/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
#include "radeon/r600_cs.h"
#include "sid.h"
#include "gfx9d.h"
#include "util/u_index_modify.h"
#include "util/u_log.h"
#include "util/u_upload_mgr.h"
#include "util/u_prim.h"
#include "ac_debug.h"
/* special primitive types */
#define SI_PRIM_RECTANGLE_LIST PIPE_PRIM_MAX
static unsigned si_conv_pipe_prim(unsigned mode)
{
static const unsigned prim_conv[] = {
[PIPE_PRIM_POINTS] = V_008958_DI_PT_POINTLIST,
[PIPE_PRIM_LINES] = V_008958_DI_PT_LINELIST,
[PIPE_PRIM_LINE_LOOP] = V_008958_DI_PT_LINELOOP,
[PIPE_PRIM_LINE_STRIP] = V_008958_DI_PT_LINESTRIP,
[PIPE_PRIM_TRIANGLES] = V_008958_DI_PT_TRILIST,
[PIPE_PRIM_TRIANGLE_STRIP] = V_008958_DI_PT_TRISTRIP,
[PIPE_PRIM_TRIANGLE_FAN] = V_008958_DI_PT_TRIFAN,
[PIPE_PRIM_QUADS] = V_008958_DI_PT_QUADLIST,
[PIPE_PRIM_QUAD_STRIP] = V_008958_DI_PT_QUADSTRIP,
[PIPE_PRIM_POLYGON] = V_008958_DI_PT_POLYGON,
[PIPE_PRIM_LINES_ADJACENCY] = V_008958_DI_PT_LINELIST_ADJ,
[PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_008958_DI_PT_LINESTRIP_ADJ,
[PIPE_PRIM_TRIANGLES_ADJACENCY] = V_008958_DI_PT_TRILIST_ADJ,
[PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_008958_DI_PT_TRISTRIP_ADJ,
[PIPE_PRIM_PATCHES] = V_008958_DI_PT_PATCH,
[SI_PRIM_RECTANGLE_LIST] = V_008958_DI_PT_RECTLIST
};
assert(mode < ARRAY_SIZE(prim_conv));
return prim_conv[mode];
}
static unsigned si_conv_prim_to_gs_out(unsigned mode)
{
static const int prim_conv[] = {
[PIPE_PRIM_POINTS] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
[PIPE_PRIM_LINES] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
[PIPE_PRIM_LINE_LOOP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
[PIPE_PRIM_LINE_STRIP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
[PIPE_PRIM_TRIANGLES] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
[PIPE_PRIM_TRIANGLE_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
[PIPE_PRIM_TRIANGLE_FAN] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
[PIPE_PRIM_QUADS] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
[PIPE_PRIM_QUAD_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
[PIPE_PRIM_POLYGON] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
[PIPE_PRIM_LINES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
[PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
[PIPE_PRIM_TRIANGLES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
[PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
[PIPE_PRIM_PATCHES] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
[SI_PRIM_RECTANGLE_LIST] = V_028A6C_OUTPRIM_TYPE_TRISTRIP
};
assert(mode < ARRAY_SIZE(prim_conv));
return prim_conv[mode];
}
/**
* This calculates the LDS size for tessellation shaders (VS, TCS, TES).
* LS.LDS_SIZE is shared by all 3 shader stages.
*
* The information about LDS and other non-compile-time parameters is then
* written to userdata SGPRs.
*/
static void si_emit_derived_tess_state(struct si_context *sctx,
const struct pipe_draw_info *info,
unsigned *num_patches)
{
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
struct si_shader *ls_current;
struct si_shader_selector *ls;
/* The TES pointer will only be used for sctx->last_tcs.
* It would be wrong to think that TCS = TES. */
struct si_shader_selector *tcs =
sctx->tcs_shader.cso ? sctx->tcs_shader.cso : sctx->tes_shader.cso;
unsigned tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id;
bool has_primid_instancing_bug = sctx->b.chip_class == SI &&
sctx->b.screen->info.max_se == 1;
unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
unsigned num_tcs_input_cp = info->vertices_per_patch;
unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs;
unsigned num_tcs_patch_outputs;
unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size;
unsigned input_patch_size, output_patch_size, output_patch0_offset;
unsigned perpatch_output_offset, lds_size;
unsigned tcs_in_layout, tcs_out_layout, tcs_out_offsets;
unsigned offchip_layout, hardware_lds_size, ls_hs_config;
/* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */
if (sctx->b.chip_class >= GFX9) {
if (sctx->tcs_shader.cso)
ls_current = sctx->tcs_shader.current;
else
ls_current = sctx->fixed_func_tcs_shader.current;
ls = ls_current->key.part.tcs.ls;
} else {
ls_current = sctx->vs_shader.current;
ls = sctx->vs_shader.cso;
}
if (sctx->last_ls == ls_current &&
sctx->last_tcs == tcs &&
sctx->last_tes_sh_base == tes_sh_base &&
sctx->last_num_tcs_input_cp == num_tcs_input_cp &&
(!has_primid_instancing_bug ||
(sctx->last_tess_uses_primid == tess_uses_primid))) {
*num_patches = sctx->last_num_patches;
return;
}
sctx->last_ls = ls_current;
sctx->last_tcs = tcs;
sctx->last_tes_sh_base = tes_sh_base;
sctx->last_num_tcs_input_cp = num_tcs_input_cp;
sctx->last_tess_uses_primid = tess_uses_primid;
/* This calculates how shader inputs and outputs among VS, TCS, and TES
* are laid out in LDS. */
num_tcs_inputs = util_last_bit64(ls->outputs_written);
if (sctx->tcs_shader.cso) {
num_tcs_outputs = util_last_bit64(tcs->outputs_written);
num_tcs_output_cp = tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
num_tcs_patch_outputs = util_last_bit64(tcs->patch_outputs_written);
} else {
/* No TCS. Route varyings from LS to TES. */
num_tcs_outputs = num_tcs_inputs;
num_tcs_output_cp = num_tcs_input_cp;
num_tcs_patch_outputs = 2; /* TESSINNER + TESSOUTER */
}
input_vertex_size = num_tcs_inputs * 16;
output_vertex_size = num_tcs_outputs * 16;
input_patch_size = num_tcs_input_cp * input_vertex_size;
pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
/* Ensure that we only need one wave per SIMD so we don't need to check
* resource usage. Also ensures that the number of tcs in and out
* vertices per threadgroup are at most 256.
*/
*num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
/* Make sure that the data fits in LDS. This assumes the shaders only
* use LDS for the inputs and outputs.
*
* While CIK can use 64K per threadgroup, there is a hang on Stoney
* with 2 CUs if we use more than 32K. The closed Vulkan driver also
* uses 32K at most on all GCN chips.
