C++程序  |  1678行  |  51.3 KB

/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/** @file brw_eu_compact.c
 *
 * Instruction compaction is a feature of G45 and newer hardware that allows
 * for a smaller instruction encoding.
 *
 * The instruction cache is on the order of 32KB, and many programs generate
 * far more instructions than that.  The instruction cache is built to barely
 * keep up with instruction dispatch ability in cache hit cases -- L1
 * instruction cache misses that still hit in the next level could limit
 * throughput by around 50%.
 *
 * The idea of instruction compaction is that most instructions use a tiny
 * subset of the GPU functionality, so we can encode what would be a 16 byte
 * instruction in 8 bytes using some lookup tables for various fields.
 *
 *
 * Instruction compaction capabilities vary subtly by generation.
 *
 * G45's support for instruction compaction is very limited. Jump counts on
 * this generation are in units of 16-byte uncompacted instructions. As such,
 * all jump targets must be 16-byte aligned. Also, all instructions must be
 * naturally aligned, i.e. uncompacted instructions must be 16-byte aligned.
 * A G45-only instruction, NENOP, must be used to provide padding to align
 * uncompacted instructions.
 *
 * Gen5 removes these restrictions and changes jump counts to be in units of
 * 8-byte compacted instructions, allowing jump targets to be only 8-byte
 * aligned. Uncompacted instructions can also be placed on 8-byte boundaries.
 *
 * Gen6 adds the ability to compact instructions with a limited range of
 * immediate values. Compactable immediates have 12 unrestricted bits, and a
 * 13th bit that's replicated through the high 20 bits, to create the 32-bit
 * value of DW3 in the uncompacted instruction word.
 *
 * On Gen7 we can compact some control flow instructions with a small positive
 * immediate in the low bits of DW3, like ENDIF with the JIP field. Other
 * control flow instructions with UIP cannot be compacted, because of the
 * replicated 13th bit. No control flow instructions can be compacted on Gen6
 * since the jump count field is not in DW3.
 *
 *    break    JIP/UIP
 *    cont     JIP/UIP
 *    halt     JIP/UIP
 *    if       JIP/UIP
 *    else     JIP (plus UIP on BDW+)
 *    endif    JIP
 *    while    JIP (must be negative)
 *
 * Gen 8 adds support for compacting 3-src instructions.
 */

#include "brw_eu.h"
#include "brw_shader.h"
#include "brw_disasm_info.h"
#include "common/gen_debug.h"

static const uint32_t g45_control_index_table[32] = {
   0b00000000000000000,
   0b01000000000000000,
   0b00110000000000000,
   0b00000000000000010,
   0b00100000000000000,
   0b00010000000000000,
   0b01000000000100000,
   0b01000000100000000,
   0b01010000000100000,
   0b00000000100000010,
   0b11000000000000000,
   0b00001000100000010,
   0b01001000100000000,
   0b00000000100000000,
   0b11000000000100000,
   0b00001000100000000,
   0b10110000000000000,
   0b11010000000100000,
   0b00110000100000000,
   0b00100000100000000,
   0b01000000000001000,
   0b01000000000000100,
   0b00111100000000000,
   0b00101011000000000,
   0b00110000000010000,
   0b00010000100000000,
   0b01000000000100100,
   0b01000000000101000,
   0b00110000000000110,
   0b00000000000001010,
   0b01010000000101000,
   0b01010000000100100
};

static const uint32_t g45_datatype_table[32] = {
   0b001000000000100001,
   0b001011010110101101,
   0b001000001000110001,
   0b001111011110111101,
   0b001011010110101100,
   0b001000000110101101,
   0b001000000000100000,
   0b010100010110110001,
   0b001100011000101101,
   0b001000000000100010,
   0b001000001000110110,
   0b010000001000110001,
   0b001000001000110010,
   0b011000001000110010,
   0b001111011110111100,
   0b001000000100101000,
   0b010100011000110001,
   0b001010010100101001,
   0b001000001000101001,
   0b010000001000110110,
   0b101000001000110001,
   0b001011011000101101,
   0b001000000100001001,
   0b001011011000101100,
   0b110100011000110001,
   0b001000001110111101,
   0b110000001000110001,
   0b011000000100101010,
   0b101000001000101001,
   0b001011010110001100,
   0b001000000110100001,
   0b001010010100001000
};

static const uint16_t g45_subreg_table[32] = {
   0b000000000000000,
   0b000000010000000,
   0b000001000000000,
   0b000100000000000,
   0b000000000100000,
   0b100000000000000,
   0b000000000010000,
   0b001100000000000,
   0b001010000000000,
   0b000000100000000,
   0b001000000000000,
   0b000000000001000,
   0b000000001000000,
   0b000000000000001,
   0b000010000000000,
   0b000000010100000,
   0b000000000000111,
   0b000001000100000,
   0b011000000000000,
   0b000000110000000,
   0b000000000000010,
   0b000000000000100,
   0b000000001100000,
   0b000100000000010,
   0b001110011000110,
   0b001110100001000,
   0b000110011000110,
   0b000001000011000,
   0b000110010000100,
   0b001100000000110,
   0b000000010000110,
   0b000001000110000
};

static const uint16_t g45_src_index_table[32] = {
   0b000000000000,
   0b010001101000,
   0b010110001000,
   0b011010010000,
   0b001101001000,
   0b010110001010,
   0b010101110000,
   0b011001111000,
   0b001000101000,
   0b000000101000,
   0b010001010000,
   0b111101101100,
   0b010110001100,
   0b010001101100,
   0b011010010100,
   0b010001001100,
   0b001100101000,
   0b000000000010,
   0b111101001100,
   0b011001101000,
   0b010101001000,
   0b000000000100,
   0b000000101100,
   0b010001101010,
   0b000000111000,
   0b010101011000,
   0b000100100000,
   0b010110000000,
   0b010000000100,
   0b010000111000,
   0b000101100000,
   0b111101110100
};

static const uint32_t gen6_control_index_table[32] = {
   0b00000000000000000,
   0b01000000000000000,
   0b00110000000000000,
   0b00000000100000000,
   0b00010000000000000,
   0b00001000100000000,
   0b00000000100000010,
   0b00000000000000010,
   0b01000000100000000,
   0b01010000000000000,
   0b10110000000000000,
   0b00100000000000000,
   0b11010000000000000,
   0b11000000000000000,
   0b01001000100000000,
   0b01000000000001000,
   0b01000000000000100,
   0b00000000000001000,
   0b00000000000000100,
   0b00111000100000000,
   0b00001000100000010,
   0b00110000100000000,
   0b00110000000000001,
   0b00100000000000001,
   0b00110000000000010,
   0b00110000000000101,
   0b00110000000001001,
   0b00110000000010000,
   0b00110000000000011,
   0b00110000000000100,
   0b00110000100001000,
   0b00100000000001001
};

