}
/* Check the previous alpha instruction. */
if (!emitted->U.P.Alpha.Src[RC_PAIR_PRESUB_SRC].Used)
return;
num_src = rc_presubtract_src_reg_count(
emitted->U.P.Alpha.Src[RC_PAIR_PRESUB_SRC].Index);
for (i = 0; i < num_src; i++) {
unsigned int index = emitted->U.P.Alpha.Src[i].Index;
if(emitted->U.P.Alpha.Src[i].File == RC_FILE_TEMPORARY
&& (index == prev_rgb_index || index == prev_alpha_index)) {
emitted->Prev->U.P.Nop = 1;
return;
}
}
}
static void rgb_to_alpha_remap (
struct rc_instruction * inst,
struct rc_pair_instruction_arg * arg,
rc_register_file old_file,
rc_swizzle old_swz,
unsigned int new_index)
{
int new_src_index;
unsigned int i;
for (i = 0; i < 3; i++) {
if (get_swz(arg->Swizzle, i) == old_swz) {
SET_SWZ(arg->Swizzle, i, RC_SWIZZLE_W);
}
}
new_src_index = rc_pair_alloc_source(&inst->U.P, 0, 1,
old_file, new_index);
/* This conversion is not possible, we must have made a mistake in
* is_rgb_to_alpha_possible. */
if (new_src_index < 0) {
assert(0);
return;
}
arg->Source = new_src_index;
}
static int can_remap(unsigned int opcode)
{
switch(opcode) {
case RC_OPCODE_DDX:
case RC_OPCODE_DDY:
return 0;
default:
return 1;
}
}
static int can_convert_opcode_to_alpha(unsigned int opcode)
{
switch(opcode) {
case RC_OPCODE_DDX:
case RC_OPCODE_DDY:
case RC_OPCODE_DP2:
case RC_OPCODE_DP3:
case RC_OPCODE_DP4:
case RC_OPCODE_DPH:
return 0;
default:
return 1;
}
}
static void is_rgb_to_alpha_possible(
void * userdata,
struct rc_instruction * inst,
struct rc_pair_instruction_arg * arg,
struct rc_pair_instruction_source * src)
{
unsigned int read_chan = RC_SWIZZLE_UNUSED;
unsigned int alpha_sources = 0;
unsigned int i;
struct rc_reader_data * reader_data = userdata;
if (!can_remap(inst->U.P.RGB.Opcode)
|| !can_remap(inst->U.P.Alpha.Opcode)) {
reader_data->Abort = 1;
return;
}
if (!src)
return;
/* XXX There are some cases where we can still do the conversion if
* a reader reads from a presubtract source, but for now we'll prevent
* it. */
if (arg->Source == RC_PAIR_PRESUB_SRC) {
reader_data->Abort = 1;
return;
}
/* Make sure the source only reads the register component that we
* are going to be convering from. It is OK if the instruction uses
* this component more than once.
* XXX If the index we will be converting to is the same as the
* current index, then it is OK to read from more than one component.
*/
for (i = 0; i < 3; i++) {
rc_swizzle swz = get_swz(arg->Swizzle, i);
switch(swz) {
case RC_SWIZZLE_X:
case RC_SWIZZLE_Y:
case RC_SWIZZLE_Z:
case RC_SWIZZLE_W:
if (read_chan == RC_SWIZZLE_UNUSED) {
read_chan = swz;
} else if (read_chan != swz) {
reader_data->Abort = 1;
return;
}
break;
default:
break;
}
}
/* Make sure there are enough alpha sources.
