/**************************************************************************
*
* Copyright © 2010 Luca Barbieri
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include <stdio.h>
#include "translate/translate.h"
#include "util/u_memory.h"
#include "util/u_format.h"
#include "util/u_half.h"
#include "util/u_cpu_detect.h"
#include "rtasm/rtasm_cpu.h"
/* don't use this for serious use */
static double rand_double()
{
const double rm = (double)RAND_MAX + 1;
double div = 1;
double v = 0;
unsigned i;
for(i = 0; i < 4; ++i)
{
div *= rm;
v += (double)rand() / div;
}
return v;
}
int main(int argc, char** argv)
{
struct translate *(*create_fn)(const struct translate_key *key) = 0;
struct translate_key key;
unsigned output_format;
unsigned input_format;
unsigned buffer_size = 4096;
unsigned char* buffer[5];
unsigned char* byte_buffer;
float* float_buffer;
double* double_buffer;
uint16_t *half_buffer;
unsigned * elts;
unsigned count = 4;
unsigned i, j, k;
unsigned passed = 0;
unsigned total = 0;
const float error = 0.03125;
create_fn = 0;
util_cpu_detect();
if (argc <= 1 ||
!strcmp(argv[1], "default") )
create_fn = translate_create;
else if (!strcmp(argv[1], "generic"))
create_fn = translate_generic_create;
else if (!strcmp(argv[1], "x86"))
create_fn = translate_sse2_create;
else if (!strcmp(argv[1], "nosse"))
{
util_cpu_caps.has_sse = 0;
util_cpu_caps.has_sse2 = 0;
util_cpu_caps.has_sse3 = 0;
util_cpu_caps.has_sse4_1 = 0;
create_fn = translate_sse2_create;
}
else if (!strcmp(argv[1], "sse"))
{
if(!util_cpu_caps.has_sse || !rtasm_cpu_has_sse())
{
printf("Error: CPU doesn't support SSE (test with qemu)\n");
return 2;
}
util_cpu_caps.has_sse2 = 0;
util_cpu_caps.has_sse3 = 0;
util_cpu_caps.has_sse4_1 = 0;
create_fn = translate_sse2_create;
}
else if (!strcmp(argv[1], "sse2"))
{
if(!util_cpu_caps.has_sse2 || !rtasm_cpu_has_sse())
{
printf("Error: CPU doesn't support SSE2 (test with qemu)\n");
return 2;
}
util_cpu_caps.has_sse3 = 0;
util_cpu_caps.has_sse4_1 = 0;
create_fn = translate_sse2_create;
}
else if (!strcmp(argv[1], "sse3"))
{
if(!util_cpu_caps.has_sse3 || !rtasm_cpu_has_sse())
{
printf("Error: CPU doesn't support SSE3 (test with qemu)\n");
return 2;
}
util_cpu_caps.has_sse4_1 = 0;
create_fn = translate_sse2_create;
}
else if (!strcmp(argv[1], "sse4.1"))
{
if(!util_cpu_caps.has_sse4_1 || !rtasm_cpu_has_sse())
{
printf("Error: CPU doesn't support SSE4.1 (test with qemu)\n");
return 2;
}
create_fn = translate_sse2_create;
}
if (!create_fn)
{
printf("Usage: ./translate_test [default|generic|x86|nosse|sse|sse2|sse3|sse4.1]\n");
return 2;
}
for (i = 1; i < ARRAY_SIZE(buffer); ++i)
buffer[i] = align_malloc(buffer_size, 4096);
byte_buffer = align_malloc(buffer_size, 4096);
float_buffer = align_malloc(buffer_size, 4096);
double_buffer = align_malloc(buffer_size, 4096);
half_buffer = align_malloc(buffer_size, 4096);
elts = align_malloc(count * sizeof *elts, 4096);
key.nr_elements = 1;
key.element[0].input_buffer = 0;
key.element[0].input_offset = 0;
key.element[0].output_offset = 0;
key.element[0].type = TRANSLATE_ELEMENT_NORMAL;
key.element[0].instance_divisor = 0;
srand(4359025);
/* avoid negative values that work badly when converted to unsigned format*/
for (i = 0; i < buffer_size; ++i)
byte_buffer[i] = rand() & 0x7f7f7f7f;
for (i = 0; i < buffer_size / sizeof(float); ++i)
float_buffer[i] = (float)rand_double();
for (i = 0; i < buffer_size / sizeof(double); ++i)
double_buffer[i] = rand_double();
for (i = 0; i < buffer_size / sizeof(double); ++i)
half_buffer[i] = util_float_to_half((float) rand_double());
for (i = 0; i < count; ++i)
elts[i] = i;
for (output_format = 1; output_format < PIPE_FORMAT_COUNT; ++output_format)
{
const struct util_format_description* output_format_desc = util_format_description(output_format);
unsigned output_format_size;
unsigned output_normalized = 0;
if (!output_format_desc
|| !output_format_desc->fetch_rgba_float
|| !output_format_desc->pack_rgba_float
|| output_format_desc->colorspace != UTIL_FORMAT_COLORSPACE_RGB
|| output_format_desc->layout != UTIL_FORMAT_LAYOUT_PLAIN