static const uint32_t gen6_datatype_table[32] = {
   0b001001110000000000,
   0b001000110000100000,
   0b001001110000000001,
   0b001000000001100000,
   0b001010110100101001,
   0b001000000110101101,
   0b001100011000101100,
   0b001011110110101101,
   0b001000000111101100,
   0b001000000001100001,
   0b001000110010100101,
   0b001000000001000001,
   0b001000001000110001,
   0b001000001000101001,
   0b001000000000100000,
   0b001000001000110010,
   0b001010010100101001,
   0b001011010010100101,
   0b001000000110100101,
   0b001100011000101001,
   0b001011011000101100,
   0b001011010110100101,
   0b001011110110100101,
   0b001111011110111101,
   0b001111011110111100,
   0b001111011110111101,
   0b001111011110011101,
   0b001111011110111110,
   0b001000000000100001,
   0b001000000000100010,
   0b001001111111011101,
   0b001000001110111110,
};

static const uint16_t gen6_subreg_table[32] = {
   0b000000000000000,
   0b000000000000100,
   0b000000110000000,
   0b111000000000000,
   0b011110000001000,
   0b000010000000000,
   0b000000000010000,
   0b000110000001100,
   0b001000000000000,
   0b000001000000000,
   0b000001010010100,
   0b000000001010110,
   0b010000000000000,
   0b110000000000000,
   0b000100000000000,
   0b000000010000000,
   0b000000000001000,
   0b100000000000000,
   0b000001010000000,
   0b001010000000000,
   0b001100000000000,
   0b000000001010100,
   0b101101010010100,
   0b010100000000000,
   0b000000010001111,
   0b011000000000000,
   0b111110000000000,
   0b101000000000000,
   0b000000000001111,
   0b000100010001111,
   0b001000010001111,
   0b000110000000000,
};

static const uint16_t gen6_src_index_table[32] = {
   0b000000000000,
   0b010110001000,
   0b010001101000,
   0b001000101000,
   0b011010010000,
   0b000100100000,
   0b010001101100,
   0b010101110000,
   0b011001111000,
   0b001100101000,
   0b010110001100,
   0b001000100000,
   0b010110001010,
   0b000000000010,
   0b010101010000,
   0b010101101000,
   0b111101001100,
   0b111100101100,
   0b011001110000,
   0b010110001001,
   0b010101011000,
   0b001101001000,
   0b010000101100,
   0b010000000000,
   0b001101110000,
   0b001100010000,
   0b001100000000,
   0b010001101010,
   0b001101111000,
   0b000001110000,
   0b001100100000,
   0b001101010000,
};

static const uint32_t gen7_control_index_table[32] = {
   0b0000000000000000010,
   0b0000100000000000000,
   0b0000100000000000001,
   0b0000100000000000010,
   0b0000100000000000011,
   0b0000100000000000100,
   0b0000100000000000101,
   0b0000100000000000111,
   0b0000100000000001000,
   0b0000100000000001001,
   0b0000100000000001101,
   0b0000110000000000000,
   0b0000110000000000001,
   0b0000110000000000010,
   0b0000110000000000011,
   0b0000110000000000100,
   0b0000110000000000101,
   0b0000110000000000111,
   0b0000110000000001001,
   0b0000110000000001101,
   0b0000110000000010000,
   0b0000110000100000000,
   0b0001000000000000000,
   0b0001000000000000010,
   0b0001000000000000100,
   0b0001000000100000000,
   0b0010110000000000000,
   0b0010110000000010000,
   0b0011000000000000000,
   0b0011000000100000000,
   0b0101000000000000000,
   0b0101000000100000000
};

static const uint32_t gen7_datatype_table[32] = {
   0b001000000000000001,
   0b001000000000100000,
   0b001000000000100001,
   0b001000000001100001,
   0b001000000010111101,
   0b001000001011111101,
   0b001000001110100001,
   0b001000001110100101,
   0b001000001110111101,
   0b001000010000100001,
   0b001000110000100000,
   0b001000110000100001,
   0b001001010010100101,
   0b001001110010100100,
   0b001001110010100101,
   0b001111001110111101,
   0b001111011110011101,
   0b001111011110111100,
   0b001111011110111101,
   0b001111111110111100,
   0b000000001000001100,
   0b001000000000111101,
   0b001000000010100101,
   0b001000010000100000,
   0b001001010010100100,
   0b001001110010000100,
   0b001010010100001001,
   0b001101111110111101,
   0b001111111110111101,
   0b001011110110101100,
   0b001010010100101000,
   0b001010110100101000
};

static const uint16_t gen7_subreg_table[32] = {
   0b000000000000000,
   0b000000000000001,
   0b000000000001000,
   0b000000000001111,
   0b000000000010000,
   0b000000010000000,
   0b000000100000000,
   0b000000110000000,
   0b000001000000000,
   0b000001000010000,
   0b000010100000000,
   0b001000000000000,
   0b001000000000001,
   0b001000010000001,
   0b001000010000010,
   0b001000010000011,
   0b001000010000100,
   0b001000010000111,
   0b001000010001000,
   0b001000010001110,
   0b001000010001111,
   0b001000110000000,
   0b001000111101000,
   0b010000000000000,
   0b010000110000000,
   0b011000000000000,
   0b011110010000111,
   0b100000000000000,
   0b101000000000000,
   0b110000000000000,
   0b111000000000000,
   0b111000000011100
};

static const uint16_t gen7_src_index_table[32] = {
   0b000000000000,
   0b000000000010,
   0b000000010000,
   0b000000010010,
   0b000000011000,
   0b000000100000,
   0b000000101000,
   0b000001001000,
   0b000001010000,
   0b000001110000,
   0b000001111000,
   0b001100000000,
   0b001100000010,
   0b001100001000,
   0b001100010000,
   0b001100010010,
   0b001100100000,
   0b001100101000,
   0b001100111000,
   0b001101000000,
   0b001101000010,
   0b001101001000,
   0b001101010000,
   0b001101100000,
   0b001101101000,
   0b001101110000,
   0b001101110001,
   0b001101111000,
   0b010001101000,
   0b010001101001,
   0b010001101010,
   0b010110001000
};

static const uint32_t gen8_control_index_table[32] = {
   0b0000000000000000010,
   0b0000100000000000000,
   0b0000100000000000001,
   0b0000100000000000010,
   0b0000100000000000011,
   0b0000100000000000100,
   0b0000100000000000101,
   0b0000100000000000111,
   0b0000100000000001000,
   0b0000100000000001001,
   0b0000100000000001101,
   0b0000110000000000000,
   0b0000110000000000001,
   0b0000110000000000010,
   0b0000110000000000011,
   0b0000110000000000100,
   0b0000110000000000101,
   0b0000110000000000111,
   0b0000110000000001001,
   0b0000110000000001101,
   0b0000110000000010000,
   0b0000110000100000000,
   0b0001000000000000000,
   0b0001000000000000010,
   0b0001000000000000100,
   0b0001000000100000000,
   0b0010110000000000000,
   0b0010110000000010000,
   0b0011000000000000000,
   0b0011000000100000000,
   0b0101000000000000000,
   0b0101000000100000000
};