* XXX If we know what register all the readers are going
* to be remapped to, then in some situations we can still do
* the subsitution, even if all 3 alpha sources are being used.*/
for (i = 0; i < 3; i++) {
if (inst->U.P.Alpha.Src[i].Used) {
alpha_sources++;
}
}
if (alpha_sources > 2) {
reader_data->Abort = 1;
return;
}
}
static int convert_rgb_to_alpha(
struct schedule_state * s,
struct schedule_instruction * sched_inst)
{
struct rc_pair_instruction * pair_inst = &sched_inst->Instruction->U.P;
unsigned int old_mask = pair_inst->RGB.WriteMask;
unsigned int old_swz = rc_mask_to_swizzle(old_mask);
const struct rc_opcode_info * info =
rc_get_opcode_info(pair_inst->RGB.Opcode);
int new_index = -1;
unsigned int i;
if (sched_inst->GlobalReaders.Abort)
return 0;
if (!pair_inst->RGB.WriteMask)
return 0;
if (!can_convert_opcode_to_alpha(pair_inst->RGB.Opcode)
|| !can_convert_opcode_to_alpha(pair_inst->Alpha.Opcode)) {
return 0;
}
assert(sched_inst->NumWriteValues == 1);
if (!sched_inst->WriteValues[0]) {
assert(0);
return 0;
}
/* We start at the old index, because if we can reuse the same
* register and just change the swizzle then it is more likely we
* will be able to convert all the readers. */
for (i = pair_inst->RGB.DestIndex; i < RC_REGISTER_MAX_INDEX; i++) {
struct reg_value ** new_regvalp = get_reg_valuep(
s, RC_FILE_TEMPORARY, i, 3);
if (!*new_regvalp) {
struct reg_value ** old_regvalp =
get_reg_valuep(s,
RC_FILE_TEMPORARY,
pair_inst->RGB.DestIndex,
rc_mask_to_swizzle(old_mask));
new_index = i;
*new_regvalp = *old_regvalp;
*old_regvalp = NULL;
new_regvalp = get_reg_valuep(s, RC_FILE_TEMPORARY, i, 3);
break;
}
}
if (new_index < 0) {
return 0;
}
/* If we are converting a full instruction with RC_OPCODE_REPL_ALPHA
* as the RGB opcode, then the Alpha instruction will already contain
* the correct opcode and instruction args, so we do not want to
* overwrite them.
*/
if (pair_inst->RGB.Opcode != RC_OPCODE_REPL_ALPHA) {
pair_inst->Alpha.Opcode = pair_inst->RGB.Opcode;
memcpy(pair_inst->Alpha.Arg, pair_inst->RGB.Arg,
sizeof(pair_inst->Alpha.Arg));
}
pair_inst->Alpha.DestIndex = new_index;
pair_inst->Alpha.WriteMask = RC_MASK_W;
pair_inst->Alpha.Target = pair_inst->RGB.Target;
pair_inst->Alpha.OutputWriteMask = pair_inst->RGB.OutputWriteMask;
pair_inst->Alpha.DepthWriteMask = pair_inst->RGB.DepthWriteMask;
pair_inst->Alpha.Saturate = pair_inst->RGB.Saturate;
pair_inst->Alpha.Omod = pair_inst->RGB.Omod;
/* Move the swizzles into the first chan */
for (i = 0; i < info->NumSrcRegs; i++) {
unsigned int j;
for (j = 0; j < 3; j++) {
unsigned int swz = get_swz(pair_inst->Alpha.Arg[i].Swizzle, j);
if (swz != RC_SWIZZLE_UNUSED) {
pair_inst->Alpha.Arg[i].Swizzle =
rc_init_swizzle(swz, 1);
break;
}
}
}
pair_inst->RGB.Opcode = RC_OPCODE_NOP;
pair_inst->RGB.DestIndex = 0;
pair_inst->RGB.WriteMask = 0;
pair_inst->RGB.Target = 0;
pair_inst->RGB.OutputWriteMask = 0;
pair_inst->RGB.DepthWriteMask = 0;
pair_inst->RGB.Saturate = 0;
memset(pair_inst->RGB.Arg, 0, sizeof(pair_inst->RGB.Arg));
for(i = 0; i < sched_inst->GlobalReaders.ReaderCount; i++) {
struct rc_reader reader = sched_inst->GlobalReaders.Readers[i];
rgb_to_alpha_remap(reader.Inst, reader.U.P.Arg,
RC_FILE_TEMPORARY, old_swz, new_index);
}
return 1;
}
static void try_convert_and_pair(
struct schedule_state *s,
struct schedule_instruction ** inst_list)
{
