/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_shader.h"
#include "si_shader_internal.h"
#include "ac_nir_to_llvm.h"
#include "tgsi/tgsi_from_mesa.h"
#include "compiler/nir/nir.h"
#include "compiler/nir_types.h"
static int
type_size(const struct glsl_type *type)
{
return glsl_count_attribute_slots(type, false);
}
static void scan_instruction(struct tgsi_shader_info *info,
nir_instr *instr)
{
if (instr->type == nir_instr_type_alu) {
nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse:
info->uses_derivatives = true;
break;
default:
break;
}
} else if (instr->type == nir_instr_type_tex) {
nir_tex_instr *tex = nir_instr_as_tex(instr);
if (!tex->texture) {
info->samplers_declared |=
u_bit_consecutive(tex->sampler_index, 1);
}
switch (tex->op) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_lod:
info->uses_derivatives = true;
break;
default:
break;
}
} else if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_load_front_face:
info->uses_frontface = 1;
break;
case nir_intrinsic_load_instance_id:
info->uses_instanceid = 1;
break;
case nir_intrinsic_load_invocation_id:
info->uses_invocationid = true;
break;
case nir_intrinsic_load_vertex_id:
info->uses_vertexid = 1;
break;
case nir_intrinsic_load_vertex_id_zero_base:
info->uses_vertexid_nobase = 1;
break;
case nir_intrinsic_load_base_vertex:
info->uses_basevertex = 1;
break;
case nir_intrinsic_load_primitive_id:
info->uses_primid = 1;
break;
case nir_intrinsic_load_sample_mask_in:
info->reads_samplemask = true;
break;
case nir_intrinsic_load_tess_level_inner:
case nir_intrinsic_load_tess_level_outer:
info->reads_tess_factors = true;
break;
case nir_intrinsic_image_store:
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_min:
case nir_intrinsic_image_atomic_max:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
info->writes_memory = true;
break;
default:
break;
}
}
}
void si_nir_scan_tess_ctrl(const struct nir_shader *nir,
const struct tgsi_shader_info *info,
struct tgsi_tessctrl_info *out)
{
memset(out, 0, sizeof(*out));
if (nir->info.stage != MESA_SHADER_TESS_CTRL)
return;
/* Initial value = true. Here the pass will accumulate results from
* multiple segments surrounded by barriers. If tess factors aren't
* written at all, it's a shader bug and we don't care if this will be
* true.
*/
out->tessfactors_are_def_in_all_invocs = true;
/* TODO: Implement scanning of tess factors, see tgsi backend. */
}
void si_nir_scan_shader(const struct nir_shader *nir,
struct tgsi_shader_info *info)
{
nir_function *func;
unsigned i;
assert(nir->info.stage == MESA_SHADER_VERTEX ||
nir->info.stage == MESA_SHADER_GEOMETRY ||
nir->info.stage == MESA_SHADER_TESS_CTRL ||
nir->info.stage == MESA_SHADER_TESS_EVAL ||
nir->info.stage == MESA_SHADER_FRAGMENT);
info->processor = pipe_shader_type_from_mesa(nir->info.stage);
info->num_tokens = 2; /* indicate that the shader is non-empty */
info->num_instructions = 2;
if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT] =
nir->info.tess.tcs_vertices_out;
}
if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
if (nir->info.tess.primitive_mode == GL_ISOLINES)
info->properties[TGSI_PROPERTY_TES_PRIM_MODE] = PIPE_PRIM_LINES;
else
info->properties[TGSI_PROPERTY_TES_PRIM_MODE] = nir->info.tess.primitive_mode;
STATIC_ASSERT((TESS_SPACING_EQUAL + 1) % 3 == PIPE_TESS_SPACING_EQUAL);
STATIC_ASSERT((TESS_SPACING_FRACTIONAL_ODD + 1) % 3 ==
PIPE_TESS_SPACING_FRACTIONAL_ODD);
STATIC_ASSERT((TESS_SPACING_FRACTIONAL_EVEN + 1) % 3 ==
PIPE_TESS_SPACING_FRACTIONAL_EVEN);
info->properties[TGSI_PROPERTY_TES_SPACING] = (nir->info.tess.spacing + 1) % 3;
info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW] = !nir->info.tess.ccw;
info->properties[TGSI_PROPERTY_TES_POINT_MODE] = nir->info.tess.point_mode;
}
if (nir->info.stage == MESA_SHADER_GEOMETRY) {
info->properties[TGSI_PROPERTY_GS_INPUT_PRIM] = nir->info.gs.input_primitive;
info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM] = nir->info.gs.output_primitive;
info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES] = nir->info.gs.vertices_out;
info->properties[TGSI_PROPERTY_GS_INVOCATIONS] = nir->info.gs.invocations;
}
i = 0;
uint64_t processed_inputs = 0;
unsigned num_inputs = 0;
nir_foreach_variable(variable, &nir->inputs) {
unsigned semantic_name, semantic_index;
unsigned attrib_count = glsl_count_attribute_slots(variable->type,
nir->info.stage == MESA_SHADER_VERTEX);
/* Vertex shader inputs don't have semantics. The state
* tracker has already mapped them to attributes via
* variable->data.driver_location.