*/
hardware_lds_size = 32768;
*num_patches = MIN2(*num_patches, hardware_lds_size / (input_patch_size +
output_patch_size));
/* Make sure the output data fits in the offchip buffer */
*num_patches = MIN2(*num_patches,
(sctx->screen->tess_offchip_block_dw_size * 4) /
output_patch_size);
/* Not necessary for correctness, but improves performance. The
* specific value is taken from the proprietary driver.
*/
*num_patches = MIN2(*num_patches, 40);
if (sctx->b.chip_class == SI) {
/* SI bug workaround, related to power management. Limit LS-HS
* threadgroups to only one wave.
*/
unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
*num_patches = MIN2(*num_patches, one_wave);
}
/* The VGT HS block increments the patch ID unconditionally
* within a single threadgroup. This results in incorrect
* patch IDs when instanced draws are used.
*
* The intended solution is to restrict threadgroups to
* a single instance by setting SWITCH_ON_EOI, which
* should cause IA to split instances up. However, this
* doesn't work correctly on SI when there is no other
* SE to switch to.
*/
if (has_primid_instancing_bug && tess_uses_primid)
*num_patches = 1;
sctx->last_num_patches = *num_patches;
output_patch0_offset = input_patch_size * *num_patches;
perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size;
/* Compute userdata SGPRs. */
assert(((input_vertex_size / 4) & ~0xff) == 0);
assert(((output_vertex_size / 4) & ~0xff) == 0);
assert(((input_patch_size / 4) & ~0x1fff) == 0);
assert(((output_patch_size / 4) & ~0x1fff) == 0);
assert(((output_patch0_offset / 16) & ~0xffff) == 0);
assert(((perpatch_output_offset / 16) & ~0xffff) == 0);
assert(num_tcs_input_cp <= 32);
assert(num_tcs_output_cp <= 32);
tcs_in_layout = S_VS_STATE_LS_OUT_PATCH_SIZE(input_patch_size / 4) |
S_VS_STATE_LS_OUT_VERTEX_SIZE(input_vertex_size / 4);
tcs_out_layout = output_patch_size / 4;
tcs_out_offsets = (output_patch0_offset / 16) |
((perpatch_output_offset / 16) << 16);
offchip_layout = *num_patches |
(num_tcs_output_cp << 6) |
(pervertex_output_patch_size * *num_patches << 12);
/* Compute the LDS size. */
lds_size = output_patch0_offset + output_patch_size * *num_patches;
if (sctx->b.chip_class >= CIK) {
assert(lds_size <= 65536);
lds_size = align(lds_size, 512) / 512;
} else {
assert(lds_size <= 32768);
lds_size = align(lds_size, 256) / 256;
}
/* Set SI_SGPR_VS_STATE_BITS. */
sctx->current_vs_state &= C_VS_STATE_LS_OUT_PATCH_SIZE &
C_VS_STATE_LS_OUT_VERTEX_SIZE;
sctx->current_vs_state |= tcs_in_layout;
if (sctx->b.chip_class >= GFX9) {
unsigned hs_rsrc2 = ls_current->config.rsrc2 |
S_00B42C_LDS_SIZE(lds_size);
radeon_set_sh_reg(cs, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, hs_rsrc2);
/* Set userdata SGPRs for merged LS-HS. */
radeon_set_sh_reg_seq(cs,
R_00B430_SPI_SHADER_USER_DATA_LS_0 +
GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4, 3);
radeon_emit(cs, offchip_layout);
radeon_emit(cs, tcs_out_offsets);
radeon_emit(cs, tcs_out_layout | (num_tcs_input_cp << 26));
} else {
unsigned ls_rsrc2 = ls_current->config.rsrc2;
si_multiwave_lds_size_workaround(sctx->screen, &lds_size);
ls_rsrc2 |= S_00B52C_LDS_SIZE(lds_size);
/* Due to a hw bug, RSRC2_LS must be written twice with another
* LS register written in between. */
if (sctx->b.chip_class == CIK && sctx->b.family != CHIP_HAWAII)
radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, ls_rsrc2);
radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
radeon_emit(cs, ls_current->config.rsrc1);
radeon_emit(cs, ls_rsrc2);
/* Set userdata SGPRs for TCS. */
radeon_set_sh_reg_seq(cs,
R_00B430_SPI_SHADER_USER_DATA_HS_0 + GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4, 4);
radeon_emit(cs, offchip_layout);
radeon_emit(cs, tcs_out_offsets);
radeon_emit(cs, tcs_out_layout | (num_tcs_input_cp << 26));
radeon_emit(cs, tcs_in_layout);
}
/* Set userdata SGPRs for TES. */
radeon_set_sh_reg_seq(cs, tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4, 2);
radeon_emit(cs, offchip_layout);
radeon_emit(cs, r600_resource(sctx->tess_offchip_ring)->gpu_address >> 16);
ls_hs_config = S_028B58_NUM_PATCHES(*num_patches) |
S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
if (sctx->b.chip_class >= CIK)
radeon_set_context_reg_idx(cs, R_028B58_VGT_LS_HS_CONFIG, 2,
ls_hs_config);
else
radeon_set_context_reg(cs, R_028B58_VGT_LS_HS_CONFIG,
ls_hs_config);
}
static unsigned si_num_prims_for_vertices(const struct pipe_draw_info *info)
{
switch (info->mode) {
case PIPE_PRIM_PATCHES:
return info->count / info->vertices_per_patch;
case SI_PRIM_RECTANGLE_LIST:
return info->count / 3;
default:
return u_prims_for_vertices(info->mode, info->count);
}
}
static unsigned
si_get_init_multi_vgt_param(struct si_screen *sscreen,
union si_vgt_param_key *key)
{
STATIC_ASSERT(sizeof(union si_vgt_param_key) == 4);
unsigned max_primgroup_in_wave = 2;
/* SWITCH_ON_EOP(0) is always preferable. */
bool wd_switch_on_eop = false;
bool ia_switch_on_eop = false;
bool ia_switch_on_eoi = false;
bool partial_vs_wave = false;
bool partial_es_wave = false;
if (key->u.uses_tess) {
/* SWITCH_ON_EOI must be set if PrimID is used. */
if (key->u.tess_uses_prim_id)
ia_switch_on_eoi = true;
/* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
if ((sscreen->info.family == CHIP_TAHITI ||
sscreen->info.family == CHIP_PITCAIRN ||
sscreen->info.family == CHIP_BONAIRE) &&
key->u.uses_gs)
partial_vs_wave = true;
/* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
if (sscreen->has_distributed_tess) {
if (key->u.uses_gs) {
if (sscreen->info.chip_class <= VI)
partial_es_wave = true;
/* GPU hang workaround. */
if (sscreen->info.family == CHIP_TONGA ||
sscreen->info.family == CHIP_FIJI ||
sscreen->info.family == CHIP_POLARIS10 ||
sscreen->info.family == CHIP_POLARIS11 ||
sscreen->info.family == CHIP_POLARIS12)
partial_vs_wave = true;
} else {
partial_vs_wave = true;
}
}
}
/* This is a hardware requirement. */
if (key->u.line_stipple_enabled ||
(sscreen->debug_flags & DBG(SWITCH_ON_EOP))) {
ia_switch_on_eop = true;
wd_switch_on_eop = true;
}
if (sscreen->info.chip_class >= CIK) {
/* WD_SWITCH_ON_EOP has no effect on GPUs with less than
* 4 shader engines. Set 1 to pass the assertion below.