struct schedule_instruction * list_ptr = *inst_list;
while (list_ptr && *inst_list && (*inst_list)->NextReady) {
int paired = 0;
if (list_ptr->Instruction->U.P.Alpha.Opcode != RC_OPCODE_NOP
&& list_ptr->Instruction->U.P.RGB.Opcode
!= RC_OPCODE_REPL_ALPHA) {
goto next;
}
if (list_ptr->NumWriteValues == 1
&& convert_rgb_to_alpha(s, list_ptr)) {
struct schedule_instruction * pair_ptr;
remove_inst_from_list(inst_list, list_ptr);
add_inst_to_list_score(&s->ReadyAlpha, list_ptr);
for (pair_ptr = s->ReadyRGB; pair_ptr;
pair_ptr = pair_ptr->NextReady) {
if (merge_instructions(&pair_ptr->Instruction->U.P,
&list_ptr->Instruction->U.P)) {
remove_inst_from_list(&s->ReadyAlpha, list_ptr);
remove_inst_from_list(&s->ReadyRGB, pair_ptr);
pair_ptr->PairedInst = list_ptr;
add_inst_to_list(&s->ReadyFullALU, pair_ptr);
list_ptr = *inst_list;
paired = 1;
break;
}
}
}
if (!paired) {
next:
list_ptr = list_ptr->NextReady;
}
}
}
/**
* This function attempts to merge RGB and Alpha instructions together.
*/
static void pair_instructions(struct schedule_state * s)
{
struct schedule_instruction *rgb_ptr;
struct schedule_instruction *alpha_ptr;
/* Some pairings might fail because they require too
* many source slots; try all possible pairings if necessary */
rgb_ptr = s->ReadyRGB;
while(rgb_ptr) {
struct schedule_instruction * rgb_next = rgb_ptr->NextReady;
alpha_ptr = s->ReadyAlpha;
while(alpha_ptr) {
struct schedule_instruction * alpha_next = alpha_ptr->NextReady;
if (merge_instructions(&rgb_ptr->Instruction->U.P, &alpha_ptr->Instruction->U.P)) {
/* Remove RGB and Alpha from their ready lists.
*/
remove_inst_from_list(&s->ReadyRGB, rgb_ptr);
remove_inst_from_list(&s->ReadyAlpha, alpha_ptr);
rgb_ptr->PairedInst = alpha_ptr;
add_inst_to_list(&s->ReadyFullALU, rgb_ptr);
break;
}
alpha_ptr = alpha_next;
}
rgb_ptr = rgb_next;
}
if (!s->Opt) {
return;
}
/* Full instructions that have RC_OPCODE_REPL_ALPHA in the RGB
* slot can be converted into Alpha instructions. */
try_convert_and_pair(s, &s->ReadyFullALU);
/* Try to convert some of the RGB instructions to Alpha and
* try to pair it with another RGB. */
try_convert_and_pair(s, &s->ReadyRGB);
}
static void update_max_score(
struct schedule_state * s,
struct schedule_instruction ** list,
int * max_score,
struct schedule_instruction ** max_inst_out,
struct schedule_instruction *** list_out)
{
struct schedule_instruction * list_ptr;
for (list_ptr = *list; list_ptr; list_ptr = list_ptr->NextReady) {
int score;
s->CalcScore(list_ptr);
score = list_ptr->Score;
if (!*max_inst_out || score > *max_score) {
*max_score = score;
*max_inst_out = list_ptr;
*list_out = list;
}
}
}
static void emit_instruction(
struct schedule_state * s,
struct rc_instruction * before)
{
int max_score = -1;
struct schedule_instruction * max_inst = NULL;
struct schedule_instruction ** max_list = NULL;
unsigned tex_count = 0;
struct schedule_instruction * tex_ptr;
pair_instructions(s);
#if VERBOSE
fprintf(stderr, "Full:\n");
print_list(s->ReadyFullALU);
fprintf(stderr, "RGB:\n");
print_list(s->ReadyRGB);
fprintf(stderr, "Alpha:\n");
print_list(s->ReadyAlpha);
fprintf(stderr, "TEX:\n");
print_list(s->ReadyTEX);
#endif
for (tex_ptr = s->ReadyTEX; tex_ptr; tex_ptr = tex_ptr->NextReady) {
if (tex_ptr->Instruction->U.I.Opcode == RC_OPCODE_KIL) {
emit_all_tex(s, before);
return;
}
tex_count++;
}
update_max_score(s, &s->ReadyFullALU, &max_score, &max_inst, &max_list);
