/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "compiler/glsl/ir.h"
#include "brw_fs.h"
#include "brw_fs_surface_builder.h"
#include "brw_nir.h"
using namespace brw;
using namespace brw::surface_access;
void
fs_visitor::emit_nir_code()
{
/* emit the arrays used for inputs and outputs - load/store intrinsics will
* be converted to reads/writes of these arrays
*/
nir_setup_outputs();
nir_setup_uniforms();
nir_emit_system_values();
/* get the main function and emit it */
nir_foreach_function(function, nir) {
assert(strcmp(function->name, "main") == 0);
assert(function->impl);
nir_emit_impl(function->impl);
}
}
void
fs_visitor::nir_setup_outputs()
{
if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
return;
unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
/* Calculate the size of output registers in a separate pass, before
* allocating them. With ARB_enhanced_layouts, multiple output variables
* may occupy the same slot, but have different type sizes.
*/
nir_foreach_variable(var, &nir->outputs) {
const int loc = var->data.driver_location;
const unsigned var_vec4s =
var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
: type_size_vec4(var->type);
vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
}
nir_foreach_variable(var, &nir->outputs) {
const int loc = var->data.driver_location;
if (outputs[loc].file == BAD_FILE) {
fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
for (unsigned i = 0; i < vec4s[loc]; i++) {
outputs[loc + i] = offset(reg, bld, 4 * i);
}
}
}
}
void
fs_visitor::nir_setup_uniforms()
{
/* Only the first compile gets to set up uniforms. */
if (push_constant_loc) {
assert(pull_constant_loc);
return;
}
uniforms = nir->num_uniforms / 4;
if (stage == MESA_SHADER_COMPUTE) {
/* Add a uniform for the thread local id. It must be the last uniform
* on the list.
*/
assert(uniforms == prog_data->nr_params);
uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
*param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
}
}
static bool
emit_system_values_block(nir_block *block, fs_visitor *v)
{
fs_reg *reg;
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_vertex_id:
unreachable("should be lowered by lower_vertex_id().");
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_base_vertex:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_load_base_instance:
case nir_intrinsic_load_draw_id:
unreachable("should be lowered by brw_nir_lower_vs_inputs().");
case nir_intrinsic_load_invocation_id:
if (v->stage == MESA_SHADER_TESS_CTRL)
break;
assert(v->stage == MESA_SHADER_GEOMETRY);
reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
if (reg->file == BAD_FILE) {
const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
abld.SHR(iid, g1, brw_imm_ud(27u));
*reg = iid;
}
break;
case nir_intrinsic_load_sample_pos:
assert(v->stage == MESA_SHADER_FRAGMENT);
reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
if (reg->file == BAD_FILE)
*reg = *v->emit_samplepos_setup();
break;
case nir_intrinsic_load_sample_id:
assert(v->stage == MESA_SHADER_FRAGMENT);
reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
if (reg->file == BAD_FILE)
*reg = *v->emit_sampleid_setup();
break;
case nir_intrinsic_load_sample_mask_in:
assert(v->stage == MESA_SHADER_FRAGMENT);
assert(v->devinfo->gen >= 7);
reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
if (reg->file == BAD_FILE)
*reg = *v->emit_samplemaskin_setup();
break;
case nir_intrinsic_load_work_group_id:
assert(v->stage == MESA_SHADER_COMPUTE);
reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
if (reg->file == BAD_FILE)
*reg = *v->emit_cs_work_group_id_setup();
break;
case nir_intrinsic_load_helper_invocation:
assert(v->stage == MESA_SHADER_FRAGMENT);
reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
if (reg->file == BAD_FILE) {
const fs_builder abld =
v->bld.annotate("gl_HelperInvocation", NULL);
/* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
* pixel mask is in g1.7 of the thread payload.
*
* We move the per-channel pixel enable bit to the low bit of each
* channel by shifting the byte containing the pixel mask by the
* vector immediate 0x76543210UV.
*
* The region of <1,8,0> reads only 1 byte (the pixel masks for
* subspans 0 and 1) in SIMD8 and an additional byte (the pixel
* masks for 2 and 3) in SIMD16.
*/
fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
abld.SHR(shifted,
stride(byte_offset(retype(brw_vec1_grf(1, 0),
BRW_REGISTER_TYPE_UB), 28),
1, 8, 0),
brw_imm_v(0x76543210));
/* A set bit in the pixel mask means the channel is enabled, but
* that is the opposite of gl_HelperInvocation so we need to invert
* the mask.
*
* The negate source-modifier bit of logical instructions on Gen8+
* performs 1's complement negation, so we can use that instead of
* a NOT instruction.
*/
fs_reg inverted = negate(shifted);
if (v->devinfo->gen < 8) {
inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
abld.NOT(inverted, shifted);
}
/* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
* with 1 and negating.
*/
fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
abld.AND(anded, inverted, brw_imm_uw(1));
fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
*reg = dst;
}
break;
default:
break;
}
}
return true;
}
void
fs_visitor::nir_emit_system_values()
{
nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
nir_system_values[i] = fs_reg();
}
/* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
* never end up using it.
*/
{
const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
fs_reg ® = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
const fs_builder allbld8 = abld.group(8, 0).exec_all();
allbld8.MOV(reg, brw_imm_v(0x76543210));
if (dispatch_width > 8)
allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
if (dispatch_width > 16) {
const fs_builder allbld16 = abld.group(16, 0).exec_all();
allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
}
}
nir_foreach_function(function, nir) {
assert(strcmp(function->name, "main") == 0);
assert(function->impl);
nir_foreach_block(block, function->impl) {
emit_system_values_block(block, this);
}
}
}
/*
* Returns a type based on a reference_type (word, float, half-float) and a
* given bit_size.
*
* Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
*
* @FIXME: 64-bit return types are always DF on integer types to maintain
* compability with uses of DF previously to the introduction of int64
* support.
*/
static brw_reg_type
brw_reg_type_from_bit_size(const unsigned bit_size,
const brw_reg_type reference_type)
{
switch(reference_type) {
case BRW_REGISTER_TYPE_HF:
case BRW_REGISTER_TYPE_F:
case BRW_REGISTER_TYPE_DF:
switch(bit_size) {
case 16:
return BRW_REGISTER_TYPE_HF;
case 32:
return BRW_REGISTER_TYPE_F;
case 64:
return BRW_REGISTER_TYPE_DF;
default:
unreachable("Invalid bit size");
}
case BRW_REGISTER_TYPE_W:
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_Q:
switch(bit_size) {
case 16:
return BRW_REGISTER_TYPE_W;
case 32:
return BRW_REGISTER_TYPE_D;
case 64:
return BRW_REGISTER_TYPE_Q;
default:
unreachable("Invalid bit size");
}
case BRW_REGISTER_TYPE_UW:
case BRW_REGISTER_TYPE_UD:
case BRW_REGISTER_TYPE_UQ:
switch(bit_size) {
case 16:
return BRW_REGISTER_TYPE_UW;
case 32:
return BRW_REGISTER_TYPE_UD;
case 64:
return BRW_REGISTER_TYPE_UQ;
default:
unreachable("Invalid bit size");
}
default:
unreachable("Unknown type");
}
}
void
fs_visitor::nir_emit_impl(nir_function_impl *impl)
{
nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
for (unsigned i = 0; i < impl->reg_alloc; i++) {
nir_locals[i] = fs_reg();
}
foreach_list_typed(nir_register, reg, node, &impl->registers) {
unsigned array_elems =
reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
unsigned size = array_elems * reg->num_components;
const brw_reg_type reg_type =
brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
nir_locals[reg->index] = bld.vgrf(reg_type, size);
}
nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
impl->ssa_alloc);
nir_emit_cf_list(&impl->body);
}
void
fs_visitor::nir_emit_cf_list(exec_list *list)
{
exec_list_validate(list);
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_if:
nir_emit_if(nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
nir_emit_loop(nir_cf_node_as_loop(node));
break;
case nir_cf_node_block:
nir_emit_block(nir_cf_node_as_block(node));
break;
default:
unreachable("Invalid CFG node block");
}
}
}
void
fs_visitor::nir_emit_if(nir_if *if_stmt)
{
/* first, put the condition into f0 */
fs_inst *inst = bld.MOV(bld.null_reg_d(),
retype(get_nir_src(if_stmt->condition),
BRW_REGISTER_TYPE_D));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
bld.IF(BRW_PREDICATE_NORMAL);
nir_emit_cf_list(&if_stmt->then_list);
/* note: if the else is empty, dead CF elimination will remove it */
bld.emit(BRW_OPCODE_ELSE);
nir_emit_cf_list(&if_stmt->else_list);
bld.emit(BRW_OPCODE_ENDIF);
}
void
fs_visitor::nir_emit_loop(nir_loop *loop)
{
bld.emit(BRW_OPCODE_DO);
nir_emit_cf_list(&loop->body);
bld.emit(BRW_OPCODE_WHILE);
}
void
fs_visitor::nir_emit_block(nir_block *block)
{
nir_foreach_instr(instr, block) {
nir_emit_instr(instr);
}
}
void
fs_visitor::nir_emit_instr(nir_instr *instr)
{
const fs_builder abld = bld.annotate(NULL, instr);
switch (instr->type) {
case nir_instr_type_alu:
nir_emit_alu(abld, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
switch (stage) {
case MESA_SHADER_VERTEX:
nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_TESS_CTRL:
nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_TESS_EVAL:
nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_GEOMETRY:
nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_FRAGMENT:
nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_COMPUTE:
nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
default:
unreachable("unsupported shader stage");
}
break;
case nir_instr_type_tex:
nir_emit_texture(abld, nir_instr_as_tex(instr));
break;
case nir_instr_type_load_const:
nir_emit_load_const(abld, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
/* We create a new VGRF for undefs on every use (by handling
* them in get_nir_src()), rather than for each definition.
* This helps register coalescing eliminate MOVs from undef.
*/
break;
case nir_instr_type_jump:
nir_emit_jump(abld, nir_instr_as_jump(instr));
break;
default:
unreachable("unknown instruction type");
}
}
/**
* Recognizes a parent instruction of nir_op_extract_* and changes the type to
* match instr.
*/
bool
fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
const fs_reg &result)
{
if (!instr->src[0].src.is_ssa ||
!instr->src[0].src.ssa->parent_instr)
return false;
if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *src0 =
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
return false;
nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
assert(element != NULL);
/* Element type to extract.*/
const brw_reg_type type = brw_int_type(
src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
fs_reg op0 = get_nir_src(src0->src[0].src);
op0.type = brw_type_for_nir_type(devinfo,
(nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
nir_src_bit_size(src0->src[0].src)));
op0 = offset(op0, bld, src0->src[0].swizzle[0]);
set_saturate(instr->dest.saturate,
bld.MOV(result, subscript(op0, type, element->u32[0])));
return true;
}
bool
fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
const fs_reg &result)
{
if (!instr->src[0].src.is_ssa ||
instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *src0 =
nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
if (src0->intrinsic != nir_intrinsic_load_front_face)
return false;
nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
if (!value1 || fabsf(value1->f32[0]) != 1.0f)
return false;
nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
if (!value2 || fabsf(value2->f32[0]) != 1.0f)
return false;
fs_reg tmp = vgrf(glsl_type::int_type);
if (devinfo->gen >= 6) {
/* Bit 15 of g0.0 is 0 if the polygon is front facing. */
fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
/* For (gl_FrontFacing ? 1.0 : -1.0), emit:
*
* or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
* and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
*
* and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
*
* This negation looks like it's safe in practice, because bits 0:4 will
* surely be TRIANGLES
*/
if (value1->f32[0] == -1.0f) {
g0.negate = true;
}
bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
g0, brw_imm_uw(0x3f80));
} else {
/* Bit 31 of g1.6 is 0 if the polygon is front facing. */
fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
/* For (gl_FrontFacing ? 1.0 : -1.0), emit:
*
* or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
* and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
*
* and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
*
* This negation looks like it's safe in practice, because bits 0:4 will
* surely be TRIANGLES
*/
if (value1->f32[0] == -1.0f) {
g1_6.negate = true;
}
bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
}
bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
return true;
}
static void
emit_find_msb_using_lzd(const fs_builder &bld,
const fs_reg &result,
const fs_reg &src,
bool is_signed)
{
fs_inst *inst;
fs_reg temp = src;
if (is_signed) {
/* LZD of an absolute value source almost always does the right
* thing. There are two problem values:
*
* * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
* 0. However, findMSB(int(0x80000000)) == 30.
*
* * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
* 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
*
* For a value of zero or negative one, -1 will be returned.
*
* * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
* findMSB(-(1<<x)) should return x-1.
*
* For all negative number cases, including 0x80000000 and
* 0xffffffff, the correct value is obtained from LZD if instead of
* negating the (already negative) value the logical-not is used. A
* conditonal logical-not can be achieved in two instructions.
*/
temp = bld.vgrf(BRW_REGISTER_TYPE_D);
bld.ASR(temp, src, brw_imm_d(31));
bld.XOR(temp, temp, src);
}
bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
retype(temp, BRW_REGISTER_TYPE_UD));
/* LZD counts from the MSB side, while GLSL's findMSB() wants the count
* from the LSB side. Subtract the result from 31 to convert the MSB
* count into an LSB count. If no bits are set, LZD will return 32.
* 31-32 = -1, which is exactly what findMSB() is supposed to return.
*/
inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
inst->src[0].negate = true;
}
static brw_rnd_mode
brw_rnd_mode_from_nir_op (const nir_op op) {
switch (op) {
case nir_op_f2f16_rtz:
return BRW_RND_MODE_RTZ;
case nir_op_f2f16_rtne:
return BRW_RND_MODE_RTNE;
default:
unreachable("Operation doesn't support rounding mode");
}
}
void
fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
{
struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
fs_inst *inst;
fs_reg result = get_nir_dest(instr->dest.dest);
result.type = brw_type_for_nir_type(devinfo,
(nir_alu_type)(nir_op_infos[instr->op].output_type |
nir_dest_bit_size(instr->dest.dest)));
fs_reg op[4];
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
op[i] = get_nir_src(instr->src[i].src);
op[i].type = brw_type_for_nir_type(devinfo,
(nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
nir_src_bit_size(instr->src[i].src)));
op[i].abs = instr->src[i].abs;
op[i].negate = instr->src[i].negate;
}
/* We get a bunch of mov's out of the from_ssa pass and they may still
* be vectorized. We'll handle them as a special-case. We'll also
* handle vecN here because it's basically the same thing.
*/
switch (instr->op) {
case nir_op_imov:
case nir_op_fmov:
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4: {
fs_reg temp = result;
bool need_extra_copy = false;
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
if (!instr->src[i].src.is_ssa &&
instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
need_extra_copy = true;
temp = bld.vgrf(result.type, 4);
break;
}
}
for (unsigned i = 0; i < 4; i++) {
if (!(instr->dest.write_mask & (1 << i)))
continue;
if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
inst = bld.MOV(offset(temp, bld, i),
offset(op[0], bld, instr->src[0].swizzle[i]));
} else {
inst = bld.MOV(offset(temp, bld, i),
offset(op[i], bld, instr->src[i].swizzle[0]));
}
inst->saturate = instr->dest.saturate;
}
/* In this case the source and destination registers were the same,
* so we need to insert an extra set of moves in order to deal with
* any swizzling.