* The other cases are hardware requirements.
*
* Polaris supports primitive restart with WD_SWITCH_ON_EOP=0
* for points, line strips, and tri strips.
*/
if (sscreen->info.max_se < 4 ||
key->u.prim == PIPE_PRIM_POLYGON ||
key->u.prim == PIPE_PRIM_LINE_LOOP ||
key->u.prim == PIPE_PRIM_TRIANGLE_FAN ||
key->u.prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY ||
(key->u.primitive_restart &&
(sscreen->info.family < CHIP_POLARIS10 ||
(key->u.prim != PIPE_PRIM_POINTS &&
key->u.prim != PIPE_PRIM_LINE_STRIP &&
key->u.prim != PIPE_PRIM_TRIANGLE_STRIP))) ||
key->u.count_from_stream_output)
wd_switch_on_eop = true;
/* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
* We don't know that for indirect drawing, so treat it as
* always problematic. */
if (sscreen->info.family == CHIP_HAWAII &&
key->u.uses_instancing)
wd_switch_on_eop = true;
/* Performance recommendation for 4 SE Gfx7-8 parts if
* instances are smaller than a primgroup.
* Assume indirect draws always use small instances.
* This is needed for good VS wave utilization.
*/
if (sscreen->info.chip_class <= VI &&
sscreen->info.max_se == 4 &&
key->u.multi_instances_smaller_than_primgroup)
wd_switch_on_eop = true;
/* Required on CIK and later. */
if (sscreen->info.max_se > 2 && !wd_switch_on_eop)
ia_switch_on_eoi = true;
/* Required by Hawaii and, for some special cases, by VI. */
if (ia_switch_on_eoi &&
(sscreen->info.family == CHIP_HAWAII ||
(sscreen->info.chip_class == VI &&
(key->u.uses_gs || max_primgroup_in_wave != 2))))
partial_vs_wave = true;
/* Instancing bug on Bonaire. */
if (sscreen->info.family == CHIP_BONAIRE && ia_switch_on_eoi &&
key->u.uses_instancing)
partial_vs_wave = true;
/* If the WD switch is false, the IA switch must be false too. */
assert(wd_switch_on_eop || !ia_switch_on_eop);
}
/* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
if (sscreen->info.chip_class <= VI && ia_switch_on_eoi)
partial_es_wave = true;
return S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
S_028AA8_WD_SWITCH_ON_EOP(sscreen->info.chip_class >= CIK ? wd_switch_on_eop : 0) |
/* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
S_028AA8_MAX_PRIMGRP_IN_WAVE(sscreen->info.chip_class == VI ?
max_primgroup_in_wave : 0) |
S_030960_EN_INST_OPT_BASIC(sscreen->info.chip_class >= GFX9) |
S_030960_EN_INST_OPT_ADV(sscreen->info.chip_class >= GFX9);
}
void si_init_ia_multi_vgt_param_table(struct si_context *sctx)
{
for (int prim = 0; prim <= SI_PRIM_RECTANGLE_LIST; prim++)
for (int uses_instancing = 0; uses_instancing < 2; uses_instancing++)
for (int multi_instances = 0; multi_instances < 2; multi_instances++)
for (int primitive_restart = 0; primitive_restart < 2; primitive_restart++)
for (int count_from_so = 0; count_from_so < 2; count_from_so++)
for (int line_stipple = 0; line_stipple < 2; line_stipple++)
for (int uses_tess = 0; uses_tess < 2; uses_tess++)
for (int tess_uses_primid = 0; tess_uses_primid < 2; tess_uses_primid++)
for (int uses_gs = 0; uses_gs < 2; uses_gs++) {
union si_vgt_param_key key;
key.index = 0;
key.u.prim = prim;
key.u.uses_instancing = uses_instancing;
key.u.multi_instances_smaller_than_primgroup = multi_instances;
key.u.primitive_restart = primitive_restart;
key.u.count_from_stream_output = count_from_so;
key.u.line_stipple_enabled = line_stipple;
key.u.uses_tess = uses_tess;
key.u.tess_uses_prim_id = tess_uses_primid;
key.u.uses_gs = uses_gs;
sctx->ia_multi_vgt_param[key.index] =
si_get_init_multi_vgt_param(sctx->screen, &key);
}
}
static unsigned si_get_ia_multi_vgt_param(struct si_context *sctx,
const struct pipe_draw_info *info,
unsigned num_patches)
{
union si_vgt_param_key key = sctx->ia_multi_vgt_param_key;
unsigned primgroup_size;
unsigned ia_multi_vgt_param;
if (sctx->tes_shader.cso) {
primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */
} else if (sctx->gs_shader.cso) {
primgroup_size = 64; /* recommended with a GS */
} else {
primgroup_size = 128; /* recommended without a GS and tess */
}
key.u.prim = info->mode;
key.u.uses_instancing = info->indirect || info->instance_count > 1;
key.u.multi_instances_smaller_than_primgroup =
info->indirect ||
(info->instance_count > 1 &&
(info->count_from_stream_output ||
si_num_prims_for_vertices(info) < primgroup_size));
key.u.primitive_restart = info->primitive_restart;
key.u.count_from_stream_output = info->count_from_stream_output != NULL;
ia_multi_vgt_param = sctx->ia_multi_vgt_param[key.index] |
S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1);
if (sctx->gs_shader.cso) {
/* GS requirement. */
if (sctx->b.chip_class <= VI &&
SI_GS_PER_ES / primgroup_size >= sctx->screen->gs_table_depth - 3)
ia_multi_vgt_param |= S_028AA8_PARTIAL_ES_WAVE_ON(1);
/* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
* The hw doc says all multi-SE chips are affected, but Vulkan
* only applies it to Hawaii. Do what Vulkan does.
*/
if (sctx->b.family == CHIP_HAWAII &&
G_028AA8_SWITCH_ON_EOI(ia_multi_vgt_param) &&
(info->indirect ||
(info->instance_count > 1 &&
(info->count_from_stream_output ||
si_num_prims_for_vertices(info) <= 1))))
sctx->b.flags |= SI_CONTEXT_VGT_FLUSH;
}
return ia_multi_vgt_param;
}
/* rast_prim is the primitive type after GS. */
static void si_emit_rasterizer_prim_state(struct si_context *sctx)
{
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
enum pipe_prim_type rast_prim = sctx->current_rast_prim;
struct si_state_rasterizer *rs = sctx->emitted.named.rasterizer;
/* Skip this if not rendering lines. */
if (rast_prim != PIPE_PRIM_LINES &&
rast_prim != PIPE_PRIM_LINE_LOOP &&
rast_prim != PIPE_PRIM_LINE_STRIP &&
rast_prim != PIPE_PRIM_LINES_ADJACENCY &&
rast_prim != PIPE_PRIM_LINE_STRIP_ADJACENCY)
return;
if (rast_prim == sctx->last_rast_prim &&
rs->pa_sc_line_stipple == sctx->last_sc_line_stipple)
return;
/* For lines, reset the stipple pattern at each primitive. Otherwise,
* reset the stipple pattern at each packet (line strips, line loops).