*/
if (nir->info.stage == MESA_SHADER_VERTEX)
continue;
assert(nir->info.stage != MESA_SHADER_FRAGMENT ||
(attrib_count == 1 && "not implemented"));
/* Fragment shader position is a system value. */
if (nir->info.stage == MESA_SHADER_FRAGMENT &&
variable->data.location == VARYING_SLOT_POS) {
if (variable->data.pixel_center_integer)
info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] =
TGSI_FS_COORD_PIXEL_CENTER_INTEGER;
num_inputs++;
continue;
}
i = variable->data.driver_location;
if (processed_inputs & ((uint64_t)1 << i))
continue;
processed_inputs |= ((uint64_t)1 << i);
num_inputs++;
tgsi_get_gl_varying_semantic(variable->data.location, true,
&semantic_name, &semantic_index);
info->input_semantic_name[i] = semantic_name;
info->input_semantic_index[i] = semantic_index;
if (semantic_name == TGSI_SEMANTIC_PRIMID)
info->uses_primid = true;
if (variable->data.sample)
info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_SAMPLE;
else if (variable->data.centroid)
info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_CENTROID;
else
info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_CENTER;
enum glsl_base_type base_type =
glsl_get_base_type(glsl_without_array(variable->type));
switch (variable->data.interpolation) {
case INTERP_MODE_NONE:
if (glsl_base_type_is_integer(base_type)) {
info->input_interpolate[i] = TGSI_INTERPOLATE_CONSTANT;
break;
}
if (semantic_name == TGSI_SEMANTIC_COLOR) {
info->input_interpolate[i] = TGSI_INTERPOLATE_COLOR;
goto persp_locations;
}
/* fall-through */
case INTERP_MODE_SMOOTH:
assert(!glsl_base_type_is_integer(base_type));
info->input_interpolate[i] = TGSI_INTERPOLATE_PERSPECTIVE;
persp_locations:
if (variable->data.sample)
info->uses_persp_sample = true;
else if (variable->data.centroid)
info->uses_persp_centroid = true;
else
info->uses_persp_center = true;
break;
case INTERP_MODE_NOPERSPECTIVE:
assert(!glsl_base_type_is_integer(base_type));
info->input_interpolate[i] = TGSI_INTERPOLATE_LINEAR;
if (variable->data.sample)
info->uses_linear_sample = true;
else if (variable->data.centroid)
info->uses_linear_centroid = true;
else
info->uses_linear_center = true;
break;
case INTERP_MODE_FLAT:
info->input_interpolate[i] = TGSI_INTERPOLATE_CONSTANT;
break;
}
/* TODO make this more precise */
if (variable->data.location == VARYING_SLOT_COL0)
info->colors_read |= 0x0f;
else if (variable->data.location == VARYING_SLOT_COL1)
info->colors_read |= 0xf0;
}
if (nir->info.stage != MESA_SHADER_VERTEX)
info->num_inputs = num_inputs;
else
info->num_inputs = nir->num_inputs;
i = 0;
uint64_t processed_outputs = 0;
unsigned num_outputs = 0;
nir_foreach_variable(variable, &nir->outputs) {
unsigned semantic_name, semantic_index;
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
tgsi_get_gl_frag_result_semantic(variable->data.location,
&semantic_name, &semantic_index);
/* Adjust for dual source blending */
if (variable->data.index > 0) {
semantic_index++;
}
} else {
tgsi_get_gl_varying_semantic(variable->data.location, true,