*/
if (need_extra_copy) {
for (unsigned i = 0; i < 4; i++) {
if (!(instr->dest.write_mask & (1 << i)))
continue;
bld.MOV(offset(result, bld, i), offset(temp, bld, i));
}
}
return;
}
default:
break;
}
/* At this point, we have dealt with any instruction that operates on
* more than a single channel. Therefore, we can just adjust the source
* and destination registers for that channel and emit the instruction.
*/
unsigned channel = 0;
if (nir_op_infos[instr->op].output_size == 0) {
/* Since NIR is doing the scalarizing for us, we should only ever see
* vectorized operations with a single channel.
*/
assert(_mesa_bitcount(instr->dest.write_mask) == 1);
channel = ffs(instr->dest.write_mask) - 1;
result = offset(result, bld, channel);
}
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
assert(nir_op_infos[instr->op].input_sizes[i] < 2);
op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
}
switch (instr->op) {
case nir_op_i2f32:
case nir_op_u2f32:
if (optimize_extract_to_float(instr, result))
return;
inst = bld.MOV(result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_f2f16_rtne:
case nir_op_f2f16_rtz:
bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
/* fallthrough */
/* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
* on the HW gen, it is a special hw opcode or just a MOV, and
* brw_F32TO16 (at brw_eu_emit) would do the work to chose.
*
* But if we want to use that opcode, we need to provide support on
* different optimizations and lowerings. As right now HF support is
* only for gen8+, it will be better to use directly the MOV, and use
* BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
*/
case nir_op_f2f16_undef:
case nir_op_i2i16:
case nir_op_u2u16: {
/* TODO: Fixing aligment rules for conversions from 32-bits to
* 16-bit types should be moved to lower_conversions
*/
fs_reg tmp = bld.vgrf(op[0].type, 1);
tmp = subscript(tmp, result.type, 0);
inst = bld.MOV(tmp, op[0]);
inst->saturate = instr->dest.saturate;
inst = bld.MOV(result, tmp);
inst->saturate = instr->dest.saturate;
break;
}
case nir_op_f2f64:
case nir_op_f2i64:
case nir_op_f2u64:
case nir_op_i2f64:
case nir_op_i2i64:
case nir_op_u2f64:
case nir_op_u2u64:
/* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
*
* "When source or destination is 64b (...), regioning in Align1
* must follow these rules:
*
* 1. Source and destination horizontal stride must be aligned to
* the same qword.
* (...)"
*
* This means that 32-bit to 64-bit conversions need to have the 32-bit
* data elements aligned to 64-bit. This restriction does not apply to
* BDW and later.
*/
if (nir_dest_bit_size(instr->dest.dest) == 64 &&
nir_src_bit_size(instr->src[0].src) == 32 &&
(devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
fs_reg tmp = bld.vgrf(result.type, 1);
tmp = subscript(tmp, op[0].type, 0);
inst = bld.MOV(tmp, op[0]);
inst = bld.MOV(result, tmp);
inst->saturate = instr->dest.saturate;
break;
}
/* fallthrough */
case nir_op_f2f32:
case nir_op_f2i32:
case nir_op_f2u32:
case nir_op_i2i32:
case nir_op_u2u32:
inst = bld.MOV(result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fsign: {
if (op[0].abs) {
/* Straightforward since the source can be assumed to be
* non-negative.
*/
set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
} else if (type_sz(op[0].type) < 8) {
/* AND(val, 0x80000000) gives the sign bit.
*
* Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
* zero.
*/
bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
op[0].type = BRW_REGISTER_TYPE_UD;
result.type = BRW_REGISTER_TYPE_UD;
bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
inst->predicate = BRW_PREDICATE_NORMAL;
if (instr->dest.saturate) {
inst = bld.MOV(result, result);
inst->saturate = true;
}
} else {
/* For doubles we do the same but we need to consider:
*
* - 2-src instructions can't operate with 64-bit immediates
* - The sign is encoded in the high 32-bit of each DF
* - We need to produce a DF result.
*/
fs_reg zero = vgrf(glsl_type::double_type);
bld.MOV(zero, setup_imm_df(bld, 0.0));
bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
bld.MOV(result, zero);
fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
brw_imm_ud(0x80000000u));
set_predicate(BRW_PREDICATE_NORMAL,
bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
if (instr->dest.saturate) {
inst = bld.MOV(result, result);
inst->saturate = true;
}
}
break;
}
case nir_op_isign:
/* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
* -> non-negative val generates 0x00000000.
* Predicated OR sets 1 if val is positive.
*/
assert(nir_dest_bit_size(instr->dest.dest) < 64);
bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
bld.ASR(result, op[0], brw_imm_d(31));
inst = bld.OR(result, result, brw_imm_d(1));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
case nir_op_frcp:
inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fexp2:
inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_flog2:
inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fsin:
inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fcos:
inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddx:
if (fs_key->high_quality_derivatives) {
inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
} else {
inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
}
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddx_fine:
inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddx_coarse:
inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddy:
if (fs_key->high_quality_derivatives) {
inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
} else {
inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
}
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddy_fine:
inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddy_coarse:
inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_iadd:
case nir_op_fadd:
inst = bld.ADD(result, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fmul:
inst = bld.MUL(result, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_imul:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
bld.MUL(result, op[0], op[1]);
break;
case nir_op_imul_high:
case nir_op_umul_high:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
break;
case nir_op_idiv:
case nir_op_udiv:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
break;
case nir_op_uadd_carry:
unreachable("Should have been lowered by carry_to_arith().");
case nir_op_usub_borrow:
unreachable("Should have been lowered by borrow_to_arith().");
case nir_op_umod:
case nir_op_irem:
/* According to the sign table for INT DIV in the Ivy Bridge PRM, it
* appears that our hardware just does the right thing for signed
* remainder.
*/
assert(nir_dest_bit_size(instr->dest.dest) < 64);
bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
break;
case nir_op_imod: {
/* Get a regular C-style remainder. If a % b == 0, set the predicate. */
bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
/* Math instructions don't support conditional mod */
inst = bld.MOV(bld.null_reg_d(), result);
inst->conditional_mod = BRW_CONDITIONAL_NZ;
/* Now, we need to determine if signs of the sources are different.
* When we XOR the sources, the top bit is 0 if they are the same and 1
* if they are different. We can then use a conditional modifier to
* turn that into a predicate. This leads us to an XOR.l instruction.
*
* Technically, according to the PRM, you're not allowed to use .l on a
* XOR instruction. However, emperical experiments and Curro's reading
* of the simulator source both indicate that it's safe.
*/
fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
inst = bld.XOR(tmp, op[0], op[1]);
inst->predicate = BRW_PREDICATE_NORMAL;
inst->conditional_mod = BRW_CONDITIONAL_L;
/* If the result of the initial remainder operation is non-zero and the
* two sources have different signs, add in a copy of op[1] to get the
* final integer modulus value.
*/
inst = bld.ADD(result, result, op[1]);
inst->predicate = BRW_PREDICATE_NORMAL;
break;
}
case nir_op_flt:
case nir_op_fge:
case nir_op_feq:
case nir_op_fne: {
fs_reg dest = result;
if (nir_src_bit_size(instr->src[0].src) > 32) {
dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
}
brw_conditional_mod cond;
switch (instr->op) {
case nir_op_flt:
cond = BRW_CONDITIONAL_L;
break;
case nir_op_fge:
cond = BRW_CONDITIONAL_GE;
break;
case nir_op_feq:
cond = BRW_CONDITIONAL_Z;
break;
case nir_op_fne:
cond = BRW_CONDITIONAL_NZ;
break;
default:
unreachable("bad opcode");
}
bld.CMP(dest, op[0], op[1], cond);
if (nir_src_bit_size(instr->src[0].src) > 32) {
bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
}
break;
}
case nir_op_ilt:
case nir_op_ult:
case nir_op_ige:
case nir_op_uge:
case nir_op_ieq:
case nir_op_ine: {
fs_reg dest = result;
if (nir_src_bit_size(instr->src[0].src) > 32) {
dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
}
brw_conditional_mod cond;
switch (instr->op) {
case nir_op_ilt:
case nir_op_ult:
cond = BRW_CONDITIONAL_L;
break;
case nir_op_ige:
case nir_op_uge:
cond = BRW_CONDITIONAL_GE;
break;
case nir_op_ieq:
cond = BRW_CONDITIONAL_Z;
break;
case nir_op_ine:
cond = BRW_CONDITIONAL_NZ;
break;
default:
unreachable("bad opcode");
}
bld.CMP(dest, op[0], op[1], cond);
if (nir_src_bit_size(instr->src[0].src) > 32) {
bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
}
break;
}
case nir_op_inot:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
}
bld.NOT(result, op[0]);
break;
case nir_op_ixor:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
bld.XOR(result, op[0], op[1]);
break;
case nir_op_ior:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
bld.OR(result, op[0], op[1]);
break;
case nir_op_iand:
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
bld.AND(result, op[0], op[1]);
break;
case nir_op_fdot2:
case nir_op_fdot3:
case nir_op_fdot4:
case nir_op_ball_fequal2:
case nir_op_ball_iequal2:
case nir_op_ball_fequal3:
case nir_op_ball_iequal3:
case nir_op_ball_fequal4:
case nir_op_ball_iequal4:
case nir_op_bany_fnequal2:
case nir_op_bany_inequal2:
case nir_op_bany_fnequal3:
case nir_op_bany_inequal3:
case nir_op_bany_fnequal4:
case nir_op_bany_inequal4:
unreachable("Lowered by nir_lower_alu_reductions");
case nir_op_fnoise1_1:
case nir_op_fnoise1_2:
case nir_op_fnoise1_3:
case nir_op_fnoise1_4:
case nir_op_fnoise2_1:
case nir_op_fnoise2_2:
case nir_op_fnoise2_3:
case nir_op_fnoise2_4:
case nir_op_fnoise3_1:
case nir_op_fnoise3_2:
case nir_op_fnoise3_3:
case nir_op_fnoise3_4:
case nir_op_fnoise4_1:
case nir_op_fnoise4_2:
case nir_op_fnoise4_3:
case nir_op_fnoise4_4:
unreachable("not reached: should be handled by lower_noise");
case nir_op_ldexp:
unreachable("not reached: should be handled by ldexp_to_arith()");
case nir_op_fsqrt:
inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_frsq:
inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_b2i:
case nir_op_b2f:
bld.MOV(result, negate(op[0]));
break;
case nir_op_i2b:
case nir_op_f2b:
if (nir_src_bit_size(instr->src[0].src) == 64) {
/* two-argument instructions can't take 64-bit immediates */
fs_reg zero;
fs_reg tmp;
if (instr->op == nir_op_f2b) {
zero = vgrf(glsl_type::double_type);
tmp = vgrf(glsl_type::double_type);
bld.MOV(zero, setup_imm_df(bld, 0.0));
} else {
zero = vgrf(glsl_type::int64_t_type);
tmp = vgrf(glsl_type::int64_t_type);
bld.MOV(zero, brw_imm_q(0));
}
/* A SIMD16 execution needs to be split in two instructions, so use
* a vgrf instead of the flag register as dst so instruction splitting
* works
*/
bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
} else {
if (instr->op == nir_op_f2b) {
bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
} else {
bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
}
}
break;
case nir_op_ftrunc:
inst = bld.RNDZ(result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fceil: {
op[0].negate = !op[0].negate;
fs_reg temp = vgrf(glsl_type::float_type);
bld.RNDD(temp, op[0]);
temp.negate = true;
inst = bld.MOV(result, temp);
inst->saturate = instr->dest.saturate;
break;
}
case nir_op_ffloor:
inst = bld.RNDD(result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_ffract:
inst = bld.FRC(result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fround_even:
inst = bld.RNDE(result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fquantize2f16: {
fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
/* The destination stride must be at least as big as the source stride. */
tmp16.type = BRW_REGISTER_TYPE_W;
tmp16.stride = 2;
/* Check for denormal */
fs_reg abs_src0 = op[0];
abs_src0.abs = true;
bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
BRW_CONDITIONAL_L);
/* Get the appropriately signed zero */
bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
retype(op[0], BRW_REGISTER_TYPE_UD),
brw_imm_ud(0x80000000));
/* Do the actual F32 -> F16 -> F32 conversion */
bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
/* Select that or zero based on normal status */
inst = bld.SEL(result, zero, tmp32);
inst->predicate = BRW_PREDICATE_NORMAL;
inst->saturate = instr->dest.saturate;
break;
}
case nir_op_imin:
case nir_op_umin:
case nir_op_fmin:
inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
inst->saturate = instr->dest.saturate;
break;
case nir_op_imax:
case nir_op_umax:
case nir_op_fmax:
inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
inst->saturate = instr->dest.saturate;
break;
case nir_op_pack_snorm_2x16:
case nir_op_pack_snorm_4x8:
case nir_op_pack_unorm_2x16:
case nir_op_pack_unorm_4x8:
case nir_op_unpack_snorm_2x16:
case nir_op_unpack_snorm_4x8:
case nir_op_unpack_unorm_2x16:
case nir_op_unpack_unorm_4x8:
case nir_op_unpack_half_2x16:
case nir_op_pack_half_2x16:
unreachable("not reached: should be handled by lower_packing_builtins");
case nir_op_unpack_half_2x16_split_x:
inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_unpack_half_2x16_split_y:
inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_pack_64_2x32_split:
bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
break;
case nir_op_unpack_64_2x32_split_x:
case nir_op_unpack_64_2x32_split_y: {
if (instr->op == nir_op_unpack_64_2x32_split_x)
bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
else
bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
break;
}
case nir_op_fpow:
inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_bitfield_reverse:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
bld.BFREV(result, op[0]);
break;
case nir_op_bit_count:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
bld.CBIT(result, op[0]);
break;
case nir_op_ufind_msb: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_find_msb_using_lzd(bld, result, op[0], false);
break;
}
case nir_op_ifind_msb: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen < 7) {
emit_find_msb_using_lzd(bld, result, op[0], true);
} else {
bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
/* FBH counts from the MSB side, while GLSL's findMSB() wants the
* count from the LSB side. If FBH didn't return an error
* (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
* count into an LSB count.
*/
bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
inst = bld.ADD(result, result, brw_imm_d(31));
inst->predicate = BRW_PREDICATE_NORMAL;
inst->src[0].negate = true;
}
break;
}
case nir_op_find_lsb:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen < 7) {
fs_reg temp = vgrf(glsl_type::int_type);
/* (x & -x) generates a value that consists of only the LSB of x.
* For all powers of 2, findMSB(y) == findLSB(y).
*/
fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
fs_reg negated_src = src;
/* One must be negated, and the other must be non-negated. It
* doesn't matter which is which.