*/
radeon_set_context_reg(cs, R_028A0C_PA_SC_LINE_STIPPLE,
rs->pa_sc_line_stipple |
S_028A0C_AUTO_RESET_CNTL(rast_prim == PIPE_PRIM_LINES ? 1 : 2));
sctx->last_rast_prim = rast_prim;
sctx->last_sc_line_stipple = rs->pa_sc_line_stipple;
}
static void si_emit_vs_state(struct si_context *sctx,
const struct pipe_draw_info *info)
{
sctx->current_vs_state &= C_VS_STATE_INDEXED;
sctx->current_vs_state |= S_VS_STATE_INDEXED(!!info->index_size);
if (sctx->num_vs_blit_sgprs) {
/* Re-emit the state after we leave u_blitter. */
sctx->last_vs_state = ~0;
return;
}
if (sctx->current_vs_state != sctx->last_vs_state) {
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
radeon_set_sh_reg(cs,
sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX] +
SI_SGPR_VS_STATE_BITS * 4,
sctx->current_vs_state);
sctx->last_vs_state = sctx->current_vs_state;
}
}
static void si_emit_draw_registers(struct si_context *sctx,
const struct pipe_draw_info *info,
unsigned num_patches)
{
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
unsigned prim = si_conv_pipe_prim(info->mode);
unsigned gs_out_prim = si_conv_prim_to_gs_out(sctx->current_rast_prim);
unsigned ia_multi_vgt_param;
ia_multi_vgt_param = si_get_ia_multi_vgt_param(sctx, info, num_patches);
/* Draw state. */
if (ia_multi_vgt_param != sctx->last_multi_vgt_param) {
if (sctx->b.chip_class >= GFX9)
radeon_set_uconfig_reg_idx(cs, R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param);
else if (sctx->b.chip_class >= CIK)
radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
else
radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
sctx->last_multi_vgt_param = ia_multi_vgt_param;
}
if (prim != sctx->last_prim) {
if (sctx->b.chip_class >= CIK)
radeon_set_uconfig_reg_idx(cs, R_030908_VGT_PRIMITIVE_TYPE, 1, prim);
else
radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, prim);
sctx->last_prim = prim;
}
if (gs_out_prim != sctx->last_gs_out_prim) {
radeon_set_context_reg(cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out_prim);
sctx->last_gs_out_prim = gs_out_prim;
}
/* Primitive restart. */
if (info->primitive_restart != sctx->last_primitive_restart_en) {
if (sctx->b.chip_class >= GFX9)
radeon_set_uconfig_reg(cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN,
info->primitive_restart);
else
radeon_set_context_reg(cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN,
info->primitive_restart);
sctx->last_primitive_restart_en = info->primitive_restart;
}
if (info->primitive_restart &&
(info->restart_index != sctx->last_restart_index ||
sctx->last_restart_index == SI_RESTART_INDEX_UNKNOWN)) {
radeon_set_context_reg(cs, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX,
info->restart_index);
sctx->last_restart_index = info->restart_index;
}
}
static void si_emit_draw_packets(struct si_context *sctx,
const struct pipe_draw_info *info,
struct pipe_resource *indexbuf,
unsigned index_size,
unsigned index_offset)
{
struct pipe_draw_indirect_info *indirect = info->indirect;
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
unsigned sh_base_reg = sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX];
bool render_cond_bit = sctx->b.render_cond && !sctx->b.render_cond_force_off;
uint32_t index_max_size = 0;
uint64_t index_va = 0;
if (info->count_from_stream_output) {
struct si_streamout_target *t =
(struct si_streamout_target*)info->count_from_stream_output;
uint64_t va = t->buf_filled_size->gpu_address +
t->buf_filled_size_offset;
radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE,
t->stride_in_dw);
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_MEM) |
COPY_DATA_DST_SEL(COPY_DATA_REG) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, va); /* src address lo */
radeon_emit(cs, va >> 32); /* src address hi */
radeon_emit(cs, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2);
radeon_emit(cs, 0); /* unused */
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
t->buf_filled_size, RADEON_USAGE_READ,
RADEON_PRIO_SO_FILLED_SIZE);
}
/* draw packet */
if (index_size) {
if (index_size != sctx->last_index_size) {
unsigned index_type;
/* index type */
switch (index_size) {
case 1:
index_type = V_028A7C_VGT_INDEX_8;
break;
case 2:
index_type = V_028A7C_VGT_INDEX_16 |
(SI_BIG_ENDIAN && sctx->b.chip_class <= CIK ?
V_028A7C_VGT_DMA_SWAP_16_BIT : 0);
break;
case 4:
index_type = V_028A7C_VGT_INDEX_32 |
(SI_BIG_ENDIAN && sctx->b.chip_class <= CIK ?
V_028A7C_VGT_DMA_SWAP_32_BIT : 0);
break;
default:
assert(!"unreachable");
return;
}
if (sctx->b.chip_class >= GFX9) {
radeon_set_uconfig_reg_idx(cs, R_03090C_VGT_INDEX_TYPE,
2, index_type);
} else {
radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
radeon_emit(cs, index_type);
}
sctx->last_index_size = index_size;
}
index_max_size = (indexbuf->width0 - index_offset) /
index_size;
index_va = r600_resource(indexbuf)->gpu_address + index_offset;
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
(struct r600_resource *)indexbuf,
RADEON_USAGE_READ, RADEON_PRIO_INDEX_BUFFER);
} else {
/* On CI and later, non-indexed draws overwrite VGT_INDEX_TYPE,
* so the state must be re-emitted before the next indexed draw.