static const uint32_t gen8_datatype_table[32] = {
   0b001000000000000000001,
   0b001000000000001000000,
   0b001000000000001000001,
   0b001000000000011000001,
   0b001000000000101011101,
   0b001000000010111011101,
   0b001000000011101000001,
   0b001000000011101000101,
   0b001000000011101011101,
   0b001000001000001000001,
   0b001000011000001000000,
   0b001000011000001000001,
   0b001000101000101000101,
   0b001000111000101000100,
   0b001000111000101000101,
   0b001011100011101011101,
   0b001011101011100011101,
   0b001011101011101011100,
   0b001011101011101011101,
   0b001011111011101011100,
   0b000000000010000001100,
   0b001000000000001011101,
   0b001000000000101000101,
   0b001000001000001000000,
   0b001000101000101000100,
   0b001000111000100000100,
   0b001001001001000001001,
   0b001010111011101011101,
   0b001011111011101011101,
   0b001001111001101001100,
   0b001001001001001001000,
   0b001001011001001001000
};

static const uint16_t gen8_subreg_table[32] = {
   0b000000000000000,
   0b000000000000001,
   0b000000000001000,
   0b000000000001111,
   0b000000000010000,
   0b000000010000000,
   0b000000100000000,
   0b000000110000000,
   0b000001000000000,
   0b000001000010000,
   0b000001010000000,
   0b001000000000000,
   0b001000000000001,
   0b001000010000001,
   0b001000010000010,
   0b001000010000011,
   0b001000010000100,
   0b001000010000111,
   0b001000010001000,
   0b001000010001110,
   0b001000010001111,
   0b001000110000000,
   0b001000111101000,
   0b010000000000000,
   0b010000110000000,
   0b011000000000000,
   0b011110010000111,
   0b100000000000000,
   0b101000000000000,
   0b110000000000000,
   0b111000000000000,
   0b111000000011100
};

static const uint16_t gen8_src_index_table[32] = {
   0b000000000000,
   0b000000000010,
   0b000000010000,
   0b000000010010,
   0b000000011000,
   0b000000100000,
   0b000000101000,
   0b000001001000,
   0b000001010000,
   0b000001110000,
   0b000001111000,
   0b001100000000,
   0b001100000010,
   0b001100001000,
   0b001100010000,
   0b001100010010,
   0b001100100000,
   0b001100101000,
   0b001100111000,
   0b001101000000,
   0b001101000010,
   0b001101001000,
   0b001101010000,
   0b001101100000,
   0b001101101000,
   0b001101110000,
   0b001101110001,
   0b001101111000,
   0b010001101000,
   0b010001101001,
   0b010001101010,
   0b010110001000
};

/* This is actually the control index table for Cherryview (26 bits), but the
 * only difference from Broadwell (24 bits) is that it has two extra 0-bits at
 * the start.
 *
 * The low 24 bits have the same mappings on both hardware.
 */
static const uint32_t gen8_3src_control_index_table[4] = {
   0b00100000000110000000000001,
   0b00000000000110000000000001,
   0b00000000001000000000000001,
   0b00000000001000000000100001
};

/* This is actually the control index table for Cherryview (49 bits), but the
 * only difference from Broadwell (46 bits) is that it has three extra 0-bits
 * at the start.
 *
 * The low 44 bits have the same mappings on both hardware, and since the high
 * three bits on Broadwell are zero, we can reuse Cherryview's table.
 */
static const uint64_t gen8_3src_source_index_table[4] = {
   0b0000001110010011100100111001000001111000000000000,
   0b0000001110010011100100111001000001111000000000010,
   0b0000001110010011100100111001000001111000000001000,
   0b0000001110010011100100111001000001111000000100000
};

static const uint32_t *control_index_table;
static const uint32_t *datatype_table;
static const uint16_t *subreg_table;
static const uint16_t *src_index_table;

static bool
set_control_index(const struct gen_device_info *devinfo,
                  brw_compact_inst *dst, const brw_inst *src)
{
   uint32_t uncompacted = devinfo->gen >= 8  /* 17b/G45; 19b/IVB+ */
      ? (brw_inst_bits(src, 33, 31) << 16) | /*  3b */
        (brw_inst_bits(src, 23, 12) <<  4) | /* 12b */
        (brw_inst_bits(src, 10,  9) <<  2) | /*  2b */
        (brw_inst_bits(src, 34, 34) <<  1) | /*  1b */
        (brw_inst_bits(src,  8,  8))         /*  1b */
      : (brw_inst_bits(src, 31, 31) << 16) | /*  1b */
        (brw_inst_bits(src, 23,  8));        /* 16b */

   /* On gen7, the flag register and subregister numbers are integrated into
    * the control index.
    */
   if (devinfo->gen == 7)
      uncompacted |= brw_inst_bits(src, 90, 89) << 17; /* 2b */

   for (int i = 0; i < 32; i++) {
      if (control_index_table[i] == uncompacted) {
         brw_compact_inst_set_control_index(devinfo, dst, i);
	 return true;
      }
   }

   return false;
}

static bool
set_datatype_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
                   const brw_inst *src)
{
   uint32_t uncompacted = devinfo->gen >= 8  /* 18b/G45+; 21b/BDW+ */
      ? (brw_inst_bits(src, 63, 61) << 18) | /*  3b */
        (brw_inst_bits(src, 94, 89) << 12) | /*  6b */
        (brw_inst_bits(src, 46, 35))         /* 12b */
      : (brw_inst_bits(src, 63, 61) << 15) | /*  3b */
        (brw_inst_bits(src, 46, 32));        /* 15b */

   for (int i = 0; i < 32; i++) {
      if (datatype_table[i] == uncompacted) {
         brw_compact_inst_set_datatype_index(devinfo, dst, i);
	 return true;
      }
   }

   return false;
}

static bool
set_subreg_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
                 const brw_inst *src, bool is_immediate)
{
   uint16_t uncompacted =                 /* 15b */
      (brw_inst_bits(src, 52, 48) << 0) | /*  5b */
      (brw_inst_bits(src, 68, 64) << 5);  /*  5b */

   if (!is_immediate)
      uncompacted |= brw_inst_bits(src, 100, 96) << 10; /* 5b */

   for (int i = 0; i < 32; i++) {
      if (subreg_table[i] == uncompacted) {
         brw_compact_inst_set_subreg_index(devinfo, dst, i);
	 return true;
      }
   }

   return false;
}

static bool
get_src_index(uint16_t uncompacted,
              uint16_t *compacted)
{
   for (int i = 0; i < 32; i++) {
      if (src_index_table[i] == uncompacted) {
	 *compacted = i;
	 return true;
      }
   }

   return false;
}

static bool
set_src0_index(const struct gen_device_info *devinfo,
               brw_compact_inst *dst, const brw_inst *src)
{
   uint16_t compacted;
   uint16_t uncompacted = brw_inst_bits(src, 88, 77); /* 12b */

   if (!get_src_index(uncompacted, &compacted))
      return false;

   brw_compact_inst_set_src0_index(devinfo, dst, compacted);

   return true;
}

static bool
set_src1_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
               const brw_inst *src, bool is_immediate)
{
   uint16_t compacted;

   if (is_immediate) {
      compacted = (brw_inst_imm_ud(devinfo, src) >> 8) & 0x1f;
   } else {
      uint16_t uncompacted = brw_inst_bits(src, 120, 109); /* 12b */

      if (!get_src_index(uncompacted, &compacted))
         return false;
   }

   brw_compact_inst_set_src1_index(devinfo, dst, compacted);