*/
negated_src.negate = true;
src.negate = false;
bld.AND(temp, src, negated_src);
emit_find_msb_using_lzd(bld, result, temp, false);
} else {
bld.FBL(result, op[0]);
}
break;
case nir_op_ubitfield_extract:
case nir_op_ibitfield_extract:
unreachable("should have been lowered");
case nir_op_ubfe:
case nir_op_ibfe:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
bld.BFE(result, op[2], op[1], op[0]);
break;
case nir_op_bfm:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
bld.BFI1(result, op[0], op[1]);
break;
case nir_op_bfi:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
bld.BFI2(result, op[0], op[1], op[2]);
break;
case nir_op_bitfield_insert:
unreachable("not reached: should have been lowered");
case nir_op_ishl:
case nir_op_ishr:
case nir_op_ushr: {
fs_reg shift_count = op[1];
if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
if (op[1].file == VGRF &&
(result.type == BRW_REGISTER_TYPE_Q ||
result.type == BRW_REGISTER_TYPE_UQ)) {
shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
BRW_REGISTER_TYPE_UD);
shift_count.stride = 2;
bld.MOV(shift_count, op[1]);
}
}
switch (instr->op) {
case nir_op_ishl:
bld.SHL(result, op[0], shift_count);
break;
case nir_op_ishr:
bld.ASR(result, op[0], shift_count);
break;
case nir_op_ushr:
bld.SHR(result, op[0], shift_count);
break;
default:
unreachable("not reached");
}
break;
}
case nir_op_pack_half_2x16_split:
bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
break;
case nir_op_ffma:
inst = bld.MAD(result, op[2], op[1], op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_flrp:
inst = bld.LRP(result, op[0], op[1], op[2]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_bcsel:
if (optimize_frontfacing_ternary(instr, result))
return;
bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
inst = bld.SEL(result, op[1], op[2]);
inst->predicate = BRW_PREDICATE_NORMAL;
break;
case nir_op_extract_u8:
case nir_op_extract_i8: {
nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
assert(byte != NULL);
/* The PRMs say:
*
* BDW+
* There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
* Use two instructions and a word or DWord intermediate integer type.
*/
if (nir_dest_bit_size(instr->dest.dest) == 64) {
const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
if (instr->op == nir_op_extract_i8) {
/* If we need to sign extend, extract to a word first */
fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
bld.MOV(result, w_temp);
} else {
/* Otherwise use an AND with 0xff and a word type */
bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
}
} else {
const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
bld.MOV(result, subscript(op[0], type, byte->u32[0]));
}
break;
}
case nir_op_extract_u16:
case nir_op_extract_i16: {
const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
assert(word != NULL);
bld.MOV(result, subscript(op[0], type, word->u32[0]));
break;
}
default:
unreachable("unhandled instruction");
}
/* If we need to do a boolean resolve, replace the result with -(x & 1)
* to sign extend the low bit to 0/~0
*/
if (devinfo->gen <= 5 &&
(instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
fs_reg masked = vgrf(glsl_type::int_type);
bld.AND(masked, result, brw_imm_d(1));
masked.negate = true;
bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
}
}
void
fs_visitor::nir_emit_load_const(const fs_builder &bld,
nir_load_const_instr *instr)
{
const brw_reg_type reg_type =
brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
switch (instr->def.bit_size) {
case 32:
for (unsigned i = 0; i < instr->def.num_components; i++)
bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
break;
case 64:
assert(devinfo->gen >= 7);
if (devinfo->gen == 7) {
/* We don't get 64-bit integer types until gen8 */
for (unsigned i = 0; i < instr->def.num_components; i++) {
bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
setup_imm_df(bld, instr->value.f64[i]));
}
} else {
for (unsigned i = 0; i < instr->def.num_components; i++)
bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
}
break;
default:
unreachable("Invalid bit size");
}
nir_ssa_values[instr->def.index] = reg;
}
fs_reg
fs_visitor::get_nir_src(const nir_src &src)
{
fs_reg reg;
if (src.is_ssa) {
if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
const brw_reg_type reg_type =
brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
reg = bld.vgrf(reg_type, src.ssa->num_components);
} else {
reg = nir_ssa_values[src.ssa->index];
}
} else {
/* We don't handle indirects on locals */
assert(src.reg.indirect == NULL);
reg = offset(nir_locals[src.reg.reg->index], bld,
src.reg.base_offset * src.reg.reg->num_components);
}
if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
/* The only 64-bit type available on gen7 is DF, so use that. */
reg.type = BRW_REGISTER_TYPE_DF;
} else {
/* To avoid floating-point denorm flushing problems, set the type by
* default to an integer type - instructions that need floating point
* semantics will set this to F if they need to
*/
reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
BRW_REGISTER_TYPE_D);
}
return reg;
}
/**
* Return an IMM for constants; otherwise call get_nir_src() as normal.
*
* This function should not be called on any value which may be 64 bits.
* We could theoretically support 64-bit on gen8+ but we choose not to
* because it wouldn't work in general (no gen7 support) and there are
* enough restrictions in 64-bit immediates that you can't take the return
* value and treat it the same as the result of get_nir_src().
*/
fs_reg
fs_visitor::get_nir_src_imm(const nir_src &src)
{
nir_const_value *val = nir_src_as_const_value(src);
assert(nir_src_bit_size(src) == 32);
return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
}
fs_reg
fs_visitor::get_nir_dest(const nir_dest &dest)
{
if (dest.is_ssa) {
const brw_reg_type reg_type =
brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
nir_ssa_values[dest.ssa.index] =
bld.vgrf(reg_type, dest.ssa.num_components);
return nir_ssa_values[dest.ssa.index];
} else {
/* We don't handle indirects on locals */
assert(dest.reg.indirect == NULL);
return offset(nir_locals[dest.reg.reg->index], bld,
dest.reg.base_offset * dest.reg.reg->num_components);
}
}
fs_reg
fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
{
fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
BRW_REGISTER_TYPE_UD);
fs_reg indirect;
unsigned indirect_max = 0;
for (const nir_deref *tail = &deref->deref; tail->child;
tail = tail->child) {
const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
assert(tail->child->deref_type == nir_deref_type_array);
const unsigned size = glsl_get_length(tail->type);
const unsigned element_size = type_size_scalar(deref_array->deref.type);
const unsigned base = MIN2(deref_array->base_offset, size - 1);
image = offset(image, bld, base * element_size);
if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
fs_reg tmp = vgrf(glsl_type::uint_type);
/* Accessing an invalid surface index with the dataport can result
* in a hang. According to the spec "if the index used to
* select an individual element is negative or greater than or
* equal to the size of the array, the results of the operation
* are undefined but may not lead to termination" -- which is one
* of the possible outcomes of the hang. Clamp the index to
* prevent access outside of the array bounds.
*/
bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
BRW_REGISTER_TYPE_UD),
brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
indirect_max += element_size * (tail->type->length - 1);
bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
if (indirect.file == BAD_FILE) {
indirect = tmp;
} else {
bld.ADD(indirect, indirect, tmp);
}
}
}
if (indirect.file == BAD_FILE) {
return image;
} else {
/* Emit a pile of MOVs to load the uniform into a temporary. The
* dead-code elimination pass will get rid of what we don't use.
*/
fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
bld.emit(SHADER_OPCODE_MOV_INDIRECT,
offset(tmp, bld, j), offset(image, bld, j),
indirect, brw_imm_ud((indirect_max + 1) * 4));
}
return tmp;
}
}
void
fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
unsigned wr_mask)
{
for (unsigned i = 0; i < 4; i++) {
if (!((wr_mask >> i) & 1))
continue;
fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
new_inst->dst = offset(new_inst->dst, bld, i);
for (unsigned j = 0; j < new_inst->sources; j++)
if (new_inst->src[j].file == VGRF)
new_inst->src[j] = offset(new_inst->src[j], bld, i);
bld.emit(new_inst);
}
}
/**
* Get the matching channel register datatype for an image intrinsic of the
* specified GLSL image type.
*/
static brw_reg_type
get_image_base_type(const glsl_type *type)
{
switch ((glsl_base_type)type->sampled_type) {
case GLSL_TYPE_UINT:
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_INT:
return BRW_REGISTER_TYPE_D;
case GLSL_TYPE_FLOAT:
return BRW_REGISTER_TYPE_F;
default:
unreachable("Not reached.");
}
}
/**
* Get the appropriate atomic op for an image atomic intrinsic.
*/
static unsigned
get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
{
switch (op) {
case nir_intrinsic_image_atomic_add:
return BRW_AOP_ADD;
case nir_intrinsic_image_atomic_min:
return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
BRW_AOP_IMIN : BRW_AOP_UMIN);
case nir_intrinsic_image_atomic_max:
return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
BRW_AOP_IMAX : BRW_AOP_UMAX);
case nir_intrinsic_image_atomic_and:
return BRW_AOP_AND;
case nir_intrinsic_image_atomic_or:
return BRW_AOP_OR;
case nir_intrinsic_image_atomic_xor:
return BRW_AOP_XOR;
case nir_intrinsic_image_atomic_exchange:
return BRW_AOP_MOV;
case nir_intrinsic_image_atomic_comp_swap:
return BRW_AOP_CMPWR;
default:
unreachable("Not reachable.");
}
}
static fs_inst *
emit_pixel_interpolater_send(const fs_builder &bld,
enum opcode opcode,
const fs_reg &dst,
const fs_reg &src,
const fs_reg &desc,
glsl_interp_mode interpolation)
{
struct brw_wm_prog_data *wm_prog_data =
brw_wm_prog_data(bld.shader->stage_prog_data);
fs_inst *inst;
fs_reg payload;
int mlen;
if (src.file == BAD_FILE) {
/* Dummy payload */
payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
mlen = 1;
} else {
payload = src;
mlen = 2 * bld.dispatch_width() / 8;
}
inst = bld.emit(opcode, dst, payload, desc);
inst->mlen = mlen;
/* 2 floats per slot returned */
inst->size_written = 2 * dst.component_size(inst->exec_size);
inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
wm_prog_data->pulls_bary = true;
return inst;
}
/**
* Computes 1 << x, given a D/UD register containing some value x.
*/
static fs_reg
intexp2(const fs_builder &bld, const fs_reg &x)
{
assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
fs_reg result = bld.vgrf(x.type, 1);
fs_reg one = bld.vgrf(x.type, 1);
bld.MOV(one, retype(brw_imm_d(1), one.type));
bld.SHL(result, one, x);
return result;
}
void
fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
{
assert(stage == MESA_SHADER_GEOMETRY);
struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
if (gs_compile->control_data_header_size_bits == 0)
return;
/* We can only do EndPrimitive() functionality when the control data
* consists of cut bits. Fortunately, the only time it isn't is when the
* output type is points, in which case EndPrimitive() is a no-op.
*/
if (gs_prog_data->control_data_format !=
GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
return;
}
/* Cut bits use one bit per vertex. */
assert(gs_compile->control_data_bits_per_vertex == 1);
fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
vertex_count.type = BRW_REGISTER_TYPE_UD;
/* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
* vertex n, 0 otherwise. So all we need to do here is mark bit
* (vertex_count - 1) % 32 in the cut_bits register to indicate that
* EndPrimitive() was called after emitting vertex (vertex_count - 1);
* vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
*
* Note that if EndPrimitive() is called before emitting any vertices, this
* will cause us to set bit 31 of the control_data_bits register to 1.
* That's fine because:
*
* - If max_vertices < 32, then vertex number 31 (zero-based) will never be
* output, so the hardware will ignore cut bit 31.
*
* - If max_vertices == 32, then vertex number 31 is guaranteed to be the
* last vertex, so setting cut bit 31 has no effect (since the primitive
* is automatically ended when the GS terminates).
*
* - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
* control_data_bits register to 0 when the first vertex is emitted.
*/
const fs_builder abld = bld.annotate("end primitive");
/* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
fs_reg mask = intexp2(abld, prev_count);
/* Note: we're relying on the fact that the GEN SHL instruction only pays
* attention to the lower 5 bits of its second source argument, so on this
* architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
* ((vertex_count - 1) % 32).
*/
abld.OR(this->control_data_bits, this->control_data_bits, mask);
}
void
fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
{
assert(stage == MESA_SHADER_GEOMETRY);
assert(gs_compile->control_data_bits_per_vertex != 0);
struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
const fs_builder abld = bld.annotate("emit control data bits");
const fs_builder fwa_bld = bld.exec_all();
/* We use a single UD register to accumulate control data bits (32 bits
* for each of the SIMD8 channels). So we need to write a DWord (32 bits)
* at a time.
*
* Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
* We have select a 128-bit group via the Global and Per-Slot Offsets, then
* use the Channel Mask phase to enable/disable which DWord within that
* group to write. (Remember, different SIMD8 channels may have emitted
* different numbers of vertices, so we may need per-slot offsets.)
*
* Channel masking presents an annoying problem: we may have to replicate
* the data up to 4 times:
*
* Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
*
* To avoid penalizing shaders that emit a small number of vertices, we
* can avoid these sometimes: if the size of the control data header is
* <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
* land in the same 128-bit group, so we can skip per-slot offsets.
*
* Similarly, if the control data header is <= 32 bits, there is only one
* DWord, so we can skip channel masks.
*/
enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
fs_reg channel_mask, per_slot_offset;
if (gs_compile->control_data_header_size_bits > 32) {
opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
channel_mask = vgrf(glsl_type::uint_type);
}
if (gs_compile->control_data_header_size_bits > 128) {
opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
per_slot_offset = vgrf(glsl_type::uint_type);
}
/* Figure out which DWord we're trying to write to using the formula:
*
* dword_index = (vertex_count - 1) * bits_per_vertex / 32
*
* Since bits_per_vertex is a power of two, and is known at compile
* time, this can be optimized to:
*
* dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
*/
if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
unsigned log2_bits_per_vertex =
util_last_bit(gs_compile->control_data_bits_per_vertex);
abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
if (per_slot_offset.file != BAD_FILE) {
/* Set the per-slot offset to dword_index / 4, so that we'll write to
* the appropriate OWord within the control data header.
*/
abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
}
/* Set the channel masks to 1 << (dword_index % 4), so that we'll
* write to the appropriate DWORD within the OWORD.
*/
fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
channel_mask = intexp2(fwa_bld, channel);
/* Then the channel masks need to be in bits 23:16. */
fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
}
/* Store the control data bits in the message payload and send it. */
int mlen = 2;
if (channel_mask.file != BAD_FILE)
mlen += 4; /* channel masks, plus 3 extra copies of the data */
if (per_slot_offset.file != BAD_FILE)
mlen++;
fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
int i = 0;
sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
if (per_slot_offset.file != BAD_FILE)
sources[i++] = per_slot_offset;
if (channel_mask.file != BAD_FILE)
sources[i++] = channel_mask;
while (i < mlen) {
sources[i++] = this->control_data_bits;
}
abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
fs_inst *inst = abld.emit(opcode, reg_undef, payload);
inst->mlen = mlen;
/* We need to increment Global Offset by 256-bits to make room for
* Broadwell's extra "Vertex Count" payload at the beginning of the
* URB entry. Since this is an OWord message, Global Offset is counted
* in 128-bit units, so we must set it to 2.