*/
if (sctx->b.chip_class >= CIK)
sctx->last_index_size = -1;
}
if (indirect) {
uint64_t indirect_va = r600_resource(indirect->buffer)->gpu_address;
assert(indirect_va % 8 == 0);
si_invalidate_draw_sh_constants(sctx);
radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
radeon_emit(cs, 1);
radeon_emit(cs, indirect_va);
radeon_emit(cs, indirect_va >> 32);
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
(struct r600_resource *)indirect->buffer,
RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
unsigned di_src_sel = index_size ? V_0287F0_DI_SRC_SEL_DMA
: V_0287F0_DI_SRC_SEL_AUTO_INDEX;
assert(indirect->offset % 4 == 0);
if (index_size) {
radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
radeon_emit(cs, index_va);
radeon_emit(cs, index_va >> 32);
radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
radeon_emit(cs, index_max_size);
}
if (!sctx->screen->has_draw_indirect_multi) {
radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT
: PKT3_DRAW_INDIRECT,
3, render_cond_bit));
radeon_emit(cs, indirect->offset);
radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, di_src_sel);
} else {
uint64_t count_va = 0;
if (indirect->indirect_draw_count) {
struct r600_resource *params_buf =
(struct r600_resource *)indirect->indirect_draw_count;
radeon_add_to_buffer_list(
&sctx->b, &sctx->b.gfx, params_buf,
RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
count_va = params_buf->gpu_address + indirect->indirect_draw_count_offset;
}
radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT_MULTI :
PKT3_DRAW_INDIRECT_MULTI,
8, render_cond_bit));
radeon_emit(cs, indirect->offset);
radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, ((sh_base_reg + SI_SGPR_DRAWID * 4 - SI_SH_REG_OFFSET) >> 2) |
S_2C3_DRAW_INDEX_ENABLE(1) |
S_2C3_COUNT_INDIRECT_ENABLE(!!indirect->indirect_draw_count));
radeon_emit(cs, indirect->draw_count);
radeon_emit(cs, count_va);
radeon_emit(cs, count_va >> 32);
radeon_emit(cs, indirect->stride);
radeon_emit(cs, di_src_sel);
}
} else {
int base_vertex;
radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, 0));
radeon_emit(cs, info->instance_count);
/* Base vertex and start instance. */
base_vertex = index_size ? info->index_bias : info->start;
if (sctx->num_vs_blit_sgprs) {
/* Re-emit draw constants after we leave u_blitter. */
si_invalidate_draw_sh_constants(sctx);
/* Blit VS doesn't use BASE_VERTEX, START_INSTANCE, and DRAWID. */
radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_VS_BLIT_DATA * 4,
sctx->num_vs_blit_sgprs);
radeon_emit_array(cs, sctx->vs_blit_sh_data,
sctx->num_vs_blit_sgprs);
} else if (base_vertex != sctx->last_base_vertex ||
sctx->last_base_vertex == SI_BASE_VERTEX_UNKNOWN ||
info->start_instance != sctx->last_start_instance ||
info->drawid != sctx->last_drawid ||
sh_base_reg != sctx->last_sh_base_reg) {
radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 3);
radeon_emit(cs, base_vertex);
radeon_emit(cs, info->start_instance);
radeon_emit(cs, info->drawid);
sctx->last_base_vertex = base_vertex;
sctx->last_start_instance = info->start_instance;
sctx->last_drawid = info->drawid;
sctx->last_sh_base_reg = sh_base_reg;
}
if (index_size) {
index_va += info->start * index_size;
radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit));
radeon_emit(cs, index_max_size);
radeon_emit(cs, index_va);
radeon_emit(cs, index_va >> 32);
radeon_emit(cs, info->count);
radeon_emit(cs, V_0287F0_DI_SRC_SEL_DMA);
} else {
radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, render_cond_bit));
radeon_emit(cs, info->count);
radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX |
S_0287F0_USE_OPAQUE(!!info->count_from_stream_output));
}
}
}
static void si_emit_surface_sync(struct r600_common_context *rctx,
unsigned cp_coher_cntl)
{
struct radeon_winsys_cs *cs = rctx->gfx.cs;
if (rctx->chip_class >= GFX9) {
/* Flush caches and wait for the caches to assert idle. */
radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, 0));
radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
radeon_emit(cs, 0); /* CP_COHER_BASE */
radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
} else {
/* ACQUIRE_MEM is only required on a compute ring. */
radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, 0));
radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
radeon_emit(cs, 0); /* CP_COHER_BASE */
radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
}
}
void si_emit_cache_flush(struct si_context *sctx)
{
struct r600_common_context *rctx = &sctx->b;
struct radeon_winsys_cs *cs = rctx->gfx.cs;
uint32_t cp_coher_cntl = 0;
uint32_t flush_cb_db = rctx->flags & (SI_CONTEXT_FLUSH_AND_INV_CB |
SI_CONTEXT_FLUSH_AND_INV_DB);
if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_CB)
sctx->b.num_cb_cache_flushes++;
if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_DB)
sctx->b.num_db_cache_flushes++;
/* SI has a bug that it always flushes ICACHE and KCACHE if either
* bit is set. An alternative way is to write SQC_CACHES, but that
* doesn't seem to work reliably. Since the bug doesn't affect
* correctness (it only does more work than necessary) and
* the performance impact is likely negligible, there is no plan
* to add a workaround for it.
*/
if (rctx->flags & SI_CONTEXT_INV_ICACHE)
cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
if (rctx->flags & SI_CONTEXT_INV_SMEM_L1)
cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
if (rctx->chip_class <= VI) {
if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
S_0085F0_CB0_DEST_BASE_ENA(1) |
S_0085F0_CB1_DEST_BASE_ENA(1) |
S_0085F0_CB2_DEST_BASE_ENA(1) |
S_0085F0_CB3_DEST_BASE_ENA(1) |
S_0085F0_CB4_DEST_BASE_ENA(1) |
S_0085F0_CB5_DEST_BASE_ENA(1) |
S_0085F0_CB6_DEST_BASE_ENA(1) |
S_0085F0_CB7_DEST_BASE_ENA(1);
/* Necessary for DCC */
if (rctx->chip_class == VI)
si_gfx_write_event_eop(rctx, V_028A90_FLUSH_AND_INV_CB_DATA_TS,
0, EOP_DATA_SEL_DISCARD, NULL,
0, 0, SI_NOT_QUERY);
}
if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_DB)
cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
S_0085F0_DB_DEST_BASE_ENA(1);
}
if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
/* Flush CMASK/FMASK/DCC. SURFACE_SYNC will wait for idle. */
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
}
if (rctx->flags & (SI_CONTEXT_FLUSH_AND_INV_DB |
SI_CONTEXT_FLUSH_AND_INV_DB_META)) {
/* Flush HTILE. SURFACE_SYNC will wait for idle. */
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
}
/* Wait for shader engines to go idle.
* VS and PS waits are unnecessary if SURFACE_SYNC is going to wait
* for everything including CB/DB cache flushes.
*/
if (!flush_cb_db) {
if (rctx->flags & SI_CONTEXT_PS_PARTIAL_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
/* Only count explicit shader flushes, not implicit ones
* done by SURFACE_SYNC.
*/
rctx->num_vs_flushes++;
rctx->num_ps_flushes++;
} else if (rctx->flags & SI_CONTEXT_VS_PARTIAL_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
rctx->num_vs_flushes++;
}
}
if (rctx->flags & SI_CONTEXT_CS_PARTIAL_FLUSH &&
sctx->compute_is_busy) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
rctx->num_cs_flushes++;
sctx->compute_is_busy = false;
}
/* VGT state synchronization. */
if (rctx->flags & SI_CONTEXT_VGT_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
}
if (rctx->flags & SI_CONTEXT_VGT_STREAMOUT_SYNC) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
}
/* GFX9: Wait for idle if we're flushing CB or DB. ACQUIRE_MEM doesn't
* wait for idle on GFX9. We have to use a TS event.