update_max_score(s, &s->ReadyRGB, &max_score, &max_inst, &max_list);
update_max_score(s, &s->ReadyAlpha, &max_score, &max_inst, &max_list);
if (tex_count >= s->max_tex_group || max_score == -1
|| (s->TEXCount > 0 && tex_count == s->TEXCount)
|| (!s->C->is_r500 && tex_count > 0 && max_score == -1)) {
emit_all_tex(s, before);
} else {
remove_inst_from_list(max_list, max_inst);
rc_insert_instruction(before->Prev, max_inst->Instruction);
commit_alu_instruction(s, max_inst);
presub_nop(before->Prev);
}
}
static void add_tex_reader(
struct schedule_state * s,
struct schedule_instruction * writer,
struct schedule_instruction * reader)
{
if (!writer || writer->Instruction->Type != RC_INSTRUCTION_NORMAL) {
/*Not a TEX instructions */
return;
}
reader->TexReadCount++;
rc_list_add(&writer->TexReaders, rc_list(&s->C->Pool, reader));
}
static void scan_read(void * data, struct rc_instruction * inst,
rc_register_file file, unsigned int index, unsigned int chan)
{
struct schedule_state * s = data;
struct reg_value ** v = get_reg_valuep(s, file, index, chan);
struct reg_value_reader * reader;
if (!v)
return;
if (*v && (*v)->Writer == s->Current) {
/* The instruction reads and writes to a register component.
* In this case, we only want to increment dependencies by one.
* Why?
* Because each instruction depends on the writers of its source
* registers _and_ the most recent writer of its destination
* register. In this case, the current instruction (s->Current)
* has a dependency that both writes to one of its source
* registers and was the most recent writer to its destination
* register. We have already marked this dependency in
* scan_write(), so we don't need to do it again.
*/
/* We need to make sure we are adding s->Current to the
* previous writer's list of TexReaders, if the previous writer
* was a TEX instruction.
*/
add_tex_reader(s, s->PrevWriter[chan], s->Current);
return;
}
DBG("%i: read %i[%i] chan %i\n", s->Current->Instruction->IP, file, index, chan);
reader = memory_pool_malloc(&s->C->Pool, sizeof(*reader));
reader->Reader = s->Current;
if (!*v) {
/* In this situation, the instruction reads from a register
* that hasn't been written to or read from in the current
* block. */
*v = memory_pool_malloc(&s->C->Pool, sizeof(struct reg_value));
memset(*v, 0, sizeof(struct reg_value));
(*v)->Readers = reader;
} else {
reader->Next = (*v)->Readers;
(*v)->Readers = reader;
/* Only update the current instruction's dependencies if the
* register it reads from has been written to in this block. */
if ((*v)->Writer) {
add_tex_reader(s, (*v)->Writer, s->Current);
s->Current->NumDependencies++;
}
}
(*v)->NumReaders++;
if (s->Current->NumReadValues >= 12) {
rc_error(s->C, "%s: NumReadValues overflow\n", __FUNCTION__);
} else {
s->Current->ReadValues[s->Current->NumReadValues++] = *v;
}
}
static void scan_write(void * data, struct rc_instruction * inst,
rc_register_file file, unsigned int index, unsigned int chan)
{
struct schedule_state * s = data;
struct reg_value ** pv = get_reg_valuep(s, file, index, chan);
struct reg_value * newv;
if (!pv)
return;
DBG("%i: write %i[%i] chan %i\n", s->Current->Instruction->IP, file, index, chan);
newv = memory_pool_malloc(&s->C->Pool, sizeof(*newv));
memset(newv, 0, sizeof(*newv));
newv->Writer = s->Current;
if (*pv) {
(*pv)->Next = newv;
s->Current->NumDependencies++;