*/
if (gs_prog_data->static_vertex_count == -1)
inst->offset = 2;
}
void
fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
unsigned stream_id)
{
/* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
/* Note: we are calling this *before* increasing vertex_count, so
* this->vertex_count == vertex_count - 1 in the formula above.
*/
/* Stream mode uses 2 bits per vertex */
assert(gs_compile->control_data_bits_per_vertex == 2);
/* Must be a valid stream */
assert(stream_id < MAX_VERTEX_STREAMS);
/* Control data bits are initialized to 0 so we don't have to set any
* bits when sending vertices to stream 0.
*/
if (stream_id == 0)
return;
const fs_builder abld = bld.annotate("set stream control data bits", NULL);
/* reg::sid = stream_id */
fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
abld.MOV(sid, brw_imm_ud(stream_id));
/* reg:shift_count = 2 * (vertex_count - 1) */
fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
/* Note: we're relying on the fact that the GEN SHL instruction only pays
* attention to the lower 5 bits of its second source argument, so on this
* architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
* stream_id << ((2 * (vertex_count - 1)) % 32).
*/
fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
abld.SHL(mask, sid, shift_count);
abld.OR(this->control_data_bits, this->control_data_bits, mask);
}
void
fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
unsigned stream_id)
{
assert(stage == MESA_SHADER_GEOMETRY);
struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
vertex_count.type = BRW_REGISTER_TYPE_UD;
/* Haswell and later hardware ignores the "Render Stream Select" bits
* from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
* and instead sends all primitives down the pipeline for rasterization.
* If the SOL stage is enabled, "Render Stream Select" is honored and
* primitives bound to non-zero streams are discarded after stream output.
*
* Since the only purpose of primives sent to non-zero streams is to
* be recorded by transform feedback, we can simply discard all geometry
* bound to these streams when transform feedback is disabled.
*/
if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
return;
/* If we're outputting 32 control data bits or less, then we can wait
* until the shader is over to output them all. Otherwise we need to
* output them as we go. Now is the time to do it, since we're about to
* output the vertex_count'th vertex, so it's guaranteed that the
* control data bits associated with the (vertex_count - 1)th vertex are
* correct.
*/
if (gs_compile->control_data_header_size_bits > 32) {
const fs_builder abld =
bld.annotate("emit vertex: emit control data bits");
/* Only emit control data bits if we've finished accumulating a batch
* of 32 bits. This is the case when:
*
* (vertex_count * bits_per_vertex) % 32 == 0
*
* (in other words, when the last 5 bits of vertex_count *
* bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
* integer n (which is always the case, since bits_per_vertex is
* always 1 or 2), this is equivalent to requiring that the last 5-n
* bits of vertex_count are 0:
*
* vertex_count & (2^(5-n) - 1) == 0
*
* 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
* equivalent to:
*
* vertex_count & (32 / bits_per_vertex - 1) == 0
*
* TODO: If vertex_count is an immediate, we could do some of this math
* at compile time...
*/
fs_inst *inst =
abld.AND(bld.null_reg_d(), vertex_count,
brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
inst->conditional_mod = BRW_CONDITIONAL_Z;
abld.IF(BRW_PREDICATE_NORMAL);
/* If vertex_count is 0, then no control data bits have been
* accumulated yet, so we can skip emitting them.
*/
abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
BRW_CONDITIONAL_NEQ);
abld.IF(BRW_PREDICATE_NORMAL);
emit_gs_control_data_bits(vertex_count);
abld.emit(BRW_OPCODE_ENDIF);
/* Reset control_data_bits to 0 so we can start accumulating a new
* batch.
*
* Note: in the case where vertex_count == 0, this neutralizes the
* effect of any call to EndPrimitive() that the shader may have
* made before outputting its first vertex.
*/
inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
inst->force_writemask_all = true;
abld.emit(BRW_OPCODE_ENDIF);
}
emit_urb_writes(vertex_count);
/* In stream mode we have to set control data bits for all vertices
* unless we have disabled control data bits completely (which we do
* do for GL_POINTS outputs that don't use streams).
*/
if (gs_compile->control_data_header_size_bits > 0 &&
gs_prog_data->control_data_format ==
GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
set_gs_stream_control_data_bits(vertex_count, stream_id);
}
}
void
fs_visitor::emit_gs_input_load(const fs_reg &dst,
const nir_src &vertex_src,
unsigned base_offset,
const nir_src &offset_src,
unsigned num_components,
unsigned first_component)
{
struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
nir_const_value *offset_const = nir_src_as_const_value(offset_src);
const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
/* TODO: figure out push input layout for invocations == 1 */
/* TODO: make this work with 64-bit inputs */
if (gs_prog_data->invocations == 1 &&
type_sz(dst.type) <= 4 &&
offset_const != NULL && vertex_const != NULL &&
4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
vertex_const->u32[0] * push_reg_count;
for (unsigned i = 0; i < num_components; i++) {
bld.MOV(offset(dst, bld, i),
fs_reg(ATTR, imm_offset + i + first_component, dst.type));
}
return;
}
/* Resort to the pull model. Ensure the VUE handles are provided. */
assert(gs_prog_data->base.include_vue_handles);
unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
if (gs_prog_data->invocations == 1) {
if (vertex_const) {
/* The vertex index is constant; just select the proper URB handle. */
icp_handle =
retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
BRW_REGISTER_TYPE_UD);
} else {
/* The vertex index is non-constant. We need to use indirect
* addressing to fetch the proper URB handle.
*
* First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
* indicating that channel <n> should read the handle from
* DWord <n>. We convert that to bytes by multiplying by 4.
*
* Next, we convert the vertex index to bytes by multiplying
* by 32 (shifting by 5), and add the two together. This is
* the final indirect byte offset.
*/
fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
/* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
/* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
/* Convert vertex_index to bytes (multiply by 32) */
bld.SHL(vertex_offset_bytes,
retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
brw_imm_ud(5u));
bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
/* Use first_icp_handle as the base offset. There is one register
* of URB handles per vertex, so inform the register allocator that
* we might read up to nir->info.gs.vertices_in registers.
*/
bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
fs_reg(icp_offset_bytes),
brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
}
} else {
assert(gs_prog_data->invocations > 1);
if (vertex_const) {
assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
bld.MOV(icp_handle,
retype(brw_vec1_grf(first_icp_handle +
vertex_const->i32[0] / 8,
vertex_const->i32[0] % 8),
BRW_REGISTER_TYPE_UD));
} else {
/* The vertex index is non-constant. We need to use indirect
* addressing to fetch the proper URB handle.
*
*/
fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
/* Convert vertex_index to bytes (multiply by 4) */
bld.SHL(icp_offset_bytes,
retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
brw_imm_ud(2u));
/* Use first_icp_handle as the base offset. There is one DWord
* of URB handles per vertex, so inform the register allocator that
* we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
*/
bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
fs_reg(icp_offset_bytes),
brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
REG_SIZE));
}
}
fs_inst *inst;
fs_reg tmp_dst = dst;
fs_reg indirect_offset = get_nir_src(offset_src);
unsigned num_iterations = 1;
unsigned orig_num_components = num_components;
if (type_sz(dst.type) == 8) {
if (num_components > 2) {
num_iterations = 2;
num_components = 2;
}
fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
tmp_dst = tmp;
first_component = first_component / 2;
}
for (unsigned iter = 0; iter < num_iterations; iter++) {
if (offset_const) {
/* Constant indexing - use global offset. */
if (first_component != 0) {
unsigned read_components = num_components + first_component;
fs_reg tmp = bld.vgrf(dst.type, read_components);
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
inst->size_written = read_components *
tmp.component_size(inst->exec_size);
for (unsigned i = 0; i < num_components; i++) {
bld.MOV(offset(tmp_dst, bld, i),
offset(tmp, bld, i + first_component));
}
} else {
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
icp_handle);
inst->size_written = num_components *
tmp_dst.component_size(inst->exec_size);
}
inst->offset = base_offset + offset_const->u32[0];
inst->mlen = 1;
} else {
/* Indirect indexing - use per-slot offsets as well. */
const fs_reg srcs[] = { icp_handle, indirect_offset };
unsigned read_components = num_components + first_component;
fs_reg tmp = bld.vgrf(dst.type, read_components);
fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
if (first_component != 0) {
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
payload);
inst->size_written = read_components *
tmp.component_size(inst->exec_size);
for (unsigned i = 0; i < num_components; i++) {
bld.MOV(offset(tmp_dst, bld, i),
offset(tmp, bld, i + first_component));
}
} else {
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
payload);
inst->size_written = num_components *
tmp_dst.component_size(inst->exec_size);
}
inst->offset = base_offset;
inst->mlen = 2;
}
if (type_sz(dst.type) == 8) {
shuffle_32bit_load_result_to_64bit_data(
bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
for (unsigned c = 0; c < num_components; c++)
bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
}
if (num_iterations > 1) {
num_components = orig_num_components - 2;
if(offset_const) {
base_offset++;
} else {
fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
indirect_offset = new_indirect;
}
}
}
}
fs_reg
fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
{
nir_src *offset_src = nir_get_io_offset_src(instr);
nir_const_value *const_value = nir_src_as_const_value(*offset_src);
if (const_value) {
/* The only constant offset we should find is 0. brw_nir.c's
* add_const_offset_to_base() will fold other constant offsets
* into instr->const_index[0].
*/
assert(const_value->u32[0] == 0);
return fs_reg();
}
return get_nir_src(*offset_src);
}
static void
do_untyped_vector_read(const fs_builder &bld,
const fs_reg dest,
const fs_reg surf_index,
const fs_reg offset_reg,
unsigned num_components)
{
if (type_sz(dest.type) <= 2) {
assert(dest.stride == 1);
if (num_components > 1) {
/* Pairs of 16-bit components can be read with untyped read, for 16-bit
* vec3 4th component is ignored.
*/
fs_reg read_result =
emit_untyped_read(bld, surf_index, offset_reg,
1 /* dims */, DIV_ROUND_UP(num_components, 2),
BRW_PREDICATE_NONE);
shuffle_32bit_load_result_to_16bit_data(bld,
retype(dest, BRW_REGISTER_TYPE_W),
retype(read_result, BRW_REGISTER_TYPE_D),
num_components);
} else {
assert(num_components == 1);
/* scalar 16-bit are read using one byte_scattered_read message */
fs_reg read_result =
emit_byte_scattered_read(bld, surf_index, offset_reg,
1 /* dims */, 1,
type_sz(dest.type) * 8 /* bit_size */,
BRW_PREDICATE_NONE);
bld.MOV(dest, subscript(read_result, dest.type, 0));
}
} else if (type_sz(dest.type) == 4) {
fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
1 /* dims */,
num_components,
BRW_PREDICATE_NONE);
read_result.type = dest.type;
for (unsigned i = 0; i < num_components; i++)
bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
} else if (type_sz(dest.type) == 8) {
/* Reading a dvec, so we need to:
*
* 1. Multiply num_components by 2, to account for the fact that we
* need to read 64-bit components.
* 2. Shuffle the result of the load to form valid 64-bit elements
* 3. Emit a second load (for components z/w) if needed.
*/
fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
bld.MOV(read_offset, offset_reg);
int iters = num_components <= 2 ? 1 : 2;
/* Load the dvec, the first iteration loads components x/y, the second
* iteration, if needed, loads components z/w
*/
for (int it = 0; it < iters; it++) {
/* Compute number of components to read in this iteration */
int iter_components = MIN2(2, num_components);
num_components -= iter_components;
/* Read. Since this message reads 32-bit components, we need to
* read twice as many components.
*/
fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
1 /* dims */,
iter_components * 2,
BRW_PREDICATE_NONE);
/* Shuffle the 32-bit load result into valid 64-bit data */
const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
shuffle_32bit_load_result_to_64bit_data(
bld, packed_result, read_result, iter_components);
/* Move each component to its destination */
read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
for (int c = 0; c < iter_components; c++) {
bld.MOV(offset(dest, bld, it * 2 + c),
offset(packed_result, bld, c));
}
bld.ADD(read_offset, read_offset, brw_imm_ud(16));
}
} else {
unreachable("Unsupported type");
}
}
void
fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
nir_intrinsic_instr *instr)
{
assert(stage == MESA_SHADER_VERTEX);
fs_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
switch (instr->intrinsic) {
case nir_intrinsic_load_vertex_id:
unreachable("should be lowered by lower_vertex_id()");
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_base_vertex:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_load_base_instance:
case nir_intrinsic_load_draw_id: {
gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
fs_reg val = nir_system_values[sv];
assert(val.file != BAD_FILE);
dest.type = val.type;
bld.MOV(dest, val);
break;
}
case nir_intrinsic_load_input: {
fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
unsigned first_component = nir_intrinsic_component(instr);
unsigned num_components = instr->num_components;
enum brw_reg_type type = dest.type;
nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
assert(const_offset && "Indirect input loads not allowed");
src = offset(src, bld, const_offset->u32[0]);
for (unsigned j = 0; j < num_components; j++) {
bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
}
if (type == BRW_REGISTER_TYPE_DF) {
/* Once the double vector is read, set again its original register
* type to continue with normal execution.
*/
src = retype(src, type);
dest = retype(dest, type);
}
if (type_sz(src.type) == 8) {
shuffle_32bit_load_result_to_64bit_data(bld,
dest,
retype(dest, BRW_REGISTER_TYPE_F),
instr->num_components);
}
break;
}
default:
nir_emit_intrinsic(bld, instr);
break;
}
}
void
fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
nir_intrinsic_instr *instr)
{
assert(stage == MESA_SHADER_TESS_CTRL);
struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
fs_reg dst;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dst = get_nir_dest(instr->dest);
switch (instr->intrinsic) {
case nir_intrinsic_load_primitive_id:
bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
break;
case nir_intrinsic_load_invocation_id:
bld.MOV(retype(dst, invocation_id.type), invocation_id);
break;
case nir_intrinsic_load_patch_vertices_in:
bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
brw_imm_d(tcs_key->input_vertices));
break;
case nir_intrinsic_barrier: {
if (tcs_prog_data->instances == 1)
break;
fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
fs_reg m0_2 = component(m0, 2);
const fs_builder chanbld = bld.exec_all().group(1, 0);
/* Zero the message header */
bld.exec_all().MOV(m0, brw_imm_ud(0u));
/* Copy "Barrier ID" from r0.2, bits 16:13 */
chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
brw_imm_ud(INTEL_MASK(16, 13)));
/* Shift it up to bits 27:24. */
chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
/* Set the Barrier Count and the enable bit */
chanbld.OR(m0_2, m0_2,
brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
break;
}
case nir_intrinsic_load_input:
unreachable("nir_lower_io should never give us these.");
break;
case nir_intrinsic_load_per_vertex_input: {
fs_reg indirect_offset = get_indirect_offset(instr);
unsigned imm_offset = instr->const_index[0];
const nir_src &vertex_src = instr->src[0];
nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
fs_inst *inst;
fs_reg icp_handle;
if (vertex_const) {
/* Emit a MOV to resolve <0,1,0> regioning. */
icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
bld.MOV(icp_handle,
retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
vertex_const->i32[0] & 7),
BRW_REGISTER_TYPE_UD));
} else if (tcs_prog_data->instances == 1 &&
vertex_src.is_ssa &&
vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
/* For the common case of only 1 instance, an array index of
* gl_InvocationID means reading g1. Skip all the indirect work.