*/
if (sctx->b.chip_class >= GFX9 && flush_cb_db) {
uint64_t va;
unsigned tc_flags, cb_db_event;
/* Set the CB/DB flush event. */
switch (flush_cb_db) {
case SI_CONTEXT_FLUSH_AND_INV_CB:
cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
break;
case SI_CONTEXT_FLUSH_AND_INV_DB:
cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
break;
default:
/* both CB & DB */
cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
}
/* These are the only allowed combinations. If you need to
* do multiple operations at once, do them separately.
* All operations that invalidate L2 also seem to invalidate
* metadata. Volatile (VOL) and WC flushes are not listed here.
*
* TC | TC_WB = writeback & invalidate L2 & L1
* TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
* TC_WB | TC_NC = writeback L2 for MTYPE == NC
* TC | TC_NC = invalidate L2 for MTYPE == NC
* TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
* TCL1 = invalidate L1
*/
tc_flags = 0;
if (rctx->flags & SI_CONTEXT_INV_L2_METADATA) {
tc_flags = EVENT_TC_ACTION_ENA |
EVENT_TC_MD_ACTION_ENA;
}
/* Ideally flush TC together with CB/DB. */
if (rctx->flags & SI_CONTEXT_INV_GLOBAL_L2) {
/* Writeback and invalidate everything in L2 & L1. */
tc_flags = EVENT_TC_ACTION_ENA |
EVENT_TC_WB_ACTION_ENA;
/* Clear the flags. */
rctx->flags &= ~(SI_CONTEXT_INV_GLOBAL_L2 |
SI_CONTEXT_WRITEBACK_GLOBAL_L2 |
SI_CONTEXT_INV_VMEM_L1);
sctx->b.num_L2_invalidates++;
}
/* Do the flush (enqueue the event and wait for it). */
va = sctx->wait_mem_scratch->gpu_address;
sctx->wait_mem_number++;
si_gfx_write_event_eop(rctx, cb_db_event, tc_flags,
EOP_DATA_SEL_VALUE_32BIT,
sctx->wait_mem_scratch, va,
sctx->wait_mem_number, SI_NOT_QUERY);
si_gfx_wait_fence(rctx, va, sctx->wait_mem_number, 0xffffffff);
}
/* Make sure ME is idle (it executes most packets) before continuing.
* This prevents read-after-write hazards between PFP and ME.
*/
if (cp_coher_cntl ||
(rctx->flags & (SI_CONTEXT_CS_PARTIAL_FLUSH |
SI_CONTEXT_INV_VMEM_L1 |
SI_CONTEXT_INV_GLOBAL_L2 |
SI_CONTEXT_WRITEBACK_GLOBAL_L2))) {
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
}
/* SI-CI-VI only:
* When one of the CP_COHER_CNTL.DEST_BASE flags is set, SURFACE_SYNC
* waits for idle, so it should be last. SURFACE_SYNC is done in PFP.
*
* cp_coher_cntl should contain all necessary flags except TC flags
* at this point.
*
* SI-CIK don't support L2 write-back.
*/
if (rctx->flags & SI_CONTEXT_INV_GLOBAL_L2 ||
(rctx->chip_class <= CIK &&
(rctx->flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2))) {
/* Invalidate L1 & L2. (L1 is always invalidated on SI)
* WB must be set on VI+ when TC_ACTION is set.
*/
si_emit_surface_sync(rctx, cp_coher_cntl |
S_0085F0_TC_ACTION_ENA(1) |
S_0085F0_TCL1_ACTION_ENA(1) |
S_0301F0_TC_WB_ACTION_ENA(rctx->chip_class >= VI));
cp_coher_cntl = 0;
sctx->b.num_L2_invalidates++;
} else {
/* L1 invalidation and L2 writeback must be done separately,
* because both operations can't be done together.
*/
if (rctx->flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2) {
/* WB = write-back
* NC = apply to non-coherent MTYPEs
* (i.e. MTYPE <= 1, which is what we use everywhere)
*
* WB doesn't work without NC.
*/
si_emit_surface_sync(rctx, cp_coher_cntl |
S_0301F0_TC_WB_ACTION_ENA(1) |
S_0301F0_TC_NC_ACTION_ENA(1));
cp_coher_cntl = 0;
sctx->b.num_L2_writebacks++;
}
if (rctx->flags & SI_CONTEXT_INV_VMEM_L1) {
/* Invalidate per-CU VMEM L1. */
si_emit_surface_sync(rctx, cp_coher_cntl |
S_0085F0_TCL1_ACTION_ENA(1));
cp_coher_cntl = 0;
}
}
/* If TC flushes haven't cleared this... */
if (cp_coher_cntl)
si_emit_surface_sync(rctx, cp_coher_cntl);
if (rctx->flags & SI_CONTEXT_START_PIPELINE_STATS) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
EVENT_INDEX(0));
} else if (rctx->flags & SI_CONTEXT_STOP_PIPELINE_STATS) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
EVENT_INDEX(0));
}
rctx->flags = 0;
}
static void si_get_draw_start_count(struct si_context *sctx,
const struct pipe_draw_info *info,
unsigned *start, unsigned *count)
{
struct pipe_draw_indirect_info *indirect = info->indirect;
if (indirect) {
unsigned indirect_count;
struct pipe_transfer *transfer;
unsigned begin, end;
unsigned map_size;
unsigned *data;
if (indirect->indirect_draw_count) {
data = pipe_buffer_map_range(&sctx->b.b,
indirect->indirect_draw_count,
indirect->indirect_draw_count_offset,
sizeof(unsigned),
PIPE_TRANSFER_READ, &transfer);
indirect_count = *data;
pipe_buffer_unmap(&sctx->b.b, transfer);
} else {
indirect_count = indirect->draw_count;
}
if (!indirect_count) {
*start = *count = 0;
return;
}
map_size = (indirect_count - 1) * indirect->stride + 3 * sizeof(unsigned);
data = pipe_buffer_map_range(&sctx->b.b, indirect->buffer,
indirect->offset, map_size,
PIPE_TRANSFER_READ, &transfer);
begin = UINT_MAX;
end = 0;
for (unsigned i = 0; i < indirect_count; ++i) {
unsigned count = data[0];
unsigned start = data[2];
if (count > 0) {
begin = MIN2(begin, start);
end = MAX2(end, start + count);
}
data += indirect->stride / sizeof(unsigned);
}
pipe_buffer_unmap(&sctx->b.b, transfer);
if (begin < end) {
*start = begin;
*count = end - begin;
} else {
*start = *count = 0;
}
} else {
*start = info->start;
*count = info->count;
}
}
static void si_emit_all_states(struct si_context *sctx, const struct pipe_draw_info *info,
unsigned skip_atom_mask)
{
/* Emit state atoms. */
unsigned mask = sctx->dirty_atoms & ~skip_atom_mask;
while (mask) {
struct r600_atom *atom = sctx->atoms.array[u_bit_scan(&mask)];
atom->emit(&sctx->b, atom);
}
sctx->dirty_atoms &= skip_atom_mask;
/* Emit states. */
mask = sctx->dirty_states;
while (mask) {
unsigned i = u_bit_scan(&mask);
struct si_pm4_state *state = sctx->queued.array[i];
if (!state || sctx->emitted.array[i] == state)
continue;
si_pm4_emit(sctx, state);
sctx->emitted.array[i] = state;
}
sctx->dirty_states = 0;
/* Emit draw states. */
unsigned num_patches = 0;
si_emit_rasterizer_prim_state(sctx);
if (sctx->tes_shader.cso)
si_emit_derived_tess_state(sctx, info, &num_patches);
si_emit_vs_state(sctx, info);
si_emit_draw_registers(sctx, info, num_patches);
}
void si_draw_vbo(struct pipe_context *ctx, const struct pipe_draw_info *info)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
struct pipe_resource *indexbuf = info->index.resource;
unsigned dirty_tex_counter;
enum pipe_prim_type rast_prim;
unsigned index_size = info->index_size;
unsigned index_offset = info->indirect ? info->start * index_size : 0;
if (likely(!info->indirect)) {
/* SI-CI treat instance_count==0 as instance_count==1. There is
* no workaround for indirect draws, but we can at least skip
* direct draws.