/* Keep track of the previous writer to s->Current's destination
* register */
s->PrevWriter[chan] = (*pv)->Writer;
}
*pv = newv;
if (s->Current->NumWriteValues >= 4) {
rc_error(s->C, "%s: NumWriteValues overflow\n", __FUNCTION__);
} else {
s->Current->WriteValues[s->Current->NumWriteValues++] = newv;
}
}
static void is_rgb_to_alpha_possible_normal(
void * userdata,
struct rc_instruction * inst,
struct rc_src_register * src)
{
struct rc_reader_data * reader_data = userdata;
reader_data->Abort = 1;
}
static void schedule_block(struct schedule_state * s,
struct rc_instruction * begin, struct rc_instruction * end)
{
unsigned int ip;
/* Scan instructions for data dependencies */
ip = 0;
for(struct rc_instruction * inst = begin; inst != end; inst = inst->Next) {
s->Current = memory_pool_malloc(&s->C->Pool, sizeof(*s->Current));
memset(s->Current, 0, sizeof(struct schedule_instruction));
if (inst->Type == RC_INSTRUCTION_NORMAL) {
const struct rc_opcode_info * info =
rc_get_opcode_info(inst->U.I.Opcode);
if (info->HasTexture) {
s->TEXCount++;
}
}
/* XXX: This causes SemWait to be set for all instructions in
* a block if the previous block contained a TEX instruction.
* We can do better here, but it will take a lot of work. */
if (s->PrevBlockHasTex) {
s->Current->TexReadCount = 1;
}
s->Current->Instruction = inst;
inst->IP = ip++;
DBG("%i: Scanning\n", inst->IP);
/* The order of things here is subtle and maybe slightly
* counter-intuitive, to account for the case where an
* instruction writes to the same register as it reads
* from. */
rc_for_all_writes_chan(inst, &scan_write, s);
rc_for_all_reads_chan(inst, &scan_read, s);
DBG("%i: Has %i dependencies\n", inst->IP, s->Current->NumDependencies);
if (!s->Current->NumDependencies) {
instruction_ready(s, s->Current);
}
/* Get global readers for possible RGB->Alpha conversion. */
s->Current->GlobalReaders.ExitOnAbort = 1;
rc_get_readers(s->C, inst, &s->Current->GlobalReaders,
is_rgb_to_alpha_possible_normal,
is_rgb_to_alpha_possible, NULL);
}
/* Temporarily unlink all instructions */
begin->Prev->Next = end;
end->Prev = begin->Prev;
/* Schedule instructions back */
while(!s->C->Error &&
(s->ReadyTEX || s->ReadyRGB || s->ReadyAlpha || s->ReadyFullALU)) {
emit_instruction(s, end);
}
}
static int is_controlflow(struct rc_instruction * inst)
{
if (inst->Type == RC_INSTRUCTION_NORMAL) {
const struct rc_opcode_info * opcode = rc_get_opcode_info(inst->U.I.Opcode);
return opcode->IsFlowControl;
}
return 0;
}
void rc_pair_schedule(struct radeon_compiler *cc, void *user)
{
struct r300_fragment_program_compiler *c = (struct r300_fragment_program_compiler*)cc;
struct schedule_state s;
struct rc_instruction * inst = c->Base.Program.Instructions.Next;
unsigned int * opt = user;
memset(&s, 0, sizeof(s));
s.Opt = *opt;
s.C = &c->Base;
if (s.C->is_r500) {
s.CalcScore = calc_score_readers;
} else {
s.CalcScore = calc_score_r300;
}
s.max_tex_group = debug_get_num_option("RADEON_TEX_GROUP", 8);
while(inst != &c->Base.Program.Instructions) {
struct rc_instruction * first;
if (is_controlflow(inst)) {
inst = inst->Next;
continue;
}
first = inst;
while(inst != &c->Base.Program.Instructions && !is_controlflow(inst))
inst = inst->Next;
DBG("Schedule one block\n");
memset(s.Temporary, 0, sizeof(s.Temporary));
s.TEXCount = 0;
schedule_block(&s, first, inst);
if (s.PendingTEX) {
s.PrevBlockHasTex = 1;
}
}
}