*/
icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
} else {
/* The vertex index is non-constant. We need to use indirect
* addressing to fetch the proper URB handle.
*/
icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
/* Each ICP handle is a single DWord (4 bytes) */
fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
bld.SHL(vertex_offset_bytes,
retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
brw_imm_ud(2u));
/* Start at g1. We might read up to 4 registers. */
bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
brw_imm_ud(4 * REG_SIZE));
}
/* We can only read two double components with each URB read, so
* we send two read messages in that case, each one loading up to
* two double components.
*/
unsigned num_iterations = 1;
unsigned num_components = instr->num_components;
unsigned first_component = nir_intrinsic_component(instr);
fs_reg orig_dst = dst;
if (type_sz(dst.type) == 8) {
first_component = first_component / 2;
if (instr->num_components > 2) {
num_iterations = 2;
num_components = 2;
}
fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
dst = tmp;
}
for (unsigned iter = 0; iter < num_iterations; iter++) {
if (indirect_offset.file == BAD_FILE) {
/* Constant indexing - use global offset. */
if (first_component != 0) {
unsigned read_components = num_components + first_component;
fs_reg tmp = bld.vgrf(dst.type, read_components);
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
for (unsigned i = 0; i < num_components; i++) {
bld.MOV(offset(dst, bld, i),
offset(tmp, bld, i + first_component));
}
} else {
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
}
inst->offset = imm_offset;
inst->mlen = 1;
} else {
/* Indirect indexing - use per-slot offsets as well. */
const fs_reg srcs[] = { icp_handle, indirect_offset };
fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
if (first_component != 0) {
unsigned read_components = num_components + first_component;
fs_reg tmp = bld.vgrf(dst.type, read_components);
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
payload);
for (unsigned i = 0; i < num_components; i++) {
bld.MOV(offset(dst, bld, i),
offset(tmp, bld, i + first_component));
}
} else {
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
payload);
}
inst->offset = imm_offset;
inst->mlen = 2;
}
inst->size_written = (num_components + first_component) *
inst->dst.component_size(inst->exec_size);
/* If we are reading 64-bit data using 32-bit read messages we need
* build proper 64-bit data elements by shuffling the low and high
* 32-bit components around like we do for other things like UBOs
* or SSBOs.
*/
if (type_sz(dst.type) == 8) {
shuffle_32bit_load_result_to_64bit_data(
bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
for (unsigned c = 0; c < num_components; c++) {
bld.MOV(offset(orig_dst, bld, iter * 2 + c),
offset(dst, bld, c));
}
}
/* Copy the temporary to the destination to deal with writemasking.
*
* Also attempt to deal with gl_PointSize being in the .w component.
*/
if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
assert(type_sz(dst.type) < 8);
inst->dst = bld.vgrf(dst.type, 4);
inst->size_written = 4 * REG_SIZE;
bld.MOV(dst, offset(inst->dst, bld, 3));
}
/* If we are loading double data and we need a second read message
* adjust the write offset
*/
if (num_iterations > 1) {
num_components = instr->num_components - 2;
imm_offset++;
}
}
break;
}
case nir_intrinsic_load_output:
case nir_intrinsic_load_per_vertex_output: {
fs_reg indirect_offset = get_indirect_offset(instr);
unsigned imm_offset = instr->const_index[0];
unsigned first_component = nir_intrinsic_component(instr);
fs_inst *inst;
if (indirect_offset.file == BAD_FILE) {
/* Replicate the patch handle to all enabled channels */
fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
bld.MOV(patch_handle,
retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
{
if (first_component != 0) {
unsigned read_components =
instr->num_components + first_component;
fs_reg tmp = bld.vgrf(dst.type, read_components);
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
patch_handle);
inst->size_written = read_components * REG_SIZE;
for (unsigned i = 0; i < instr->num_components; i++) {
bld.MOV(offset(dst, bld, i),
offset(tmp, bld, i + first_component));
}
} else {
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
patch_handle);
inst->size_written = instr->num_components * REG_SIZE;
}
inst->offset = imm_offset;
inst->mlen = 1;
}
} else {
/* Indirect indexing - use per-slot offsets as well. */
const fs_reg srcs[] = {
retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
indirect_offset
};
fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
if (first_component != 0) {
unsigned read_components =
instr->num_components + first_component;
fs_reg tmp = bld.vgrf(dst.type, read_components);
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
payload);
inst->size_written = read_components * REG_SIZE;
for (unsigned i = 0; i < instr->num_components; i++) {
bld.MOV(offset(dst, bld, i),
offset(tmp, bld, i + first_component));
}
} else {
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
payload);
inst->size_written = instr->num_components * REG_SIZE;
}
inst->offset = imm_offset;
inst->mlen = 2;
}
break;
}
case nir_intrinsic_store_output:
case nir_intrinsic_store_per_vertex_output: {
fs_reg value = get_nir_src(instr->src[0]);
bool is_64bit = (instr->src[0].is_ssa ?
instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
fs_reg indirect_offset = get_indirect_offset(instr);
unsigned imm_offset = instr->const_index[0];
unsigned mask = instr->const_index[1];
unsigned header_regs = 0;
fs_reg srcs[7];
srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
if (indirect_offset.file != BAD_FILE) {
srcs[header_regs++] = indirect_offset;
}
if (mask == 0)
break;
unsigned num_components = util_last_bit(mask);
enum opcode opcode;
/* We can only pack two 64-bit components in a single message, so send
* 2 messages if we have more components
*/
unsigned num_iterations = 1;
unsigned iter_components = num_components;
unsigned first_component = nir_intrinsic_component(instr);
if (is_64bit) {
first_component = first_component / 2;
if (instr->num_components > 2) {
num_iterations = 2;
iter_components = 2;
}
}
mask = mask << first_component;
for (unsigned iter = 0; iter < num_iterations; iter++) {
if (!is_64bit && mask != WRITEMASK_XYZW) {
srcs[header_regs++] = brw_imm_ud(mask << 16);
opcode = indirect_offset.file != BAD_FILE ?
SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
} else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
/* Expand the 64-bit mask to 32-bit channels. We only handle
* two channels in each iteration, so we only care about X/Y.
*/
unsigned mask32 = 0;
if (mask & WRITEMASK_X)
mask32 |= WRITEMASK_XY;
if (mask & WRITEMASK_Y)
mask32 |= WRITEMASK_ZW;
/* If the mask does not include any of the channels X or Y there
* is nothing to do in this iteration. Move on to the next couple
* of 64-bit channels.
*/
if (!mask32) {
mask >>= 2;
imm_offset++;
continue;
}
srcs[header_regs++] = brw_imm_ud(mask32 << 16);
opcode = indirect_offset.file != BAD_FILE ?
SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
} else {
opcode = indirect_offset.file != BAD_FILE ?
SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
SHADER_OPCODE_URB_WRITE_SIMD8;
}
for (unsigned i = 0; i < iter_components; i++) {
if (!(mask & (1 << (i + first_component))))
continue;
if (!is_64bit) {
srcs[header_regs + i + first_component] = offset(value, bld, i);
} else {
/* We need to shuffle the 64-bit data to match the layout
* expected by our 32-bit URB write messages. We use a temporary
* for that.
*/
unsigned channel = iter * 2 + i;
fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
offset(value, bld, channel), 1);
srcs[header_regs + (i + first_component) * 2] = dest;
srcs[header_regs + (i + first_component) * 2 + 1] =
offset(dest, bld, 1);
}
}
unsigned mlen =
header_regs + (is_64bit ? 2 * iter_components : iter_components) +
(is_64bit ? 2 * first_component : first_component);
fs_reg payload =
bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
inst->offset = imm_offset;
inst->mlen = mlen;
/* If this is a 64-bit attribute, select the next two 64-bit channels
* to be handled in the next iteration.
*/
if (is_64bit) {
mask >>= 2;
imm_offset++;
}
}
break;
}
default:
nir_emit_intrinsic(bld, instr);
break;
}
}
void
fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
nir_intrinsic_instr *instr)
{
assert(stage == MESA_SHADER_TESS_EVAL);
struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
fs_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
switch (instr->intrinsic) {
case nir_intrinsic_load_primitive_id:
bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
break;
case nir_intrinsic_load_tess_coord:
/* gl_TessCoord is part of the payload in g1-3 */
for (unsigned i = 0; i < 3; i++) {
bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
}
break;
case nir_intrinsic_load_input:
case nir_intrinsic_load_per_vertex_input: {
fs_reg indirect_offset = get_indirect_offset(instr);
unsigned imm_offset = instr->const_index[0];
unsigned first_component = nir_intrinsic_component(instr);
if (type_sz(dest.type) == 8) {
first_component = first_component / 2;
}
fs_inst *inst;
if (indirect_offset.file == BAD_FILE) {
/* Arbitrarily only push up to 32 vec4 slots worth of data,
* which is 16 registers (since each holds 2 vec4 slots).
*/
unsigned slot_count = 1;
if (type_sz(dest.type) == 8 && instr->num_components > 2)
slot_count++;
const unsigned max_push_slots = 32;
if (imm_offset + slot_count <= max_push_slots) {
fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
for (int i = 0; i < instr->num_components; i++) {
unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
i + first_component;
bld.MOV(offset(dest, bld, i), component(src, comp));
}
tes_prog_data->base.urb_read_length =
MAX2(tes_prog_data->base.urb_read_length,
DIV_ROUND_UP(imm_offset + slot_count, 2));
} else {
/* Replicate the patch handle to all enabled channels */
const fs_reg srcs[] = {
retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
};
fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
if (first_component != 0) {
unsigned read_components =
instr->num_components + first_component;
fs_reg tmp = bld.vgrf(dest.type, read_components);
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
patch_handle);
inst->size_written = read_components * REG_SIZE;
for (unsigned i = 0; i < instr->num_components; i++) {
bld.MOV(offset(dest, bld, i),
offset(tmp, bld, i + first_component));
}
} else {
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
patch_handle);
inst->size_written = instr->num_components * REG_SIZE;
}
inst->mlen = 1;
inst->offset = imm_offset;
}
} else {
/* Indirect indexing - use per-slot offsets as well. */
/* We can only read two double components with each URB read, so
* we send two read messages in that case, each one loading up to
* two double components.
*/
unsigned num_iterations = 1;
unsigned num_components = instr->num_components;
fs_reg orig_dest = dest;
if (type_sz(dest.type) == 8) {
if (instr->num_components > 2) {
num_iterations = 2;
num_components = 2;
}
fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
dest = tmp;
}
for (unsigned iter = 0; iter < num_iterations; iter++) {
const fs_reg srcs[] = {
retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
indirect_offset
};
fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
if (first_component != 0) {
unsigned read_components =
num_components + first_component;
fs_reg tmp = bld.vgrf(dest.type, read_components);
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
payload);
for (unsigned i = 0; i < num_components; i++) {
bld.MOV(offset(dest, bld, i),
offset(tmp, bld, i + first_component));
}
} else {
inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
payload);
}
inst->mlen = 2;
inst->offset = imm_offset;
inst->size_written = (num_components + first_component) *
inst->dst.component_size(inst->exec_size);
/* If we are reading 64-bit data using 32-bit read messages we need
* build proper 64-bit data elements by shuffling the low and high
* 32-bit components around like we do for other things like UBOs
* or SSBOs.
*/
if (type_sz(dest.type) == 8) {
shuffle_32bit_load_result_to_64bit_data(
bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
for (unsigned c = 0; c < num_components; c++) {
bld.MOV(offset(orig_dest, bld, iter * 2 + c),
offset(dest, bld, c));
}
}
/* If we are loading double data and we need a second read message
* adjust the offset
*/
if (num_iterations > 1) {
num_components = instr->num_components - 2;
imm_offset++;
}
}
}
break;
}
default:
nir_emit_intrinsic(bld, instr);
break;
}
}
void
fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
nir_intrinsic_instr *instr)
{
assert(stage == MESA_SHADER_GEOMETRY);
fs_reg indirect_offset;
fs_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
switch (instr->intrinsic) {
case nir_intrinsic_load_primitive_id:
assert(stage == MESA_SHADER_GEOMETRY);
assert(brw_gs_prog_data(prog_data)->include_primitive_id);
bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
break;
case nir_intrinsic_load_input:
unreachable("load_input intrinsics are invalid for the GS stage");
case nir_intrinsic_load_per_vertex_input:
emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
instr->src[1], instr->num_components,
nir_intrinsic_component(instr));
break;
case nir_intrinsic_emit_vertex_with_counter:
emit_gs_vertex(instr->src[0], instr->const_index[0]);
break;
case nir_intrinsic_end_primitive_with_counter:
emit_gs_end_primitive(instr->src[0]);
break;
case nir_intrinsic_set_vertex_count:
bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
break;
case nir_intrinsic_load_invocation_id: {
fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
assert(val.file != BAD_FILE);
dest.type = val.type;
bld.MOV(dest, val);
break;
}
default:
nir_emit_intrinsic(bld, instr);
break;
}
}
/**
* Fetch the current render target layer index.
*/
static fs_reg
fetch_render_target_array_index(const fs_builder &bld)
{
if (bld.shader->devinfo->gen >= 6) {
/* The render target array index is provided in the thread payload as
* bits 26:16 of r0.0.
*/
const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
brw_imm_uw(0x7ff));
return idx;
} else {
/* Pre-SNB we only ever render into the first layer of the framebuffer
* since layered rendering is not implemented.
*/
return brw_imm_ud(0);
}
}
/**
* Fake non-coherent framebuffer read implemented using TXF to fetch from the
* framebuffer at the current fragment coordinates and sample index.
*/
fs_inst *
fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
unsigned target)
{
const struct gen_device_info *devinfo = bld.shader->devinfo;
assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
const brw_wm_prog_key *wm_key =
reinterpret_cast<const brw_wm_prog_key *>(key);
assert(!wm_key->coherent_fb_fetch);
const struct brw_wm_prog_data *wm_prog_data =
brw_wm_prog_data(stage_prog_data);
/* Calculate the surface index relative to the start of the texture binding
* table block, since that's what the texturing messages expect.
*/
const unsigned surface = target +
wm_prog_data->binding_table.render_target_read_start -
wm_prog_data->base.binding_table.texture_start;
brw_mark_surface_used(
bld.shader->stage_prog_data,
wm_prog_data->binding_table.render_target_read_start + target);
/* Calculate the fragment coordinates. */
const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
bld.MOV(offset(coords, bld, 0), pixel_x);
bld.MOV(offset(coords, bld, 1), pixel_y);
bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
/* Calculate the sample index and MCS payload when multisampling. Luckily
* the MCS fetch message behaves deterministically for UMS surfaces, so it
* shouldn't be necessary to recompile based on whether the framebuffer is
* CMS or UMS.