*/
if (unlikely(!info->instance_count))
return;
/* Handle count == 0. */
if (unlikely(!info->count &&
(index_size || !info->count_from_stream_output)))
return;
}
if (unlikely(!sctx->vs_shader.cso)) {
assert(0);
return;
}
if (unlikely(!sctx->ps_shader.cso && (!rs || !rs->rasterizer_discard))) {
assert(0);
return;
}
if (unlikely(!!sctx->tes_shader.cso != (info->mode == PIPE_PRIM_PATCHES))) {
assert(0);
return;
}
/* Recompute and re-emit the texture resource states if needed. */
dirty_tex_counter = p_atomic_read(&sctx->b.screen->dirty_tex_counter);
if (unlikely(dirty_tex_counter != sctx->b.last_dirty_tex_counter)) {
sctx->b.last_dirty_tex_counter = dirty_tex_counter;
sctx->framebuffer.dirty_cbufs |=
((1 << sctx->framebuffer.state.nr_cbufs) - 1);
sctx->framebuffer.dirty_zsbuf = true;
si_mark_atom_dirty(sctx, &sctx->framebuffer.atom);
si_update_all_texture_descriptors(sctx);
}
si_decompress_textures(sctx, u_bit_consecutive(0, SI_NUM_GRAPHICS_SHADERS));
/* Set the rasterization primitive type.
*
* This must be done after si_decompress_textures, which can call
* draw_vbo recursively, and before si_update_shaders, which uses
* current_rast_prim for this draw_vbo call. */
if (sctx->gs_shader.cso)
rast_prim = sctx->gs_shader.cso->gs_output_prim;
else if (sctx->tes_shader.cso) {
if (sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_POINT_MODE])
rast_prim = PIPE_PRIM_POINTS;
else
rast_prim = sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
} else
rast_prim = info->mode;
if (rast_prim != sctx->current_rast_prim) {
bool old_is_poly = sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES;
bool new_is_poly = rast_prim >= PIPE_PRIM_TRIANGLES;
if (old_is_poly != new_is_poly) {
sctx->scissors.dirty_mask = (1 << SI_MAX_VIEWPORTS) - 1;
si_mark_atom_dirty(sctx, &sctx->scissors.atom);
}
sctx->current_rast_prim = rast_prim;
sctx->do_update_shaders = true;
}
if (sctx->tes_shader.cso &&
sctx->screen->has_ls_vgpr_init_bug) {
/* Determine whether the LS VGPR fix should be applied.
*
* It is only required when num input CPs > num output CPs,
* which cannot happen with the fixed function TCS. We should
* also update this bit when switching from TCS to fixed
* function TCS.
*/
struct si_shader_selector *tcs = sctx->tcs_shader.cso;
bool ls_vgpr_fix =
tcs &&
info->vertices_per_patch >
tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
if (ls_vgpr_fix != sctx->ls_vgpr_fix) {
sctx->ls_vgpr_fix = ls_vgpr_fix;
sctx->do_update_shaders = true;
}
}
if (sctx->gs_shader.cso) {
/* Determine whether the GS triangle strip adjacency fix should
* be applied. Rotate every other triangle if
* - triangle strips with adjacency are fed to the GS and
* - primitive restart is disabled (the rotation doesn't help
* when the restart occurs after an odd number of triangles).
*/
bool gs_tri_strip_adj_fix =
!sctx->tes_shader.cso &&
info->mode == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY &&
!info->primitive_restart;
if (gs_tri_strip_adj_fix != sctx->gs_tri_strip_adj_fix) {
sctx->gs_tri_strip_adj_fix = gs_tri_strip_adj_fix;
sctx->do_update_shaders = true;
}
}
if (sctx->do_update_shaders && !si_update_shaders(sctx))
return;
if (index_size) {
/* Translate or upload, if needed. */
/* 8-bit indices are supported on VI. */
if (sctx->b.chip_class <= CIK && index_size == 1) {
unsigned start, count, start_offset, size, offset;
void *ptr;
si_get_draw_start_count(sctx, info, &start, &count);
start_offset = start * 2;
size = count * 2;
indexbuf = NULL;
u_upload_alloc(ctx->stream_uploader, start_offset,
size,
si_optimal_tcc_alignment(sctx, size),
&offset, &indexbuf, &ptr);
if (!indexbuf)
return;
util_shorten_ubyte_elts_to_userptr(&sctx->b.b, info, 0, 0,
index_offset + start,
count, ptr);
/* info->start will be added by the drawing code */
index_offset = offset - start_offset;
index_size = 2;
} else if (info->has_user_indices) {
unsigned start_offset;
assert(!info->indirect);
start_offset = info->start * index_size;
indexbuf = NULL;
u_upload_data(ctx->stream_uploader, start_offset,
info->count * index_size,
sctx->screen->info.tcc_cache_line_size,
(char*)info->index.user + start_offset,
&index_offset, &indexbuf);
if (!indexbuf)
return;
/* info->start will be added by the drawing code */
index_offset -= start_offset;
} else if (sctx->b.chip_class <= CIK &&
r600_resource(indexbuf)->TC_L2_dirty) {
/* VI reads index buffers through TC L2, so it doesn't
* need this. */
sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
r600_resource(indexbuf)->TC_L2_dirty = false;
}
}
if (info->indirect) {
struct pipe_draw_indirect_info *indirect = info->indirect;
/* Add the buffer size for memory checking in need_cs_space. */
si_context_add_resource_size(ctx, indirect->buffer);
/* Indirect buffers use TC L2 on GFX9, but not older hw. */
if (sctx->b.chip_class <= VI) {
if (r600_resource(indirect->buffer)->TC_L2_dirty) {
sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
r600_resource(indirect->buffer)->TC_L2_dirty = false;
}
if (indirect->indirect_draw_count &&
r600_resource(indirect->indirect_draw_count)->TC_L2_dirty) {
sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
r600_resource(indirect->indirect_draw_count)->TC_L2_dirty = false;
}
}
}
si_need_cs_space(sctx);
/* Since we've called r600_context_add_resource_size for vertex buffers,
* this must be called after si_need_cs_space, because we must let
* need_cs_space flush before we add buffers to the buffer list.