   return true;
}

static bool
set_3src_control_index(const struct gen_device_info *devinfo,
                       brw_compact_inst *dst, const brw_inst *src)
{
   assert(devinfo->gen >= 8);

   uint32_t uncompacted =                  /* 24b/BDW; 26b/CHV */
      (brw_inst_bits(src, 34, 32) << 21) | /*  3b */
      (brw_inst_bits(src, 28,  8));        /* 21b */

   if (devinfo->gen >= 9 || devinfo->is_cherryview)
      uncompacted |= brw_inst_bits(src, 36, 35) << 24; /* 2b */

   for (unsigned i = 0; i < ARRAY_SIZE(gen8_3src_control_index_table); i++) {
      if (gen8_3src_control_index_table[i] == uncompacted) {
         brw_compact_inst_set_3src_control_index(devinfo, dst, i);
	 return true;
      }
   }

   return false;
}

static bool
set_3src_source_index(const struct gen_device_info *devinfo,
                      brw_compact_inst *dst, const brw_inst *src)
{
   assert(devinfo->gen >= 8);

   uint64_t uncompacted =                    /* 46b/BDW; 49b/CHV */
      (brw_inst_bits(src,  83,  83) << 43) | /*  1b */
      (brw_inst_bits(src, 114, 107) << 35) | /*  8b */
      (brw_inst_bits(src,  93,  86) << 27) | /*  8b */
      (brw_inst_bits(src,  72,  65) << 19) | /*  8b */
      (brw_inst_bits(src,  55,  37));        /* 19b */

   if (devinfo->gen >= 9 || devinfo->is_cherryview) {
      uncompacted |=
         (brw_inst_bits(src, 126, 125) << 47) | /* 2b */
         (brw_inst_bits(src, 105, 104) << 45) | /* 2b */
         (brw_inst_bits(src,  84,  84) << 44);  /* 1b */
   } else {
      uncompacted |=
         (brw_inst_bits(src, 125, 125) << 45) | /* 1b */
         (brw_inst_bits(src, 104, 104) << 44);  /* 1b */
   }

   for (unsigned i = 0; i < ARRAY_SIZE(gen8_3src_source_index_table); i++) {
      if (gen8_3src_source_index_table[i] == uncompacted) {
         brw_compact_inst_set_3src_source_index(devinfo, dst, i);
	 return true;
      }
   }

   return false;
}

static bool
has_unmapped_bits(const struct gen_device_info *devinfo, const brw_inst *src)
{
   /* EOT can only be mapped on a send if the src1 is an immediate */
   if ((brw_inst_opcode(devinfo, src) == BRW_OPCODE_SENDC ||
        brw_inst_opcode(devinfo, src) == BRW_OPCODE_SEND) &&
       brw_inst_eot(devinfo, src))
      return true;

   /* Check for instruction bits that don't map to any of the fields of the
    * compacted instruction.  The instruction cannot be compacted if any of
    * them are set.  They overlap with:
    *  - NibCtrl (bit 47 on Gen7, bit 11 on Gen8)
    *  - Dst.AddrImm[9] (bit 47 on Gen8)
    *  - Src0.AddrImm[9] (bit 95 on Gen8)
    *  - Imm64[27:31] (bits 91-95 on Gen7, bit 95 on Gen8)
    *  - UIP[31] (bit 95 on Gen8)
    */
   if (devinfo->gen >= 8) {
      assert(!brw_inst_bits(src, 7,  7));
      return brw_inst_bits(src, 95, 95) ||
             brw_inst_bits(src, 47, 47) ||
             brw_inst_bits(src, 11, 11);
   } else {
      assert(!brw_inst_bits(src, 7,  7) &&
             !(devinfo->gen < 7 && brw_inst_bits(src, 90, 90)));
      return brw_inst_bits(src, 95, 91) ||
             brw_inst_bits(src, 47, 47);
   }
}

static bool
has_3src_unmapped_bits(const struct gen_device_info *devinfo,
                       const brw_inst *src)
{
   /* Check for three-source instruction bits that don't map to any of the
    * fields of the compacted instruction.  All of them seem to be reserved
    * bits currently.
    */
   if (devinfo->gen >= 9 || devinfo->is_cherryview) {
      assert(!brw_inst_bits(src, 127, 127) &&
             !brw_inst_bits(src, 7,  7));
   } else {
      assert(devinfo->gen >= 8);
      assert(!brw_inst_bits(src, 127, 126) &&
             !brw_inst_bits(src, 105, 105) &&
             !brw_inst_bits(src, 84, 84) &&
             !brw_inst_bits(src, 36, 35) &&
             !brw_inst_bits(src, 7,  7));
   }

   return false;
}

static bool
brw_try_compact_3src_instruction(const struct gen_device_info *devinfo,
                                 brw_compact_inst *dst, const brw_inst *src)
{
   assert(devinfo->gen >= 8);

   if (has_3src_unmapped_bits(devinfo, src))
      return false;

#define compact(field) \
   brw_compact_inst_set_3src_##field(devinfo, dst, brw_inst_3src_##field(devinfo, src))
#define compact_a16(field) \
   brw_compact_inst_set_3src_##field(devinfo, dst, brw_inst_3src_a16_##field(devinfo, src))

   compact(opcode);

   if (!set_3src_control_index(devinfo, dst, src))
      return false;

   if (!set_3src_source_index(devinfo, dst, src))
      return false;

   compact(dst_reg_nr);
   compact_a16(src0_rep_ctrl);
   brw_compact_inst_set_3src_cmpt_control(devinfo, dst, true);
   compact(debug_control);
   compact(saturate);
   compact_a16(src1_rep_ctrl);
   compact_a16(src2_rep_ctrl);
   compact(src0_reg_nr);
   compact(src1_reg_nr);
   compact(src2_reg_nr);
   compact_a16(src0_subreg_nr);
   compact_a16(src1_subreg_nr);
   compact_a16(src2_subreg_nr);

#undef compact
#undef compact_a16

   return true;
}

/* Compacted instructions have 12-bits for immediate sources, and a 13th bit
 * that's replicated through the high 20 bits.
 *
 * Effectively this means we get 12-bit integers, 0.0f, and some limited uses
 * of packed vectors as compactable immediates.
 */
static bool
is_compactable_immediate(unsigned imm)
{
   /* We get the low 12 bits as-is. */
   imm &= ~0xfff;

   /* We get one bit replicated through the top 20 bits. */
   return imm == 0 || imm == 0xfffff000;
}

/**
 * Applies some small changes to instruction types to increase chances of
 * compaction.
 */
static brw_inst
precompact(const struct gen_device_info *devinfo, brw_inst inst)
{
   if (brw_inst_src0_reg_file(devinfo, &inst) != BRW_IMMEDIATE_VALUE)
      return inst;