*/
if (wm_key->multisample_fbo &&
nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
const fs_reg mcs = wm_key->multisample_fbo ?
emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
/* Use either a normal or a CMS texel fetch message depending on whether
* the framebuffer is single or multisample. On SKL+ use the wide CMS
* message just in case the framebuffer uses 16x multisampling, it should
* be equivalent to the normal CMS fetch for lower multisampling modes.
*/
const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
SHADER_OPCODE_TXF_CMS_LOGICAL;
/* Emit the instruction. */
const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
sample, mcs,
brw_imm_ud(surface), brw_imm_ud(0),
fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
return inst;
}
/**
* Actual coherent framebuffer read implemented using the native render target
* read message. Requires SKL+.
*/
static fs_inst *
emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
{
assert(bld.shader->devinfo->gen >= 9);
fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
inst->target = target;
inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
return inst;
}
static fs_reg
alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
{
if (n && regs[0].file != BAD_FILE) {
return regs[0];
} else {
const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
for (unsigned i = 0; i < n; i++)
regs[i] = tmp;
return tmp;
}
}
static fs_reg
alloc_frag_output(fs_visitor *v, unsigned location)
{
assert(v->stage == MESA_SHADER_FRAGMENT);
const brw_wm_prog_key *const key =
reinterpret_cast<const brw_wm_prog_key *>(v->key);
const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
else if (l == FRAG_RESULT_COLOR)
return alloc_temporary(v->bld, 4, v->outputs,
MAX2(key->nr_color_regions, 1));
else if (l == FRAG_RESULT_DEPTH)
return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
else if (l == FRAG_RESULT_STENCIL)
return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
else if (l == FRAG_RESULT_SAMPLE_MASK)
return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
else if (l >= FRAG_RESULT_DATA0 &&
l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
return alloc_temporary(v->bld, 4,
&v->outputs[l - FRAG_RESULT_DATA0], 1);
else
unreachable("Invalid location");
}
void
fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
nir_intrinsic_instr *instr)
{
assert(stage == MESA_SHADER_FRAGMENT);
fs_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
switch (instr->intrinsic) {
case nir_intrinsic_load_front_face:
bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
*emit_frontfacing_interpolation());
break;
case nir_intrinsic_load_sample_pos: {
fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
assert(sample_pos.file != BAD_FILE);
dest.type = sample_pos.type;
bld.MOV(dest, sample_pos);
bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
break;
}
case nir_intrinsic_load_layer_id:
dest.type = BRW_REGISTER_TYPE_UD;
bld.MOV(dest, fetch_render_target_array_index(bld));
break;
case nir_intrinsic_load_helper_invocation:
case nir_intrinsic_load_sample_mask_in:
case nir_intrinsic_load_sample_id: {
gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
fs_reg val = nir_system_values[sv];
assert(val.file != BAD_FILE);
dest.type = val.type;
bld.MOV(dest, val);
break;
}
case nir_intrinsic_store_output: {
const fs_reg src = get_nir_src(instr->src[0]);
const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
assert(const_offset && "Indirect output stores not allowed");
const unsigned location = nir_intrinsic_base(instr) +
SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
const fs_reg new_dest = retype(alloc_frag_output(this, location),
src.type);
for (unsigned j = 0; j < instr->num_components; j++)
bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
offset(src, bld, j));
break;
}
case nir_intrinsic_load_output: {
const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
BRW_NIR_FRAG_OUTPUT_LOCATION);
assert(l >= FRAG_RESULT_DATA0);
nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
assert(const_offset && "Indirect output loads not allowed");
const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
const fs_reg tmp = bld.vgrf(dest.type, 4);
if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
emit_coherent_fb_read(bld, tmp, target);
else
emit_non_coherent_fb_read(bld, tmp, target);
for (unsigned j = 0; j < instr->num_components; j++) {
bld.MOV(offset(dest, bld, j),
offset(tmp, bld, nir_intrinsic_component(instr) + j));
}
break;
}
case nir_intrinsic_discard:
case nir_intrinsic_discard_if: {
/* We track our discarded pixels in f0.1. By predicating on it, we can
* update just the flag bits that aren't yet discarded. If there's no
* condition, we emit a CMP of g0 != g0, so all currently executing
* channels will get turned off.
*/
fs_inst *cmp;
if (instr->intrinsic == nir_intrinsic_discard_if) {
cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
brw_imm_d(0), BRW_CONDITIONAL_Z);
} else {
fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
BRW_REGISTER_TYPE_UW));
cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
}
cmp->predicate = BRW_PREDICATE_NORMAL;
cmp->flag_subreg = 1;
if (devinfo->gen >= 6) {
emit_discard_jump();
}
break;
}
case nir_intrinsic_load_input: {
/* load_input is only used for flat inputs */
unsigned base = nir_intrinsic_base(instr);
unsigned component = nir_intrinsic_component(instr);
unsigned num_components = instr->num_components;
enum brw_reg_type type = dest.type;
/* Special case fields in the VUE header */
if (base == VARYING_SLOT_LAYER)
component = 1;
else if (base == VARYING_SLOT_VIEWPORT)
component = 2;
if (nir_dest_bit_size(instr->dest) == 64) {
/* const_index is in 32-bit type size units that could not be aligned
* with DF. We need to read the double vector as if it was a float
* vector of twice the number of components to fetch the right data.
*/
type = BRW_REGISTER_TYPE_F;
num_components *= 2;
}
for (unsigned int i = 0; i < num_components; i++) {
struct brw_reg interp = interp_reg(base, component + i);
interp = suboffset(interp, 3);
bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
retype(fs_reg(interp), type));
}
if (nir_dest_bit_size(instr->dest) == 64) {
shuffle_32bit_load_result_to_64bit_data(bld,
dest,
retype(dest, type),
instr->num_components);
}
break;
}
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_sample:
/* Do nothing - load_interpolated_input handling will handle it later. */
break;
case nir_intrinsic_load_barycentric_at_sample: {
const glsl_interp_mode interpolation =
(enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
if (const_sample) {
unsigned msg_data = const_sample->i32[0] << 4;
emit_pixel_interpolater_send(bld,
FS_OPCODE_INTERPOLATE_AT_SAMPLE,
dest,
fs_reg(), /* src */
brw_imm_ud(msg_data),
interpolation);
} else {
const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
BRW_REGISTER_TYPE_UD);
if (nir_src_is_dynamically_uniform(instr->src[0])) {
const fs_reg sample_id = bld.emit_uniformize(sample_src);
const fs_reg msg_data = vgrf(glsl_type::uint_type);
bld.exec_all().group(1, 0)
.SHL(msg_data, sample_id, brw_imm_ud(4u));
emit_pixel_interpolater_send(bld,
FS_OPCODE_INTERPOLATE_AT_SAMPLE,
dest,
fs_reg(), /* src */
msg_data,
interpolation);
} else {
/* Make a loop that sends a message to the pixel interpolater
* for the sample number in each live channel. If there are
* multiple channels with the same sample number then these
* will be handled simultaneously with a single interation of
* the loop.
*/
bld.emit(BRW_OPCODE_DO);
/* Get the next live sample number into sample_id_reg */
const fs_reg sample_id = bld.emit_uniformize(sample_src);
/* Set the flag register so that we can perform the send
* message on all channels that have the same sample number
*/
bld.CMP(bld.null_reg_ud(),
sample_src, sample_id,
BRW_CONDITIONAL_EQ);
const fs_reg msg_data = vgrf(glsl_type::uint_type);
bld.exec_all().group(1, 0)
.SHL(msg_data, sample_id, brw_imm_ud(4u));
fs_inst *inst =
emit_pixel_interpolater_send(bld,
FS_OPCODE_INTERPOLATE_AT_SAMPLE,
dest,
fs_reg(), /* src */
msg_data,
interpolation);
set_predicate(BRW_PREDICATE_NORMAL, inst);
/* Continue the loop if there are any live channels left */
set_predicate_inv(BRW_PREDICATE_NORMAL,
true, /* inverse */
bld.emit(BRW_OPCODE_WHILE));
}
}
break;
}
case nir_intrinsic_load_barycentric_at_offset: {
const glsl_interp_mode interpolation =
(enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
if (const_offset) {
unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
emit_pixel_interpolater_send(bld,
FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
dest,
fs_reg(), /* src */
brw_imm_ud(off_x | (off_y << 4)),
interpolation);
} else {
fs_reg src = vgrf(glsl_type::ivec2_type);
fs_reg offset_src = retype(get_nir_src(instr->src[0]),
BRW_REGISTER_TYPE_F);
for (int i = 0; i < 2; i++) {
fs_reg temp = vgrf(glsl_type::float_type);
bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
fs_reg itemp = vgrf(glsl_type::int_type);
/* float to int */
bld.MOV(itemp, temp);
/* Clamp the upper end of the range to +7/16.
* ARB_gpu_shader5 requires that we support a maximum offset
* of +0.5, which isn't representable in a S0.4 value -- if
* we didn't clamp it, we'd end up with -8/16, which is the
* opposite of what the shader author wanted.
*
* This is legal due to ARB_gpu_shader5's quantization
* rules:
*
* "Not all values of <offset> may be supported; x and y
* offsets may be rounded to fixed-point values with the
* number of fraction bits given by the
* implementation-dependent constant
* FRAGMENT_INTERPOLATION_OFFSET_BITS"
*/
set_condmod(BRW_CONDITIONAL_L,
bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
}
const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
emit_pixel_interpolater_send(bld,
opcode,
dest,
src,
brw_imm_ud(0u),
interpolation);
}
break;
}
case nir_intrinsic_load_interpolated_input: {
if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
emit_fragcoord_interpolation(dest);
break;
}
assert(instr->src[0].ssa &&
instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
nir_intrinsic_instr *bary_intrinsic =
nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
enum glsl_interp_mode interp_mode =
(enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
fs_reg dst_xy;
if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
/* Use the result of the PI message */
dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
} else {
/* Use the delta_xy values computed from the payload */
enum brw_barycentric_mode bary =
brw_barycentric_mode(interp_mode, bary_intrin);
dst_xy = this->delta_xy[bary];
}
for (unsigned int i = 0; i < instr->num_components; i++) {
fs_reg interp =
fs_reg(interp_reg(nir_intrinsic_base(instr),
nir_intrinsic_component(instr) + i));
interp.type = BRW_REGISTER_TYPE_F;
dest.type = BRW_REGISTER_TYPE_F;
if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
fs_reg tmp = vgrf(glsl_type::float_type);
bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
} else {
bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
}
}
break;
}
default:
nir_emit_intrinsic(bld, instr);
break;
}
}
void
fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
nir_intrinsic_instr *instr)
{
assert(stage == MESA_SHADER_COMPUTE);
struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
fs_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
switch (instr->intrinsic) {
case nir_intrinsic_barrier:
emit_barrier();
cs_prog_data->uses_barrier = true;
break;
case nir_intrinsic_load_subgroup_id:
bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
break;
case nir_intrinsic_load_local_invocation_id:
case nir_intrinsic_load_work_group_id: {
gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
fs_reg val = nir_system_values[sv];
assert(val.file != BAD_FILE);
dest.type = val.type;
for (unsigned i = 0; i < 3; i++)
bld.MOV(offset(dest, bld, i), offset(val, bld, i));
break;
}
case nir_intrinsic_load_num_work_groups: {
const unsigned surface =
cs_prog_data->binding_table.work_groups_start;
cs_prog_data->uses_num_work_groups = true;
fs_reg surf_index = brw_imm_ud(surface);
brw_mark_surface_used(prog_data, surface);
/* Read the 3 GLuint components of gl_NumWorkGroups */
for (unsigned i = 0; i < 3; i++) {
fs_reg read_result =
emit_untyped_read(bld, surf_index,
brw_imm_ud(i << 2),
1 /* dims */, 1 /* size */,
BRW_PREDICATE_NONE);
read_result.type = dest.type;
bld.MOV(dest, read_result);
dest = offset(dest, bld, 1);
}
break;
}
case nir_intrinsic_shared_atomic_add:
nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
break;
case nir_intrinsic_shared_atomic_imin:
nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
break;
case nir_intrinsic_shared_atomic_umin:
nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
break;
case nir_intrinsic_shared_atomic_imax:
nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
break;
case nir_intrinsic_shared_atomic_umax:
nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
break;
case nir_intrinsic_shared_atomic_and:
nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
break;
case nir_intrinsic_shared_atomic_or:
nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
break;
case nir_intrinsic_shared_atomic_xor:
nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
break;
case nir_intrinsic_shared_atomic_exchange:
nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
break;
case nir_intrinsic_shared_atomic_comp_swap:
nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
break;
case nir_intrinsic_load_shared: {
assert(devinfo->gen >= 7);
fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
/* Get the offset to read from */
fs_reg offset_reg;
nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
if (const_offset) {
offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
} else {
offset_reg = vgrf(glsl_type::uint_type);
bld.ADD(offset_reg,
retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
brw_imm_ud(instr->const_index[0]));
}
/* Read the vector */
do_untyped_vector_read(bld, dest, surf_index, offset_reg,
instr->num_components);
break;
}
case nir_intrinsic_store_shared: {
assert(devinfo->gen >= 7);
/* Block index */
fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
/* Value */
fs_reg val_reg = get_nir_src(instr->src[0]);
/* Writemask */
unsigned writemask = instr->const_index[1];
/* get_nir_src() retypes to integer. Be wary of 64-bit types though
* since the untyped writes below operate in units of 32-bits, which
* means that we need to write twice as many components each time.
* Also, we have to suffle 64-bit data to be in the appropriate layout
* expected by our 32-bit write messages.
*/
unsigned type_size = 4;
if (nir_src_bit_size(instr->src[0]) == 64) {
type_size = 8;
val_reg = shuffle_64bit_data_for_32bit_write(bld,
val_reg, instr->num_components);
}
unsigned type_slots = type_size / 4;
/* Combine groups of consecutive enabled channels in one write
* message. We use ffs to find the first enabled channel and then ffs on
* the bit-inverse, down-shifted writemask to determine the length of
* the block of enabled bits.
*/
while (writemask) {
unsigned first_component = ffs(writemask) - 1;
unsigned length = ffs(~(writemask >> first_component)) - 1;
/* We can't write more than 2 64-bit components at once. Limit the
* length of the write to what we can do and let the next iteration
* handle the rest
*/
if (type_size > 4)
length = MIN2(2, length);
fs_reg offset_reg;
nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
if (const_offset) {
offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
type_size * first_component);
} else {
offset_reg = vgrf(glsl_type::uint_type);
bld.ADD(offset_reg,
retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
brw_imm_ud(instr->const_index[0] + type_size * first_component));
}
emit_untyped_write(bld, surf_index, offset_reg,
offset(val_reg, bld, first_component * type_slots),
1 /* dims */, length * type_slots,
BRW_PREDICATE_NONE);
/* Clear the bits in the writemask that we just wrote, then try
* again to see if more channels are left.