&semantic_name, &semantic_index);
}
i = variable->data.driver_location;
if (processed_outputs & ((uint64_t)1 << i))
continue;
processed_outputs |= ((uint64_t)1 << i);
num_outputs++;
info->output_semantic_name[i] = semantic_name;
info->output_semantic_index[i] = semantic_index;
info->output_usagemask[i] = TGSI_WRITEMASK_XYZW;
unsigned num_components = 4;
unsigned vector_elements = glsl_get_vector_elements(glsl_without_array(variable->type));
if (vector_elements)
num_components = vector_elements;
unsigned gs_out_streams;
if (variable->data.stream & (1u << 31)) {
gs_out_streams = variable->data.stream & ~(1u << 31);
} else {
assert(variable->data.stream < 4);
gs_out_streams = 0;
for (unsigned j = 0; j < num_components; ++j)
gs_out_streams |= variable->data.stream << (2 * (variable->data.location_frac + j));
}
unsigned streamx = gs_out_streams & 3;
unsigned streamy = (gs_out_streams >> 2) & 3;
unsigned streamz = (gs_out_streams >> 4) & 3;
unsigned streamw = (gs_out_streams >> 6) & 3;
if (info->output_usagemask[i] & TGSI_WRITEMASK_X) {
info->output_streams[i] |= streamx;
info->num_stream_output_components[streamx]++;
}
if (info->output_usagemask[i] & TGSI_WRITEMASK_Y) {
info->output_streams[i] |= streamy << 2;
info->num_stream_output_components[streamy]++;
}
if (info->output_usagemask[i] & TGSI_WRITEMASK_Z) {
info->output_streams[i] |= streamz << 4;
info->num_stream_output_components[streamz]++;
}
if (info->output_usagemask[i] & TGSI_WRITEMASK_W) {
info->output_streams[i] |= streamw << 6;
info->num_stream_output_components[streamw]++;
}
switch (semantic_name) {
case TGSI_SEMANTIC_PRIMID:
info->writes_primid = true;
break;
case TGSI_SEMANTIC_VIEWPORT_INDEX:
info->writes_viewport_index = true;
break;
case TGSI_SEMANTIC_LAYER:
info->writes_layer = true;
break;
case TGSI_SEMANTIC_PSIZE:
info->writes_psize = true;
break;
case TGSI_SEMANTIC_CLIPVERTEX:
info->writes_clipvertex = true;
break;
case TGSI_SEMANTIC_COLOR:
info->colors_written |= 1 << semantic_index;
break;
case TGSI_SEMANTIC_STENCIL:
info->writes_stencil = true;
break;
case TGSI_SEMANTIC_SAMPLEMASK:
info->writes_samplemask = true;
break;
case TGSI_SEMANTIC_EDGEFLAG:
info->writes_edgeflag = true;
break;
case TGSI_SEMANTIC_POSITION:
if (info->processor == PIPE_SHADER_FRAGMENT)
info->writes_z = true;
else
info->writes_position = true;
break;
}
if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
switch (semantic_name) {
case TGSI_SEMANTIC_PATCH:
info->reads_perpatch_outputs = true;
break;
case TGSI_SEMANTIC_TESSINNER:
case TGSI_SEMANTIC_TESSOUTER:
info->reads_tessfactor_outputs = true;
break;
default:
info->reads_pervertex_outputs = true;
}
}
}
info->num_outputs = num_outputs;
nir_foreach_variable(variable, &nir->uniforms) {
const struct glsl_type *type = variable->type;
enum glsl_base_type base_type =
glsl_get_base_type(glsl_without_array(type));
unsigned aoa_size = MAX2(1, glsl_get_aoa_size(type));
/* We rely on the fact that nir_lower_samplers_as_deref has
* eliminated struct dereferences.