   /* The Bspec's section titled "Non-present Operands" claims that if src0
    * is an immediate that src1's type must be the same as that of src0.
    *
    * The SNB+ DataTypeIndex instruction compaction tables contain mappings
    * that do not follow this rule. E.g., from the IVB/HSW table:
    *
    *  DataTypeIndex   18-Bit Mapping       Mapped Meaning
    *        3         001000001011111101   r:f | i:vf | a:ud | <1> | dir |
    *
    * And from the SNB table:
    *
    *  DataTypeIndex   18-Bit Mapping       Mapped Meaning
    *        8         001000000111101100   a:w | i:w | a:ud | <1> | dir |
    *
    * Neither of these cause warnings from the simulator when used,
    * compacted or otherwise. In fact, all compaction mappings that have an
    * immediate in src0 use a:ud for src1.
    *
    * The GM45 instruction compaction tables do not contain mapped meanings
    * so it's not clear whether it has the restriction. We'll assume it was
    * lifted on SNB. (FINISHME: decode the GM45 tables and check.)
    *
    * Don't do any of this for 64-bit immediates, since the src1 fields
    * overlap with the immediate and setting them would overwrite the
    * immediate we set.
    */
   if (devinfo->gen >= 6 &&
       !(devinfo->is_haswell &&
         brw_inst_opcode(devinfo, &inst) == BRW_OPCODE_DIM) &&
       !(devinfo->gen >= 8 &&
         (brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_DF ||
          brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_UQ ||
          brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_Q))) {
      enum brw_reg_file file = brw_inst_src1_reg_file(devinfo, &inst);
      brw_inst_set_src1_file_type(devinfo, &inst, file, BRW_REGISTER_TYPE_UD);
   }

   /* Compacted instructions only have 12-bits (plus 1 for the other 20)
    * for immediate values. Presumably the hardware engineers realized
    * that the only useful floating-point value that could be represented
    * in this format is 0.0, which can also be represented as a VF-typed
    * immediate, so they gave us the previously mentioned mapping on IVB+.
    *
    * Strangely, we do have a mapping for imm:f in src1, so we don't need
    * to do this there.
    *
    * If we see a 0.0:F, change the type to VF so that it can be compacted.
    */
   if (brw_inst_imm_ud(devinfo, &inst) == 0x0 &&
       brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_F &&
       brw_inst_dst_type(devinfo, &inst) == BRW_REGISTER_TYPE_F &&
       brw_inst_dst_hstride(devinfo, &inst) == BRW_HORIZONTAL_STRIDE_1) {
      enum brw_reg_file file = brw_inst_src0_reg_file(devinfo, &inst);
      brw_inst_set_src0_file_type(devinfo, &inst, file, BRW_REGISTER_TYPE_VF);
   }

   /* There are no mappings for dst:d | i:d, so if the immediate is suitable
    * set the types to :UD so the instruction can be compacted.
    */
   if (is_compactable_immediate(brw_inst_imm_ud(devinfo, &inst)) &&
       brw_inst_cond_modifier(devinfo, &inst) == BRW_CONDITIONAL_NONE &&
       brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_D &&
       brw_inst_dst_type(devinfo, &inst) == BRW_REGISTER_TYPE_D) {
      enum brw_reg_file src_file = brw_inst_src0_reg_file(devinfo, &inst);
      enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, &inst);

      brw_inst_set_src0_file_type(devinfo, &inst, src_file, BRW_REGISTER_TYPE_UD);
      brw_inst_set_dst_file_type(devinfo, &inst, dst_file, BRW_REGISTER_TYPE_UD);
   }

   return inst;
}

/**
 * Tries to compact instruction src into dst.
 *
 * It doesn't modify dst unless src is compactable, which is relied on by
 * brw_compact_instructions().
 */
bool
brw_try_compact_instruction(const struct gen_device_info *devinfo,
                            brw_compact_inst *dst, const brw_inst *src)
{
   brw_compact_inst temp;

   assert(brw_inst_cmpt_control(devinfo, src) == 0);

   if (is_3src(devinfo, brw_inst_opcode(devinfo, src))) {
      if (devinfo->gen >= 8) {
         memset(&temp, 0, sizeof(temp));
         if (brw_try_compact_3src_instruction(devinfo, &temp, src)) {
            *dst = temp;
            return true;
         } else {
            return false;
         }
      } else {
         return false;
      }
   }

   bool is_immediate =
      brw_inst_src0_reg_file(devinfo, src) == BRW_IMMEDIATE_VALUE ||
      brw_inst_src1_reg_file(devinfo, src) == BRW_IMMEDIATE_VALUE;
   if (is_immediate &&
       (devinfo->gen < 6 ||
        !is_compactable_immediate(brw_inst_imm_ud(devinfo, src)))) {
      return false;
   }

   if (has_unmapped_bits(devinfo, src))
      return false;

   memset(&temp, 0, sizeof(temp));

#define compact(field) \
   brw_compact_inst_set_##field(devinfo, &temp, brw_inst_##field(devinfo, src))

   compact(opcode);
   compact(debug_control);

   if (!set_control_index(devinfo, &temp, src))
      return false;
   if (!set_datatype_index(devinfo, &temp, src))
      return false;
   if (!set_subreg_index(devinfo, &temp, src, is_immediate))
      return false;

   if (devinfo->gen >= 6) {
      compact(acc_wr_control);
   } else {
      compact(mask_control_ex);
   }

   compact(cond_modifier);

   if (devinfo->gen <= 6)
      compact(flag_subreg_nr);

   brw_compact_inst_set_cmpt_control(devinfo, &temp, true);

   if (!set_src0_index(devinfo, &temp, src))
      return false;
   if (!set_src1_index(devinfo, &temp, src, is_immediate))
      return false;

   brw_compact_inst_set_dst_reg_nr(devinfo, &temp,
                                   brw_inst_dst_da_reg_nr(devinfo, src));
   brw_compact_inst_set_src0_reg_nr(devinfo, &temp,
                                    brw_inst_src0_da_reg_nr(devinfo, src));

   if (is_immediate) {
      brw_compact_inst_set_src1_reg_nr(devinfo, &temp,
                                       brw_inst_imm_ud(devinfo, src) & 0xff);
   } else {
      brw_compact_inst_set_src1_reg_nr(devinfo, &temp,
                                       brw_inst_src1_da_reg_nr(devinfo, src));
   }

#undef compact

   *dst = temp;

   return true;
}

static void
set_uncompacted_control(const struct gen_device_info *devinfo, brw_inst *dst,
                        brw_compact_inst *src)
{
   uint32_t uncompacted =
      control_index_table[brw_compact_inst_control_index(devinfo, src)];

   if (devinfo->gen >= 8) {
      brw_inst_set_bits(dst, 33, 31, (uncompacted >> 16));
      brw_inst_set_bits(dst, 23, 12, (uncompacted >>  4) & 0xfff);
      brw_inst_set_bits(dst, 10,  9, (uncompacted >>  2) & 0x3);
      brw_inst_set_bits(dst, 34, 34, (uncompacted >>  1) & 0x1);
      brw_inst_set_bits(dst,  8,  8, (uncompacted >>  0) & 0x1);
   } else {
      brw_inst_set_bits(dst, 31, 31, (uncompacted >> 16) & 0x1);
      brw_inst_set_bits(dst, 23,  8, (uncompacted & 0xffff));

      if (devinfo->gen == 7)
         brw_inst_set_bits(dst, 90, 89, uncompacted >> 17);
   }
}