*/
writemask &= (15 << (first_component + length));
}
break;
}
default:
nir_emit_intrinsic(bld, instr);
break;
}
}
void
fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
{
fs_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
switch (instr->intrinsic) {
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_min:
case nir_intrinsic_image_atomic_max:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap: {
using namespace image_access;
if (stage == MESA_SHADER_FRAGMENT &&
instr->intrinsic != nir_intrinsic_image_load)
brw_wm_prog_data(prog_data)->has_side_effects = true;
/* Get the referenced image variable and type. */
const nir_variable *var = instr->variables[0]->var;
const glsl_type *type = var->type->without_array();
const brw_reg_type base_type = get_image_base_type(type);
/* Get some metadata from the image intrinsic. */
const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
const unsigned arr_dims = type->sampler_array ? 1 : 0;
const unsigned surf_dims = type->coordinate_components() - arr_dims;
const unsigned format = var->data.image.format;
/* Get the arguments of the image intrinsic. */
const fs_reg image = get_nir_image_deref(instr->variables[0]);
const fs_reg addr = retype(get_nir_src(instr->src[0]),
BRW_REGISTER_TYPE_UD);
const fs_reg src0 = (info->num_srcs >= 3 ?
retype(get_nir_src(instr->src[2]), base_type) :
fs_reg());
const fs_reg src1 = (info->num_srcs >= 4 ?
retype(get_nir_src(instr->src[3]), base_type) :
fs_reg());
fs_reg tmp;
/* Emit an image load, store or atomic op. */
if (instr->intrinsic == nir_intrinsic_image_load)
tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
else if (instr->intrinsic == nir_intrinsic_image_store)
emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
var->data.image.write_only ? GL_NONE : format);
else
tmp = emit_image_atomic(bld, image, addr, src0, src1,
surf_dims, arr_dims, info->dest_components,
get_image_atomic_op(instr->intrinsic, type));
/* Assign the result. */
for (unsigned c = 0; c < info->dest_components; ++c)
bld.MOV(offset(retype(dest, base_type), bld, c),
offset(tmp, bld, c));
break;
}
case nir_intrinsic_memory_barrier_atomic_counter:
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
case nir_intrinsic_memory_barrier: {
const fs_builder ubld = bld.group(8, 0);
const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
->size_written = 2 * REG_SIZE;
break;
}
case nir_intrinsic_group_memory_barrier:
case nir_intrinsic_memory_barrier_shared:
/* We treat these workgroup-level barriers as no-ops. This should be
* safe at present and as long as:
*
* - Memory access instructions are not subsequently reordered by the
* compiler back-end.
*
* - All threads from a given compute shader workgroup fit within a
* single subslice and therefore talk to the same HDC shared unit
* what supposedly guarantees ordering and coherency between threads
* from the same workgroup. This may change in the future when we
* start splitting workgroups across multiple subslices.
*
* - The context is not in fault-and-stream mode, which could cause
* memory transactions (including to SLM) prior to the barrier to be
* replayed after the barrier if a pagefault occurs. This shouldn't
* be a problem up to and including SKL because fault-and-stream is
* not usable due to hardware issues, but that's likely to change in
* the future.
*/
break;
case nir_intrinsic_shader_clock: {
/* We cannot do anything if there is an event, so ignore it for now */
const fs_reg shader_clock = get_timestamp(bld);
const fs_reg srcs[] = { component(shader_clock, 0),
component(shader_clock, 1) };
bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
break;
}
case nir_intrinsic_image_size: {
/* Get the referenced image variable and type. */
const nir_variable *var = instr->variables[0]->var;
const glsl_type *type = var->type->without_array();
/* Get the size of the image. */
const fs_reg image = get_nir_image_deref(instr->variables[0]);
const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
/* For 1DArray image types, the array index is stored in the Z component.
* Fix this by swizzling the Z component to the Y component.
*/
const bool is_1d_array_image =
type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
type->sampler_array;
/* For CubeArray images, we should count the number of cubes instead
* of the number of faces. Fix it by dividing the (Z component) by 6.
*/
const bool is_cube_array_image =
type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
type->sampler_array;
/* Copy all the components. */
for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
if ((int)c >= type->coordinate_components()) {
bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
brw_imm_d(1));
} else if (c == 1 && is_1d_array_image) {
bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
offset(size, bld, 2));
} else if (c == 2 && is_cube_array_image) {
bld.emit(SHADER_OPCODE_INT_QUOTIENT,
offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
offset(size, bld, c), brw_imm_d(6));
} else {
bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
offset(size, bld, c));
}
}
break;
}
case nir_intrinsic_image_samples:
/* The driver does not support multi-sampled images. */
bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
break;
case nir_intrinsic_load_uniform: {
/* Offsets are in bytes but they should always be multiples of 4 */
assert(instr->const_index[0] % 4 == 0);
fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
if (const_offset) {
/* Offsets are in bytes but they should always be multiples of 4 */
assert(const_offset->u32[0] % 4 == 0);
src.offset = const_offset->u32[0];
for (unsigned j = 0; j < instr->num_components; j++) {
bld.MOV(offset(dest, bld, j), offset(src, bld, j));
}
} else {
fs_reg indirect = retype(get_nir_src(instr->src[0]),
BRW_REGISTER_TYPE_UD);
/* We need to pass a size to the MOV_INDIRECT but we don't want it to
* go past the end of the uniform. In order to keep the n'th
* component from running past, we subtract off the size of all but
* one component of the vector.
*/
assert(instr->const_index[1] >=
instr->num_components * (int) type_sz(dest.type));
unsigned read_size = instr->const_index[1] -
(instr->num_components - 1) * type_sz(dest.type);
bool supports_64bit_indirects =
!devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
for (unsigned j = 0; j < instr->num_components; j++) {
bld.emit(SHADER_OPCODE_MOV_INDIRECT,
offset(dest, bld, j), offset(src, bld, j),
indirect, brw_imm_ud(read_size));
}
} else {
const unsigned num_mov_indirects =
type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
/* We read a little bit less per MOV INDIRECT, as they are now
* 32-bits ones instead of 64-bit. Fix read_size then.
*/
const unsigned read_size_32bit = read_size -
(num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
for (unsigned j = 0; j < instr->num_components; j++) {
for (unsigned i = 0; i < num_mov_indirects; i++) {
bld.emit(SHADER_OPCODE_MOV_INDIRECT,
subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
indirect, brw_imm_ud(read_size_32bit));
}
}
}
}
break;
}
case nir_intrinsic_load_ubo: {
nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
fs_reg surf_index;
if (const_index) {
const unsigned index = stage_prog_data->binding_table.ubo_start +
const_index->u32[0];
surf_index = brw_imm_ud(index);
brw_mark_surface_used(prog_data, index);
} else {
/* The block index is not a constant. Evaluate the index expression
* per-channel and add the base UBO index; we have to select a value
* from any live channel.
*/
surf_index = vgrf(glsl_type::uint_type);
bld.ADD(surf_index, get_nir_src(instr->src[0]),
brw_imm_ud(stage_prog_data->binding_table.ubo_start));
surf_index = bld.emit_uniformize(surf_index);
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(prog_data,
stage_prog_data->binding_table.ubo_start +
nir->info.num_ubos - 1);
}
nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
if (const_offset == NULL) {
fs_reg base_offset = retype(get_nir_src(instr->src[1]),
BRW_REGISTER_TYPE_UD);
for (int i = 0; i < instr->num_components; i++)
VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
base_offset, i * type_sz(dest.type));
} else {
/* Even if we are loading doubles, a pull constant load will load
* a 32-bit vec4, so should only reserve vgrf space for that. If we
* need to load a full dvec4 we will have to emit 2 loads. This is
* similar to demote_pull_constants(), except that in that case we
* see individual accesses to each component of the vector and then
* we let CSE deal with duplicate loads. Here we see a vector access
* and we have to split it if necessary.
*/
const unsigned type_size = type_sz(dest.type);
/* See if we've selected this as a push constant candidate */
if (const_index) {
const unsigned ubo_block = const_index->u32[0];
const unsigned offset_256b = const_offset->u32[0] / 32;
fs_reg push_reg;
for (int i = 0; i < 4; i++) {
const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
if (range->block == ubo_block &&
offset_256b >= range->start &&
offset_256b < range->start + range->length) {
push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
push_reg.offset = const_offset->u32[0] - 32 * range->start;
break;
}
}
if (push_reg.file != BAD_FILE) {
for (unsigned i = 0; i < instr->num_components; i++) {
bld.MOV(offset(dest, bld, i),
byte_offset(push_reg, i * type_size));
}
break;
}
}
const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
for (unsigned c = 0; c < instr->num_components;) {
const unsigned base = const_offset->u32[0] + c * type_size;
/* Number of usable components in the next block-aligned load. */
const unsigned count = MIN2(instr->num_components - c,
(block_sz - base % block_sz) / type_size);
ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
packed_consts, surf_index,
brw_imm_ud(base & ~(block_sz - 1)));
const fs_reg consts =
retype(byte_offset(packed_consts, base & (block_sz - 1)),
dest.type);
for (unsigned d = 0; d < count; d++)
bld.MOV(offset(dest, bld, c + d), component(consts, d));
c += count;
}
}
break;
}
case nir_intrinsic_load_ssbo: {
assert(devinfo->gen >= 7);
nir_const_value *const_uniform_block =
nir_src_as_const_value(instr->src[0]);
fs_reg surf_index;
if (const_uniform_block) {
unsigned index = stage_prog_data->binding_table.ssbo_start +
const_uniform_block->u32[0];
surf_index = brw_imm_ud(index);
brw_mark_surface_used(prog_data, index);
} else {
surf_index = vgrf(glsl_type::uint_type);
bld.ADD(surf_index, get_nir_src(instr->src[0]),
brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(prog_data,
stage_prog_data->binding_table.ssbo_start +
nir->info.num_ssbos - 1);
}
fs_reg offset_reg;
nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
if (const_offset) {
offset_reg = brw_imm_ud(const_offset->u32[0]);
} else {
offset_reg = get_nir_src(instr->src[1]);
}
/* Read the vector */
do_untyped_vector_read(bld, dest, surf_index, offset_reg,
instr->num_components);
break;
}
case nir_intrinsic_store_ssbo: {
assert(devinfo->gen >= 7);
if (stage == MESA_SHADER_FRAGMENT)
brw_wm_prog_data(prog_data)->has_side_effects = true;
/* Block index */
fs_reg surf_index;
nir_const_value *const_uniform_block =
nir_src_as_const_value(instr->src[1]);
if (const_uniform_block) {
unsigned index = stage_prog_data->binding_table.ssbo_start +
const_uniform_block->u32[0];
surf_index = brw_imm_ud(index);
brw_mark_surface_used(prog_data, index);
} else {
surf_index = vgrf(glsl_type::uint_type);
bld.ADD(surf_index, get_nir_src(instr->src[1]),
brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
brw_mark_surface_used(prog_data,
stage_prog_data->binding_table.ssbo_start +
nir->info.num_ssbos - 1);
}
/* Value */
fs_reg val_reg = get_nir_src(instr->src[0]);
/* Writemask */
unsigned writemask = instr->const_index[0];
/* get_nir_src() retypes to integer. Be wary of 64-bit types though
* since the untyped writes below operate in units of 32-bits, which
* means that we need to write twice as many components each time.
* Also, we have to suffle 64-bit data to be in the appropriate layout
* expected by our 32-bit write messages.
*/
unsigned bit_size = nir_src_bit_size(instr->src[0]);
unsigned type_size = bit_size / 8;
/* Combine groups of consecutive enabled channels in one write
* message. We use ffs to find the first enabled channel and then ffs on
* the bit-inverse, down-shifted writemask to determine the num_components
* of the block of enabled bits.
*/
while (writemask) {
unsigned first_component = ffs(writemask) - 1;
unsigned num_components = ffs(~(writemask >> first_component)) - 1;
fs_reg write_src = offset(val_reg, bld, first_component);
if (type_size > 4) {
/* We can't write more than 2 64-bit components at once. Limit
* the num_components of the write to what we can do and let the next
* iteration handle the rest.
*/
num_components = MIN2(2, num_components);
write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
num_components);
} else if (type_size < 4) {
assert(type_size == 2);
/* For 16-bit types we pack two consecutive values into a 32-bit
* word and use an untyped write message. For single values or not
* 32-bit-aligned we need to use byte-scattered writes because
* untyped writes works with 32-bit components with 32-bit
* alignment. byte_scattered_write messages only support one
* 16-bit component at a time.
*
* For example, if there is a 3-components vector we submit one
* untyped-write message of 32-bit (first two components), and one
* byte-scattered write message (the last component).
*/
if (first_component % 2) {
/* If we use a .yz writemask we also need to emit 2
* byte-scattered write messages because of y-component not
* being aligned to 32-bit.
*/
num_components = 1;
} else if (num_components > 2 && (num_components % 2)) {
/* If there is an odd number of consecutive components we left
* the not paired component for a following emit of length == 1
* with byte_scattered_write.
*/
num_components --;
}
/* For num_components == 1 we are also shuffling the component
* because byte scattered writes of 16-bit need values to be dword
* aligned. Shuffling only one component would be the same as
* striding it.
*/
fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D,
DIV_ROUND_UP(num_components, 2));
shuffle_16bit_data_for_32bit_write(bld, tmp, write_src,
num_components);
write_src = tmp;
}
fs_reg offset_reg;
nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
if (const_offset) {
offset_reg = brw_imm_ud(const_offset->u32[0] +
type_size * first_component);
} else {
offset_reg = vgrf(glsl_type::uint_type);
bld.ADD(offset_reg,
retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
brw_imm_ud(type_size * first_component));
}
if (type_size < 4 && num_components == 1) {
assert(type_size == 2);
/* Untyped Surface messages have a fixed 32-bit size, so we need
* to rely on byte scattered in order to write 16-bit elements.
* The byte_scattered_write message needs that every written 16-bit
* type to be aligned 32-bits (stride=2).
* Additionally, while on Untyped Surface messages the
* bits of the execution mask are ANDed with the corresponding
* bits of the Pixel/Sample Mask, that is not the case for byte
* scattered writes. That is needed to avoid ssbo stores writing
* on helper invocations. So when that can affect, we load the
* sample mask, and predicate the send message.
*/
brw_predicate pred = BRW_PREDICATE_NONE;
if (stage == MESA_SHADER_FRAGMENT) {
bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
pred = BRW_PREDICATE_NORMAL;
}
emit_byte_scattered_write(bld, surf_index, offset_reg,
write_src,
1 /* dims */, 1,
bit_size,
pred);
} else {
assert(num_components * type_size <= 16);
assert((num_components * type_size) % 4 == 0);
assert((first_component * type_size) % 4 == 0);
unsigned num_slots = (num_components * type_size) / 4;
emit_untyped_write(bld, surf_index, offset_reg,
write_src,
1 /* dims */, num_slots,
BRW_PREDICATE_NONE);
}
/* Clear the bits in the writemask that we just wrote, then try
* again to see if more channels are left.