*/
if (!si_upload_vertex_buffer_descriptors(sctx))
return;
/* Vega10/Raven scissor bug workaround. This must be done before VPORT
* scissor registers are changed. There is also a more efficient but
* more involved alternative workaround.
*/
if ((sctx->b.family == CHIP_VEGA10 || sctx->b.family == CHIP_RAVEN) &&
si_is_atom_dirty(sctx, &sctx->scissors.atom)) {
sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH;
si_emit_cache_flush(sctx);
}
/* Use optimal packet order based on whether we need to sync the pipeline. */
if (unlikely(sctx->b.flags & (SI_CONTEXT_FLUSH_AND_INV_CB |
SI_CONTEXT_FLUSH_AND_INV_DB |
SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH))) {
/* If we have to wait for idle, set all states first, so that all
* SET packets are processed in parallel with previous draw calls.
* Then upload descriptors, set shader pointers, and draw, and
* prefetch at the end. This ensures that the time the CUs
* are idle is very short. (there are only SET_SH packets between
* the wait and the draw)
*/
struct r600_atom *shader_pointers = &sctx->shader_pointers.atom;
unsigned masked_atoms = 1u << shader_pointers->id;
if (unlikely(sctx->b.flags & SI_CONTEXT_FLUSH_FOR_RENDER_COND))
masked_atoms |= 1u << sctx->b.render_cond_atom.id;
/* Emit all states except shader pointers and render condition. */
si_emit_all_states(sctx, info, masked_atoms);
si_emit_cache_flush(sctx);
/* <-- CUs are idle here. */
if (!si_upload_graphics_shader_descriptors(sctx))
return;
/* Set shader pointers after descriptors are uploaded. */
if (si_is_atom_dirty(sctx, shader_pointers))
shader_pointers->emit(&sctx->b, NULL);
if (si_is_atom_dirty(sctx, &sctx->b.render_cond_atom))
sctx->b.render_cond_atom.emit(&sctx->b, NULL);
sctx->dirty_atoms = 0;
si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset);
/* <-- CUs are busy here. */
/* Start prefetches after the draw has been started. Both will run
* in parallel, but starting the draw first is more important.
*/
if (sctx->b.chip_class >= CIK && sctx->prefetch_L2_mask)
cik_emit_prefetch_L2(sctx);
} else {
/* If we don't wait for idle, start prefetches first, then set
* states, and draw at the end.
*/
if (sctx->b.flags)
si_emit_cache_flush(sctx);
if (sctx->b.chip_class >= CIK && sctx->prefetch_L2_mask)
cik_emit_prefetch_L2(sctx);
if (!si_upload_graphics_shader_descriptors(sctx))
return;
si_emit_all_states(sctx, info, 0);
si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset);
}
if (unlikely(sctx->current_saved_cs)) {
si_trace_emit(sctx);
si_log_draw_state(sctx, sctx->b.log);
}
/* Workaround for a VGT hang when streamout is enabled.
* It must be done after drawing. */
if ((sctx->b.family == CHIP_HAWAII ||
sctx->b.family == CHIP_TONGA ||
sctx->b.family == CHIP_FIJI) &&
si_get_strmout_en(sctx)) {
sctx->b.flags |= SI_CONTEXT_VGT_STREAMOUT_SYNC;
}
if (unlikely(sctx->decompression_enabled)) {
sctx->b.num_decompress_calls++;
} else {
sctx->b.num_draw_calls++;
if (sctx->framebuffer.state.nr_cbufs > 1)
sctx->b.num_mrt_draw_calls++;
if (info->primitive_restart)
sctx->b.num_prim_restart_calls++;
if (G_0286E8_WAVESIZE(sctx->spi_tmpring_size))
sctx->b.num_spill_draw_calls++;
}
if (index_size && indexbuf != info->index.resource)
pipe_resource_reference(&indexbuf, NULL);
}
void si_draw_rectangle(struct blitter_context *blitter,
void *vertex_elements_cso,
blitter_get_vs_func get_vs,
int x1, int y1, int x2, int y2,
float depth, unsigned num_instances,
enum blitter_attrib_type type,
const union blitter_attrib *attrib)
{
struct pipe_context *pipe = util_blitter_get_pipe(blitter);
struct si_context *sctx = (struct si_context*)pipe;
/* Pack position coordinates as signed int16. */
sctx->vs_blit_sh_data[0] = (uint32_t)(x1 & 0xffff) |
((uint32_t)(y1 & 0xffff) << 16);
sctx->vs_blit_sh_data[1] = (uint32_t)(x2 & 0xffff) |
((uint32_t)(y2 & 0xffff) << 16);
sctx->vs_blit_sh_data[2] = fui(depth);
switch (type) {
case UTIL_BLITTER_ATTRIB_COLOR:
memcpy(&sctx->vs_blit_sh_data[3], attrib->color,
sizeof(float)*4);
break;
case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
memcpy(&sctx->vs_blit_sh_data[3], &attrib->texcoord,
sizeof(attrib->texcoord));
break;
case UTIL_BLITTER_ATTRIB_NONE:;
}
pipe->bind_vs_state(pipe, si_get_blit_vs(sctx, type, num_instances));
struct pipe_draw_info info = {};
info.mode = SI_PRIM_RECTANGLE_LIST;
info.count = 3;
info.instance_count = num_instances;
/* Don't set per-stage shader pointers for VS. */
sctx->shader_pointers_dirty &= ~SI_DESCS_SHADER_MASK(VERTEX);
sctx->vertex_buffer_pointer_dirty = false;
si_draw_vbo(pipe, &info);
}
void si_trace_emit(struct si_context *sctx)
{
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
uint64_t va = sctx->current_saved_cs->trace_buf->gpu_address;
uint32_t trace_id = ++sctx->current_saved_cs->trace_id;
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
radeon_emit(cs, S_370_DST_SEL(V_370_MEMORY_SYNC) |
S_370_WR_CONFIRM(1) |
S_370_ENGINE_SEL(V_370_ME));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, trace_id);
radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
radeon_emit(cs, AC_ENCODE_TRACE_POINT(trace_id));
if (sctx->b.log)
u_log_flush(sctx->b.log);
}