static void
set_uncompacted_datatype(const struct gen_device_info *devinfo, brw_inst *dst,
                         brw_compact_inst *src)
{
   uint32_t uncompacted =
      datatype_table[brw_compact_inst_datatype_index(devinfo, src)];

   if (devinfo->gen >= 8) {
      brw_inst_set_bits(dst, 63, 61, (uncompacted >> 18));
      brw_inst_set_bits(dst, 94, 89, (uncompacted >> 12) & 0x3f);
      brw_inst_set_bits(dst, 46, 35, (uncompacted >>  0) & 0xfff);
   } else {
      brw_inst_set_bits(dst, 63, 61, (uncompacted >> 15));
      brw_inst_set_bits(dst, 46, 32, (uncompacted & 0x7fff));
   }
}

static void
set_uncompacted_subreg(const struct gen_device_info *devinfo, brw_inst *dst,
                       brw_compact_inst *src)
{
   uint16_t uncompacted =
      subreg_table[brw_compact_inst_subreg_index(devinfo, src)];

   brw_inst_set_bits(dst, 100, 96, (uncompacted >> 10));
   brw_inst_set_bits(dst,  68, 64, (uncompacted >>  5) & 0x1f);
   brw_inst_set_bits(dst,  52, 48, (uncompacted >>  0) & 0x1f);
}

static void
set_uncompacted_src0(const struct gen_device_info *devinfo, brw_inst *dst,
                     brw_compact_inst *src)
{
   uint32_t compacted = brw_compact_inst_src0_index(devinfo, src);
   uint16_t uncompacted = src_index_table[compacted];

   brw_inst_set_bits(dst, 88, 77, uncompacted);
}

static void
set_uncompacted_src1(const struct gen_device_info *devinfo, brw_inst *dst,
                     brw_compact_inst *src, bool is_immediate)
{
   if (is_immediate) {
      signed high5 = brw_compact_inst_src1_index(devinfo, src);
      /* Replicate top bit of src1_index into high 20 bits of the immediate. */
      brw_inst_set_imm_ud(devinfo, dst, (high5 << 27) >> 19);
   } else {
      uint16_t uncompacted =
         src_index_table[brw_compact_inst_src1_index(devinfo, src)];

      brw_inst_set_bits(dst, 120, 109, uncompacted);
   }
}

static void
set_uncompacted_3src_control_index(const struct gen_device_info *devinfo,
                                   brw_inst *dst, brw_compact_inst *src)
{
   assert(devinfo->gen >= 8);

   uint32_t compacted = brw_compact_inst_3src_control_index(devinfo, src);
   uint32_t uncompacted = gen8_3src_control_index_table[compacted];

   brw_inst_set_bits(dst, 34, 32, (uncompacted >> 21) & 0x7);
   brw_inst_set_bits(dst, 28,  8, (uncompacted >>  0) & 0x1fffff);

   if (devinfo->gen >= 9 || devinfo->is_cherryview)
      brw_inst_set_bits(dst, 36, 35, (uncompacted >> 24) & 0x3);
}

static void
set_uncompacted_3src_source_index(const struct gen_device_info *devinfo,
                                  brw_inst *dst, brw_compact_inst *src)
{
   assert(devinfo->gen >= 8);

   uint32_t compacted = brw_compact_inst_3src_source_index(devinfo, src);
   uint64_t uncompacted = gen8_3src_source_index_table[compacted];

   brw_inst_set_bits(dst,  83,  83, (uncompacted >> 43) & 0x1);
   brw_inst_set_bits(dst, 114, 107, (uncompacted >> 35) & 0xff);
   brw_inst_set_bits(dst,  93,  86, (uncompacted >> 27) & 0xff);
   brw_inst_set_bits(dst,  72,  65, (uncompacted >> 19) & 0xff);
   brw_inst_set_bits(dst,  55,  37, (uncompacted >>  0) & 0x7ffff);

   if (devinfo->gen >= 9 || devinfo->is_cherryview) {
      brw_inst_set_bits(dst, 126, 125, (uncompacted >> 47) & 0x3);
      brw_inst_set_bits(dst, 105, 104, (uncompacted >> 45) & 0x3);
      brw_inst_set_bits(dst,  84,  84, (uncompacted >> 44) & 0x1);
   } else {
      brw_inst_set_bits(dst, 125, 125, (uncompacted >> 45) & 0x1);
      brw_inst_set_bits(dst, 104, 104, (uncompacted >> 44) & 0x1);
   }
}

static void
brw_uncompact_3src_instruction(const struct gen_device_info *devinfo,
                               brw_inst *dst, brw_compact_inst *src)
{
   assert(devinfo->gen >= 8);

#define uncompact(field) \
   brw_inst_set_3src_##field(devinfo, dst, brw_compact_inst_3src_##field(devinfo, src))
#define uncompact_a16(field) \
   brw_inst_set_3src_a16_##field(devinfo, dst, brw_compact_inst_3src_##field(devinfo, src))

   uncompact(opcode);

   set_uncompacted_3src_control_index(devinfo, dst, src);
   set_uncompacted_3src_source_index(devinfo, dst, src);

   uncompact(dst_reg_nr);
   uncompact_a16(src0_rep_ctrl);
   brw_inst_set_3src_cmpt_control(devinfo, dst, false);
   uncompact(debug_control);
   uncompact(saturate);
   uncompact_a16(src1_rep_ctrl);
   uncompact_a16(src2_rep_ctrl);
   uncompact(src0_reg_nr);
   uncompact(src1_reg_nr);
   uncompact(src2_reg_nr);
   uncompact_a16(src0_subreg_nr);
   uncompact_a16(src1_subreg_nr);
   uncompact_a16(src2_subreg_nr);

#undef uncompact
#undef uncompact_a16
}

void
brw_uncompact_instruction(const struct gen_device_info *devinfo, brw_inst *dst,
                          brw_compact_inst *src)
{
   memset(dst, 0, sizeof(*dst));

   if (devinfo->gen >= 8 &&
       is_3src(devinfo, brw_compact_inst_3src_opcode(devinfo, src))) {
      brw_uncompact_3src_instruction(devinfo, dst, src);
      return;
   }

#define uncompact(field) \
   brw_inst_set_##field(devinfo, dst, brw_compact_inst_##field(devinfo, src))

   uncompact(opcode);
   uncompact(debug_control);

   set_uncompacted_control(devinfo, dst, src);
   set_uncompacted_datatype(devinfo, dst, src);

   /* src0/1 register file fields are in the datatype table. */
   bool is_immediate = brw_inst_src0_reg_file(devinfo, dst) == BRW_IMMEDIATE_VALUE ||
                       brw_inst_src1_reg_file(devinfo, dst) == BRW_IMMEDIATE_VALUE;

   set_uncompacted_subreg(devinfo, dst, src);

   if (devinfo->gen >= 6) {
      uncompact(acc_wr_control);
   } else {
      uncompact(mask_control_ex);
   }

   uncompact(cond_modifier);

   if (devinfo->gen <= 6)
      uncompact(flag_subreg_nr);

   set_uncompacted_src0(devinfo, dst, src);
   set_uncompacted_src1(devinfo, dst, src, is_immediate);

   brw_inst_set_dst_da_reg_nr(devinfo, dst,
                              brw_compact_inst_dst_reg_nr(devinfo, src));
   brw_inst_set_src0_da_reg_nr(devinfo, dst,
                               brw_compact_inst_src0_reg_nr(devinfo, src));

   if (is_immediate) {
      brw_inst_set_imm_ud(devinfo, dst,
                          brw_inst_imm_ud(devinfo, dst) |
                          brw_compact_inst_src1_reg_nr(devinfo, src));
   } else {
      brw_inst_set_src1_da_reg_nr(devinfo, dst,
                                  brw_compact_inst_src1_reg_nr(devinfo, src));
   }