*/
if (base_type == GLSL_TYPE_SAMPLER)
info->samplers_declared |=
u_bit_consecutive(variable->data.binding, aoa_size);
else if (base_type == GLSL_TYPE_IMAGE)
info->images_declared |=
u_bit_consecutive(variable->data.binding, aoa_size);
}
info->num_written_clipdistance = nir->info.clip_distance_array_size;
info->num_written_culldistance = nir->info.cull_distance_array_size;
info->clipdist_writemask = u_bit_consecutive(0, info->num_written_clipdistance);
info->culldist_writemask = u_bit_consecutive(0, info->num_written_culldistance);
if (info->processor == PIPE_SHADER_FRAGMENT)
info->uses_kill = nir->info.fs.uses_discard;
/* TODO make this more accurate */
info->const_buffers_declared = u_bit_consecutive(0, SI_NUM_CONST_BUFFERS);
info->shader_buffers_declared = u_bit_consecutive(0, SI_NUM_SHADER_BUFFERS);
func = (struct nir_function *)exec_list_get_head_const(&nir->functions);
nir_foreach_block(block, func->impl) {
nir_foreach_instr(instr, block)
scan_instruction(info, instr);
}
}
/**
* Perform "lowering" operations on the NIR that are run once when the shader
* selector is created.
*/
void
si_lower_nir(struct si_shader_selector* sel)
{
/* Adjust the driver location of inputs and outputs. The state tracker
* interprets them as slots, while the ac/nir backend interprets them
* as individual components.
*/
nir_foreach_variable(variable, &sel->nir->inputs)
variable->data.driver_location *= 4;
nir_foreach_variable(variable, &sel->nir->outputs) {
variable->data.driver_location *= 4;
if (sel->nir->info.stage == MESA_SHADER_FRAGMENT) {
if (variable->data.location == FRAG_RESULT_DEPTH)
variable->data.driver_location += 2;
else if (variable->data.location == FRAG_RESULT_STENCIL)
variable->data.driver_location += 1;
}
}
/* Perform lowerings (and optimizations) of code.
*
* Performance considerations aside, we must:
* - lower certain ALU operations
* - ensure constant offsets for texture instructions are folded
* and copy-propagated
*/
NIR_PASS_V(sel->nir, nir_lower_io, nir_var_uniform, type_size,
(nir_lower_io_options)0);
NIR_PASS_V(sel->nir, nir_lower_uniforms_to_ubo);
NIR_PASS_V(sel->nir, nir_lower_returns);
NIR_PASS_V(sel->nir, nir_lower_vars_to_ssa);
NIR_PASS_V(sel->nir, nir_lower_alu_to_scalar);
NIR_PASS_V(sel->nir, nir_lower_phis_to_scalar);
static const struct nir_lower_tex_options lower_tex_options = {
.lower_txp = ~0u,
};
NIR_PASS_V(sel->nir, nir_lower_tex, &lower_tex_options);
const nir_lower_subgroups_options subgroups_options = {
.subgroup_size = 64,
.ballot_bit_size = 32,
.lower_to_scalar = true,
.lower_subgroup_masks = true,
.lower_vote_trivial = false,
};
NIR_PASS_V(sel->nir, nir_lower_subgroups, &subgroups_options);
bool progress;
do {
progress = false;
/* (Constant) copy propagation is needed for txf with offsets. */
NIR_PASS(progress, sel->nir, nir_copy_prop);
NIR_PASS(progress, sel->nir, nir_opt_remove_phis);
NIR_PASS(progress, sel->nir, nir_opt_dce);
if (nir_opt_trivial_continues(sel->nir)) {
progress = true;
NIR_PASS(progress, sel->nir, nir_copy_prop);
NIR_PASS(progress, sel->nir, nir_opt_dce);
}
NIR_PASS(progress, sel->nir, nir_opt_if);
NIR_PASS(progress, sel->nir, nir_opt_dead_cf);
NIR_PASS(progress, sel->nir, nir_opt_cse);
NIR_PASS(progress, sel->nir, nir_opt_peephole_select, 8);
/* Needed for algebraic lowering */
NIR_PASS(progress, sel->nir, nir_opt_algebraic);
NIR_PASS(progress, sel->nir, nir_opt_constant_folding);
NIR_PASS(progress, sel->nir, nir_opt_undef);
NIR_PASS(progress, sel->nir, nir_opt_conditional_discard);
if (sel->nir->options->max_unroll_iterations) {
NIR_PASS(progress, sel->nir, nir_opt_loop_unroll, 0);
}
} while (progress);
}
static void declare_nir_input_vs(struct si_shader_context *ctx,
struct nir_variable *variable,
LLVMValueRef out[4])
{