|| !translate_is_output_format_supported(output_format))
continue;
for(i = 0; i < output_format_desc->nr_channels; ++i)
{
if(output_format_desc->channel[i].type != UTIL_FORMAT_TYPE_FLOAT)
output_normalized |= (1 << output_format_desc->channel[i].normalized);
}
output_format_size = util_format_get_stride(output_format, 1);
for (input_format = 1; input_format < PIPE_FORMAT_COUNT; ++input_format)
{
const struct util_format_description* input_format_desc = util_format_description(input_format);
unsigned input_format_size;
struct translate* translate[2];
unsigned fail = 0;
unsigned used_generic = 0;
unsigned input_normalized = 0;
boolean input_is_float = FALSE;
if (!input_format_desc
|| !input_format_desc->fetch_rgba_float
|| !input_format_desc->pack_rgba_float
|| input_format_desc->colorspace != UTIL_FORMAT_COLORSPACE_RGB
|| input_format_desc->layout != UTIL_FORMAT_LAYOUT_PLAIN
|| !translate_is_output_format_supported(input_format))
continue;
input_format_size = util_format_get_stride(input_format, 1);
for(i = 0; i < input_format_desc->nr_channels; ++i)
{
if(input_format_desc->channel[i].type == UTIL_FORMAT_TYPE_FLOAT)
{
input_is_float = 1;
input_normalized |= 1 << 1;
}
else
input_normalized |= (1 << input_format_desc->channel[i].normalized);
}
if(((input_normalized | output_normalized) == 3)
|| ((input_normalized & 1) && (output_normalized & 1)
&& input_format_size * output_format_desc->nr_channels > output_format_size * input_format_desc->nr_channels))
continue;
key.element[0].input_format = input_format;
key.element[0].output_format = output_format;
key.output_stride = output_format_size;
translate[0] = create_fn(&key);
if (!translate[0])
continue;
key.element[0].input_format = output_format;
key.element[0].output_format = input_format;
key.output_stride = input_format_size;
translate[1] = create_fn(&key);
if(!translate[1])
{
used_generic = 1;
translate[1] = translate_generic_create(&key);
if(!translate[1])
continue;
}
for(i = 1; i < 5; ++i)
memset(buffer[i], 0xcd - (0x22 * i), 4096);
if(input_is_float && input_format_desc->channel[0].size == 32)
buffer[0] = (unsigned char*)float_buffer;
else if(input_is_float && input_format_desc->channel[0].size == 64)
buffer[0] = (unsigned char*)double_buffer;
else if(input_is_float && input_format_desc->channel[0].size == 16)
buffer[0] = (unsigned char*)half_buffer;
else if(input_is_float)
abort();
else
buffer[0] = byte_buffer;
translate[0]->set_buffer(translate[0], 0, buffer[0], input_format_size, count - 1);
translate[0]->run_elts(translate[0], elts, count, 0, 0, buffer[1]);
translate[1]->set_buffer(translate[1], 0, buffer[1], output_format_size, count - 1);
translate[1]->run_elts(translate[1], elts, count, 0, 0, buffer[2]);
translate[0]->set_buffer(translate[0], 0, buffer[2], input_format_size, count - 1);
translate[0]->run_elts(translate[0], elts, count, 0, 0, buffer[3]);
translate[1]->set_buffer(translate[1], 0, buffer[3], output_format_size, count - 1);
translate[1]->run_elts(translate[1], elts, count, 0, 0, buffer[4]);
for (i = 0; i < count; ++i)
{
float a[4];
float b[4];
input_format_desc->fetch_rgba_float(a, buffer[2] + i * input_format_size, 0, 0);
input_format_desc->fetch_rgba_float(b, buffer[4] + i * input_format_size, 0, 0);
for (j = 0; j < count; ++j)
{
float d = a[j] - b[j];
if (d > error || d < -error)
{
fail = 1;
break;
}
}
}
printf("%s%s: %s -> %s -> %s -> %s -> %s\n",
fail ? "FAIL" : "PASS",
used_generic ? "[GENERIC]" : "",
input_format_desc->name, output_format_desc->name, input_format_desc->name, output_format_desc->name, input_format_desc->name);
if (1)
{
for (i = 0; i < ARRAY_SIZE(buffer); ++i)
{
unsigned format_size = (i & 1) ? output_format_size : input_format_size;
printf("%c ", (i == 2 || i == 4) ? '*' : ' ');
for (j = 0; j < count; ++j)
{
for (k = 0; k < format_size; ++k)
{
printf("%02x", buffer[i][j * format_size + k]);
}
printf(" ");
}
printf("\n");
}
}
if (!fail)
++passed;
++total;
if(translate[1])
translate[1]->release(translate[1]);
translate[0]->release(translate[0]);
}
}
printf("%u/%u tests passed for translate_%s\n", passed, total, argv[1]);
return passed != total;
}