#undef uncompact
}

void brw_debug_compact_uncompact(const struct gen_device_info *devinfo,
                                 brw_inst *orig,
                                 brw_inst *uncompacted)
{
   fprintf(stderr, "Instruction compact/uncompact changed (gen%d):\n",
           devinfo->gen);

   fprintf(stderr, "  before: ");
   brw_disassemble_inst(stderr, devinfo, orig, true);

   fprintf(stderr, "  after:  ");
   brw_disassemble_inst(stderr, devinfo, uncompacted, false);

   uint32_t *before_bits = (uint32_t *)orig;
   uint32_t *after_bits = (uint32_t *)uncompacted;
   fprintf(stderr, "  changed bits:\n");
   for (int i = 0; i < 128; i++) {
      uint32_t before = before_bits[i / 32] & (1 << (i & 31));
      uint32_t after = after_bits[i / 32] & (1 << (i & 31));

      if (before != after) {
         fprintf(stderr, "  bit %d, %s to %s\n", i,
                 before ? "set" : "unset",
                 after ? "set" : "unset");
      }
   }
}

static int
compacted_between(int old_ip, int old_target_ip, int *compacted_counts)
{
   int this_compacted_count = compacted_counts[old_ip];
   int target_compacted_count = compacted_counts[old_target_ip];
   return target_compacted_count - this_compacted_count;
}

static void
update_uip_jip(const struct gen_device_info *devinfo, brw_inst *insn,
               int this_old_ip, int *compacted_counts)
{
   /* JIP and UIP are in units of:
    *    - bytes on Gen8+; and
    *    - compacted instructions on Gen6+.
    */
   int shift = devinfo->gen >= 8 ? 3 : 0;

   int32_t jip_compacted = brw_inst_jip(devinfo, insn) >> shift;
   jip_compacted -= compacted_between(this_old_ip,
                                      this_old_ip + (jip_compacted / 2),
                                      compacted_counts);
   brw_inst_set_jip(devinfo, insn, jip_compacted << shift);

   if (brw_inst_opcode(devinfo, insn) == BRW_OPCODE_ENDIF ||
       brw_inst_opcode(devinfo, insn) == BRW_OPCODE_WHILE ||
       (brw_inst_opcode(devinfo, insn) == BRW_OPCODE_ELSE && devinfo->gen <= 7))
      return;

   int32_t uip_compacted = brw_inst_uip(devinfo, insn) >> shift;
   uip_compacted -= compacted_between(this_old_ip,
                                      this_old_ip + (uip_compacted / 2),
                                      compacted_counts);
   brw_inst_set_uip(devinfo, insn, uip_compacted << shift);
}

static void
update_gen4_jump_count(const struct gen_device_info *devinfo, brw_inst *insn,
                       int this_old_ip, int *compacted_counts)
{
   assert(devinfo->gen == 5 || devinfo->is_g4x);

   /* Jump Count is in units of:
    *    - uncompacted instructions on G45; and
    *    - compacted instructions on Gen5.
    */
   int shift = devinfo->is_g4x ? 1 : 0;

   int jump_count_compacted = brw_inst_gen4_jump_count(devinfo, insn) << shift;

   int target_old_ip = this_old_ip + (jump_count_compacted / 2);

   int this_compacted_count = compacted_counts[this_old_ip];
   int target_compacted_count = compacted_counts[target_old_ip];

   jump_count_compacted -= (target_compacted_count - this_compacted_count);
   brw_inst_set_gen4_jump_count(devinfo, insn, jump_count_compacted >> shift);
}

void
brw_init_compaction_tables(const struct gen_device_info *devinfo)
{
   assert(g45_control_index_table[ARRAY_SIZE(g45_control_index_table) - 1] != 0);
   assert(g45_datatype_table[ARRAY_SIZE(g45_datatype_table) - 1] != 0);
   assert(g45_subreg_table[ARRAY_SIZE(g45_subreg_table) - 1] != 0);
   assert(g45_src_index_table[ARRAY_SIZE(g45_src_index_table) - 1] != 0);
   assert(gen6_control_index_table[ARRAY_SIZE(gen6_control_index_table) - 1] != 0);
   assert(gen6_datatype_table[ARRAY_SIZE(gen6_datatype_table) - 1] != 0);
   assert(gen6_subreg_table[ARRAY_SIZE(gen6_subreg_table) - 1] != 0);
   assert(gen6_src_index_table[ARRAY_SIZE(gen6_src_index_table) - 1] != 0);
   assert(gen7_control_index_table[ARRAY_SIZE(gen7_control_index_table) - 1] != 0);
   assert(gen7_datatype_table[ARRAY_SIZE(gen7_datatype_table) - 1] != 0);
   assert(gen7_subreg_table[ARRAY_SIZE(gen7_subreg_table) - 1] != 0);
   assert(gen7_src_index_table[ARRAY_SIZE(gen7_src_index_table) - 1] != 0);
   assert(gen8_control_index_table[ARRAY_SIZE(gen8_control_index_table) - 1] != 0);
   assert(gen8_datatype_table[ARRAY_SIZE(gen8_datatype_table) - 1] != 0);
   assert(gen8_subreg_table[ARRAY_SIZE(gen8_subreg_table) - 1] != 0);
   assert(gen8_src_index_table[ARRAY_SIZE(gen8_src_index_table) - 1] != 0);

   switch (devinfo->gen) {
   case 10:
   case 9:
   case 8:
      control_index_table = gen8_control_index_table;
      datatype_table = gen8_datatype_table;
      subreg_table = gen8_subreg_table;
      src_index_table = gen8_src_index_table;
      break;
   case 7:
      control_index_table = gen7_control_index_table;
      datatype_table = gen7_datatype_table;
      subreg_table = gen7_subreg_table;
      src_index_table = gen7_src_index_table;
      break;
   case 6:
      control_index_table = gen6_control_index_table;
      datatype_table = gen6_datatype_table;
      subreg_table = gen6_subreg_table;
      src_index_table = gen6_src_index_table;
      break;
   case 5:
   case 4:
      control_index_table = g45_control_index_table;
      datatype_table = g45_datatype_table;
      subreg_table = g45_subreg_table;
      src_index_table = g45_src_index_table;
      break;
   default:
      unreachable("unknown generation");
   }
}

void
brw_compact_instructions(struct brw_codegen *p, int start_offset,
                         struct disasm_info *disasm)
{
   if (unlikely(INTEL_DEBUG & DEBUG_NO_COMPACTION))
      return;