si_llvm_load_input_vs(ctx, variable->data.driver_location / 4, out);
}
static void declare_nir_input_fs(struct si_shader_context *ctx,
struct nir_variable *variable,
unsigned input_index,
LLVMValueRef out[4])
{
unsigned slot = variable->data.location;
if (slot == VARYING_SLOT_POS) {
out[0] = LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT);
out[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT);
out[2] = LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT);
out[3] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT));
return;
}
si_llvm_load_input_fs(ctx, input_index, out);
}
LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi,
unsigned location,
unsigned driver_location,
unsigned component,
unsigned num_components,
unsigned vertex_index,
unsigned const_index,
LLVMTypeRef type)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
LLVMValueRef value[4];
for (unsigned i = component; i < num_components + component; i++) {
value[i] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4,
vertex_index, type, i);
}
return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
}
static LLVMValueRef
si_nir_load_sampler_desc(struct ac_shader_abi *abi,
unsigned descriptor_set, unsigned base_index,
unsigned constant_index, LLVMValueRef dynamic_index,
enum ac_descriptor_type desc_type, bool image,
bool write)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef list = LLVMGetParam(ctx->main_fn, ctx->param_samplers_and_images);
LLVMValueRef index = dynamic_index;
assert(!descriptor_set);
if (!index)
index = ctx->ac.i32_0;
index = LLVMBuildAdd(builder, index,
LLVMConstInt(ctx->ac.i32, base_index + constant_index, false),
"");
if (image) {
assert(desc_type == AC_DESC_IMAGE || desc_type == AC_DESC_BUFFER);
assert(base_index + constant_index < ctx->num_images);
if (dynamic_index)
index = si_llvm_bound_index(ctx, index, ctx->num_images);
index = LLVMBuildSub(ctx->gallivm.builder,
LLVMConstInt(ctx->i32, SI_NUM_IMAGES - 1, 0),
index, "");
/* TODO: be smarter about when we use dcc_off */
return si_load_image_desc(ctx, list, index, desc_type, write);
}
assert(base_index + constant_index < ctx->num_samplers);
if (dynamic_index)
index = si_llvm_bound_index(ctx, index, ctx->num_samplers);
index = LLVMBuildAdd(ctx->gallivm.builder, index,
LLVMConstInt(ctx->i32, SI_NUM_IMAGES / 2, 0), "");
return si_load_sampler_desc(ctx, list, index, desc_type);
}
bool si_nir_build_llvm(struct si_shader_context *ctx, struct nir_shader *nir)
{
struct tgsi_shader_info *info = &ctx->shader->selector->info;
if (nir->info.stage == MESA_SHADER_VERTEX ||
nir->info.stage == MESA_SHADER_FRAGMENT) {
uint64_t processed_inputs = 0;
nir_foreach_variable(variable, &nir->inputs) {
unsigned attrib_count = glsl_count_attribute_slots(variable->type,
nir->info.stage == MESA_SHADER_VERTEX);
unsigned input_idx = variable->data.driver_location;
assert(attrib_count == 1);
LLVMValueRef data[4];
unsigned loc = variable->data.location;
/* Packed components share the same location so skip
* them if we have already processed the location.
*/
if (processed_inputs & ((uint64_t)1 << loc))
continue;
if (nir->info.stage == MESA_SHADER_VERTEX)
declare_nir_input_vs(ctx, variable, data);
else if (nir->info.stage == MESA_SHADER_FRAGMENT)
declare_nir_input_fs(ctx, variable, input_idx / 4, data);
for (unsigned chan = 0; chan < 4; chan++) {
ctx->inputs[input_idx + chan] =
LLVMBuildBitCast(ctx->ac.builder, data[chan], ctx->ac.i32, "");
}
processed_inputs |= ((uint64_t)1 << loc);
}
}
ctx->abi.inputs = &ctx->inputs[0];
ctx->abi.load_sampler_desc = si_nir_load_sampler_desc;
ctx->abi.clamp_shadow_reference = true;
ctx->num_samplers = util_last_bit(info->samplers_declared);
ctx->num_images = util_last_bit(info->images_declared);
ac_nir_translate(&ctx->ac, &ctx->abi, nir, NULL);
return true;
}