   const struct gen_device_info *devinfo = p->devinfo;
   void *store = p->store + start_offset / 16;
   /* For an instruction at byte offset 16*i before compaction, this is the
    * number of compacted instructions minus the number of padding NOP/NENOPs
    * that preceded it.
    */
   int compacted_counts[(p->next_insn_offset - start_offset) / sizeof(brw_inst)];
   /* For an instruction at byte offset 8*i after compaction, this was its IP
    * (in 16-byte units) before compaction.
    */
   int old_ip[(p->next_insn_offset - start_offset) / sizeof(brw_compact_inst) + 1];

   if (devinfo->gen == 4 && !devinfo->is_g4x)
      return;

   int offset = 0;
   int compacted_count = 0;
   for (int src_offset = 0; src_offset < p->next_insn_offset - start_offset;
        src_offset += sizeof(brw_inst)) {
      brw_inst *src = store + src_offset;
      void *dst = store + offset;

      old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst);
      compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count;

      brw_inst inst = precompact(devinfo, *src);
      brw_inst saved = inst;

      if (brw_try_compact_instruction(devinfo, dst, &inst)) {
         compacted_count++;

         if (INTEL_DEBUG) {
            brw_inst uncompacted;
            brw_uncompact_instruction(devinfo, &uncompacted, dst);
            if (memcmp(&saved, &uncompacted, sizeof(uncompacted))) {
               brw_debug_compact_uncompact(devinfo, &saved, &uncompacted);
            }
         }

         offset += sizeof(brw_compact_inst);
      } else {
         /* All uncompacted instructions need to be aligned on G45. */
         if ((offset & sizeof(brw_compact_inst)) != 0 && devinfo->is_g4x){
            brw_compact_inst *align = store + offset;
            memset(align, 0, sizeof(*align));
            brw_compact_inst_set_opcode(devinfo, align, BRW_OPCODE_NENOP);
            brw_compact_inst_set_cmpt_control(devinfo, align, true);
            offset += sizeof(brw_compact_inst);
            compacted_count--;
            compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count;
            old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst);

            dst = store + offset;
         }

         /* If we didn't compact this intruction, we need to move it down into
          * place.
          */
         if (offset != src_offset) {
            memmove(dst, src, sizeof(brw_inst));
         }
         offset += sizeof(brw_inst);
      }
   }

   /* Add an entry for the ending offset of the program. This greatly
    * simplifies the linked list walk at the end of the function.
    */
   old_ip[offset / sizeof(brw_compact_inst)] =
      (p->next_insn_offset - start_offset) / sizeof(brw_inst);

   /* Fix up control flow offsets. */
   p->next_insn_offset = start_offset + offset;
   for (offset = 0; offset < p->next_insn_offset - start_offset;
        offset = next_offset(devinfo, store, offset)) {
      brw_inst *insn = store + offset;
      int this_old_ip = old_ip[offset / sizeof(brw_compact_inst)];
      int this_compacted_count = compacted_counts[this_old_ip];

      switch (brw_inst_opcode(devinfo, insn)) {
      case BRW_OPCODE_BREAK:
      case BRW_OPCODE_CONTINUE:
      case BRW_OPCODE_HALT:
         if (devinfo->gen >= 6) {
            update_uip_jip(devinfo, insn, this_old_ip, compacted_counts);
         } else {
            update_gen4_jump_count(devinfo, insn, this_old_ip,
                                   compacted_counts);
         }
         break;

      case BRW_OPCODE_IF:
      case BRW_OPCODE_IFF:
      case BRW_OPCODE_ELSE:
      case BRW_OPCODE_ENDIF:
      case BRW_OPCODE_WHILE:
         if (devinfo->gen >= 7) {
            if (brw_inst_cmpt_control(devinfo, insn)) {
               brw_inst uncompacted;
               brw_uncompact_instruction(devinfo, &uncompacted,
                                         (brw_compact_inst *)insn);

               update_uip_jip(devinfo, &uncompacted, this_old_ip,
                              compacted_counts);

               bool ret = brw_try_compact_instruction(devinfo,
                                                      (brw_compact_inst *)insn,
                                                      &uncompacted);
               assert(ret); (void)ret;
            } else {
               update_uip_jip(devinfo, insn, this_old_ip, compacted_counts);
            }
         } else if (devinfo->gen == 6) {
            assert(!brw_inst_cmpt_control(devinfo, insn));

            /* Jump Count is in units of compacted instructions on Gen6. */
            int jump_count_compacted = brw_inst_gen6_jump_count(devinfo, insn);

            int target_old_ip = this_old_ip + (jump_count_compacted / 2);
            int target_compacted_count = compacted_counts[target_old_ip];
            jump_count_compacted -= (target_compacted_count - this_compacted_count);
            brw_inst_set_gen6_jump_count(devinfo, insn, jump_count_compacted);
         } else {
            update_gen4_jump_count(devinfo, insn, this_old_ip,
                                   compacted_counts);
         }
         break;

      case BRW_OPCODE_ADD:
         /* Add instructions modifying the IP register use an immediate src1,
          * and Gens that use this cannot compact instructions with immediate
          * operands.
          */
         if (brw_inst_cmpt_control(devinfo, insn))
            break;

         if (brw_inst_dst_reg_file(devinfo, insn) == BRW_ARCHITECTURE_REGISTER_FILE &&
             brw_inst_dst_da_reg_nr(devinfo, insn) == BRW_ARF_IP) {
            assert(brw_inst_src1_reg_file(devinfo, insn) == BRW_IMMEDIATE_VALUE);

            int shift = 3;
            int jump_compacted = brw_inst_imm_d(devinfo, insn) >> shift;

            int target_old_ip = this_old_ip + (jump_compacted / 2);
            int target_compacted_count = compacted_counts[target_old_ip];
            jump_compacted -= (target_compacted_count - this_compacted_count);
            brw_inst_set_imm_ud(devinfo, insn, jump_compacted << shift);
         }
         break;
      }
   }

   /* p->nr_insn is counting the number of uncompacted instructions still, so
    * divide.  We do want to be sure there's a valid instruction in any
    * alignment padding, so that the next compression pass (for the FS 8/16
    * compile passes) parses correctly.
    */
   if (p->next_insn_offset & sizeof(brw_compact_inst)) {
      brw_compact_inst *align = store + offset;
      memset(align, 0, sizeof(*align));
      brw_compact_inst_set_opcode(devinfo, align, BRW_OPCODE_NOP);
      brw_compact_inst_set_cmpt_control(devinfo, align, true);
      p->next_insn_offset += sizeof(brw_compact_inst);
   }
   p->nr_insn = p->next_insn_offset / sizeof(brw_inst);

   /* Update the instruction offsets for each group. */
   if (disasm) {
      int offset = 0;

      foreach_list_typed(struct inst_group, group, link, &disasm->group_list) {
         while (start_offset + old_ip[offset / sizeof(brw_compact_inst)] *
                sizeof(brw_inst) != group->offset) {
            assert(start_offset + old_ip[offset / sizeof(brw_compact_inst)] *
                   sizeof(brw_inst) < group->offset);
            offset = next_offset(devinfo, store, offset);
         }

         group->offset = start_offset + offset;

         offset = next_offset(devinfo, store, offset);
      }
   }
}