*/
writemask &= (15 << (first_component + num_components));
}
break;
}
case nir_intrinsic_store_output: {
fs_reg src = get_nir_src(instr->src[0]);
nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
assert(const_offset && "Indirect output stores not allowed");
unsigned num_components = instr->num_components;
unsigned first_component = nir_intrinsic_component(instr);
if (nir_src_bit_size(instr->src[0]) == 64) {
src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
num_components *= 2;
}
fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4 * const_offset->u32[0]), src.type);
for (unsigned j = 0; j < num_components; j++) {
bld.MOV(offset(new_dest, bld, j + first_component),
offset(src, bld, j));
}
break;
}
case nir_intrinsic_ssbo_atomic_add:
nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
break;
case nir_intrinsic_ssbo_atomic_imin:
nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
break;
case nir_intrinsic_ssbo_atomic_umin:
nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
break;
case nir_intrinsic_ssbo_atomic_imax:
nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
break;
case nir_intrinsic_ssbo_atomic_umax:
nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
break;
case nir_intrinsic_ssbo_atomic_and:
nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
break;
case nir_intrinsic_ssbo_atomic_or:
nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
break;
case nir_intrinsic_ssbo_atomic_xor:
nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
break;
case nir_intrinsic_ssbo_atomic_exchange:
nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
break;
case nir_intrinsic_ssbo_atomic_comp_swap:
nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
break;
case nir_intrinsic_get_buffer_size: {
nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
/* A resinfo's sampler message is used to get the buffer size. The
* SIMD8's writeback message consists of four registers and SIMD16's
* writeback message consists of 8 destination registers (two per each
* component). Because we are only interested on the first channel of
* the first returned component, where resinfo returns the buffer size
* for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
* the dispatch width.
*/
const fs_builder ubld = bld.exec_all().group(8, 0);
fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
/* Set LOD = 0 */
ubld.MOV(src_payload, brw_imm_d(0));
const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
src_payload, brw_imm_ud(index));
inst->header_size = 0;
inst->mlen = 1;
inst->size_written = 4 * REG_SIZE;
bld.MOV(retype(dest, ret_payload.type), component(ret_payload, 0));
brw_mark_surface_used(prog_data, index);
break;
}
case nir_intrinsic_load_subgroup_invocation:
bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
break;
case nir_intrinsic_load_subgroup_eq_mask:
case nir_intrinsic_load_subgroup_ge_mask:
case nir_intrinsic_load_subgroup_gt_mask:
case nir_intrinsic_load_subgroup_le_mask:
case nir_intrinsic_load_subgroup_lt_mask:
unreachable("not reached");
case nir_intrinsic_vote_any: {
const fs_builder ubld = bld.exec_all().group(1, 0);
/* The any/all predicates do not consider channel enables. To prevent
* dead channels from affecting the result, we initialize the flag with
* with the identity value for the logical operation.
*/
if (dispatch_width == 32) {
/* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
brw_imm_ud(0));
} else {
ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
}
bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
/* For some reason, the any/all predicates don't work properly with
* SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
* doesn't read the correct subset of the flag register and you end up
* getting garbage in the second half. Work around this by using a pair
* of 1-wide MOVs and scattering the result.
*/
fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
ubld.MOV(res1, brw_imm_d(0));
set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
BRW_PREDICATE_ALIGN1_ANY32H,
ubld.MOV(res1, brw_imm_d(-1)));
bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
break;
}
case nir_intrinsic_vote_all: {
const fs_builder ubld = bld.exec_all().group(1, 0);
/* The any/all predicates do not consider channel enables. To prevent
* dead channels from affecting the result, we initialize the flag with
* with the identity value for the logical operation.
*/
if (dispatch_width == 32) {
/* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
brw_imm_ud(0xffffffff));
} else {
ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
}
bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
/* For some reason, the any/all predicates don't work properly with
* SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
* doesn't read the correct subset of the flag register and you end up
* getting garbage in the second half. Work around this by using a pair
* of 1-wide MOVs and scattering the result.
*/
fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
ubld.MOV(res1, brw_imm_d(0));
set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
BRW_PREDICATE_ALIGN1_ALL32H,
ubld.MOV(res1, brw_imm_d(-1)));
bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
break;
}
case nir_intrinsic_vote_eq: {
fs_reg value = get_nir_src(instr->src[0]);
fs_reg uniformized = bld.emit_uniformize(value);
const fs_builder ubld = bld.exec_all().group(1, 0);
/* The any/all predicates do not consider channel enables. To prevent
* dead channels from affecting the result, we initialize the flag with
* with the identity value for the logical operation.
*/
if (dispatch_width == 32) {
/* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
brw_imm_ud(0xffffffff));
} else {
ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
}
bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
/* For some reason, the any/all predicates don't work properly with
* SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
* doesn't read the correct subset of the flag register and you end up
* getting garbage in the second half. Work around this by using a pair
* of 1-wide MOVs and scattering the result.
*/
fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
ubld.MOV(res1, brw_imm_d(0));
set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
BRW_PREDICATE_ALIGN1_ALL32H,
ubld.MOV(res1, brw_imm_d(-1)));
bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
break;
}
case nir_intrinsic_ballot: {
const fs_reg value = retype(get_nir_src(instr->src[0]),
BRW_REGISTER_TYPE_UD);
struct brw_reg flag = brw_flag_reg(0, 0);
/* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
* as f0.0. This is a problem for fragment programs as we currently use
* f0.1 for discards. Fortunately, we don't support SIMD32 fragment
* programs yet so this isn't a problem. When we do, something will
* have to change.
*/
if (dispatch_width == 32)
flag.type = BRW_REGISTER_TYPE_UD;
bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
if (instr->dest.ssa.bit_size > 32) {
dest.type = BRW_REGISTER_TYPE_UQ;
} else {
dest.type = BRW_REGISTER_TYPE_UD;
}
bld.MOV(dest, flag);
break;
}
case nir_intrinsic_read_invocation: {
const fs_reg value = get_nir_src(instr->src[0]);
const fs_reg invocation = get_nir_src(instr->src[1]);
fs_reg tmp = bld.vgrf(value.type);
bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
bld.emit_uniformize(invocation));
bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
break;
}
case nir_intrinsic_read_first_invocation: {
const fs_reg value = get_nir_src(instr->src[0]);
bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
break;
}
default:
unreachable("unknown intrinsic");
}
}
void
fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
int op, nir_intrinsic_instr *instr)
{
if (stage == MESA_SHADER_FRAGMENT)
brw_wm_prog_data(prog_data)->has_side_effects = true;
fs_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
fs_reg surface;
nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
if (const_surface) {
unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
const_surface->u32[0];
surface = brw_imm_ud(surf_index);
brw_mark_surface_used(prog_data, surf_index);
} else {
surface = vgrf(glsl_type::uint_type);
bld.ADD(surface, get_nir_src(instr->src[0]),
brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
/* Assume this may touch any SSBO. This is the same we do for other
* UBO/SSBO accesses with non-constant surface.
*/
brw_mark_surface_used(prog_data,
stage_prog_data->binding_table.ssbo_start +
nir->info.num_ssbos - 1);
}
fs_reg offset = get_nir_src(instr->src[1]);
fs_reg data1 = get_nir_src(instr->src[2]);
fs_reg data2;
if (op == BRW_AOP_CMPWR)
data2 = get_nir_src(instr->src[3]);
/* Emit the actual atomic operation */
fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
data1, data2,
1 /* dims */, 1 /* rsize */,
op,
BRW_PREDICATE_NONE);
dest.type = atomic_result.type;
bld.MOV(dest, atomic_result);
}
void
fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
int op, nir_intrinsic_instr *instr)
{
fs_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
fs_reg offset;
fs_reg data1 = get_nir_src(instr->src[1]);
fs_reg data2;
if (op == BRW_AOP_CMPWR)
data2 = get_nir_src(instr->src[2]);
/* Get the offset */
nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
if (const_offset) {
offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
} else {
offset = vgrf(glsl_type::uint_type);
bld.ADD(offset,
retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
brw_imm_ud(instr->const_index[0]));
}
/* Emit the actual atomic operation operation */
fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
data1, data2,
1 /* dims */, 1 /* rsize */,
op,
BRW_PREDICATE_NONE);
dest.type = atomic_result.type;
bld.MOV(dest, atomic_result);
}
void
fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
{
unsigned texture = instr->texture_index;
unsigned sampler = instr->sampler_index;
fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
int lod_components = 0;
/* The hardware requires a LOD for buffer textures */
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
uint32_t header_bits = 0;
for (unsigned i = 0; i < instr->num_srcs; i++) {
fs_reg src = get_nir_src(instr->src[i].src);
switch (instr->src[i].src_type) {
case nir_tex_src_bias:
srcs[TEX_LOGICAL_SRC_LOD] =
retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
break;
case nir_tex_src_comparator:
srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
break;
case nir_tex_src_coord:
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_txf_ms_mcs:
case nir_texop_samples_identical:
srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
break;
default:
srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
break;
}
break;
case nir_tex_src_ddx:
srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
lod_components = nir_tex_instr_src_size(instr, i);
break;
case nir_tex_src_ddy:
srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
break;
case nir_tex_src_lod:
switch (instr->op) {
case nir_texop_txs:
srcs[TEX_LOGICAL_SRC_LOD] =
retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
break;
case nir_texop_txf:
srcs[TEX_LOGICAL_SRC_LOD] =
retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
break;
default:
srcs[TEX_LOGICAL_SRC_LOD] =
retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
break;
}
break;
case nir_tex_src_ms_index:
srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
break;
case nir_tex_src_offset: {
nir_const_value *const_offset =
nir_src_as_const_value(instr->src[i].src);
unsigned offset_bits = 0;
if (const_offset &&
brw_texture_offset(const_offset->i32,
nir_tex_instr_src_size(instr, i),
&offset_bits)) {
header_bits |= offset_bits;
} else {
srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
retype(src, BRW_REGISTER_TYPE_D);
}
break;
}
case nir_tex_src_projector:
unreachable("should be lowered");
case nir_tex_src_texture_offset: {
/* Figure out the highest possible texture index and mark it as used */
uint32_t max_used = texture + instr->texture_array_size - 1;
if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
max_used += stage_prog_data->binding_table.gather_texture_start;
} else {
max_used += stage_prog_data->binding_table.texture_start;
}
brw_mark_surface_used(prog_data, max_used);
/* Emit code to evaluate the actual indexing expression */
fs_reg tmp = vgrf(glsl_type::uint_type);
bld.ADD(tmp, src, brw_imm_ud(texture));
srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
break;
}
case nir_tex_src_sampler_offset: {
/* Emit code to evaluate the actual indexing expression */
fs_reg tmp = vgrf(glsl_type::uint_type);
bld.ADD(tmp, src, brw_imm_ud(sampler));
srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
break;
}
case nir_tex_src_ms_mcs:
assert(instr->op == nir_texop_txf_ms);
srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
break;
case nir_tex_src_plane: {
nir_const_value *const_plane =
nir_src_as_const_value(instr->src[i].src);
const uint32_t plane = const_plane->u32[0];
const uint32_t texture_index =
instr->texture_index +
stage_prog_data->binding_table.plane_start[plane] -
stage_prog_data->binding_table.texture_start;
srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
break;
}
default:
unreachable("unknown texture source");
}
}
if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
(instr->op == nir_texop_txf_ms ||
instr->op == nir_texop_samples_identical)) {
if (devinfo->gen >= 7 &&
key_tex->compressed_multisample_layout_mask & (1 << texture)) {
srcs[TEX_LOGICAL_SRC_MCS] =
emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
instr->coord_components,
srcs[TEX_LOGICAL_SRC_SURFACE]);
} else {
srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
}
}
srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
enum opcode opcode;
switch (instr->op) {
case nir_texop_tex:
opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
SHADER_OPCODE_TXL_LOGICAL);
break;
case nir_texop_txb:
opcode = FS_OPCODE_TXB_LOGICAL;
break;
case nir_texop_txl:
opcode = SHADER_OPCODE_TXL_LOGICAL;
break;
case nir_texop_txd:
opcode = SHADER_OPCODE_TXD_LOGICAL;
break;
case nir_texop_txf:
opcode = SHADER_OPCODE_TXF_LOGICAL;
break;
case nir_texop_txf_ms:
if ((key_tex->msaa_16 & (1 << sampler)))
opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
else
opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
break;
case nir_texop_txf_ms_mcs:
opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
break;
case nir_texop_query_levels:
case nir_texop_txs:
opcode = SHADER_OPCODE_TXS_LOGICAL;
break;
case nir_texop_lod:
opcode = SHADER_OPCODE_LOD_LOGICAL;
break;
case nir_texop_tg4:
if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
else
opcode = SHADER_OPCODE_TG4_LOGICAL;
break;
case nir_texop_texture_samples:
opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
break;
case nir_texop_samples_identical: {
fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
/* If mcs is an immediate value, it means there is no MCS. In that case
* just return false.
*/
if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
bld.MOV(dst, brw_imm_ud(0u));
} else if ((key_tex->msaa_16 & (1 << sampler))) {
fs_reg tmp = vgrf(glsl_type::uint_type);
bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
} else {
bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
BRW_CONDITIONAL_EQ);
}
return;
}
default:
unreachable("unknown texture opcode");
}
if (instr->op == nir_texop_tg4) {
if (instr->component == 1 &&
key_tex->gather_channel_quirk_mask & (1 << texture)) {
/* gather4 sampler is broken for green channel on RG32F --
* we must ask for blue instead.
*/
header_bits |= 2 << 16;
} else {
header_bits |= instr->component << 16;
}
}
fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
inst->offset = header_bits;
const unsigned dest_size = nir_tex_instr_dest_size(instr);
if (devinfo->gen >= 9 &&
instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
unsigned write_mask = instr->dest.is_ssa ?
nir_ssa_def_components_read(&instr->dest.ssa):
(1 << dest_size) - 1;
assert(write_mask != 0); /* dead code should have been eliminated */
inst->size_written = util_last_bit(write_mask) *
inst->dst.component_size(inst->exec_size);
} else {
inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
}
if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
inst->shadow_compare = true;
if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
fs_reg nir_dest[4];
for (unsigned i = 0; i < dest_size; i++)
nir_dest[i] = offset(dst, bld, i);
if (instr->op == nir_texop_query_levels) {
/* # levels is in .w */
nir_dest[0] = offset(dst, bld, 3);
} else if (instr->op == nir_texop_txs &&
dest_size >= 3 && devinfo->gen < 7) {
/* Gen4-6 return 0 instead of 1 for single layer surfaces. */
fs_reg depth = offset(dst, bld, 2);
nir_dest[2] = vgrf(glsl_type::int_type);
bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
}
bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
}
void
fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break:
bld.emit(BRW_OPCODE_BREAK);
break;
case nir_jump_continue:
bld.emit(BRW_OPCODE_CONTINUE);
break;
case nir_jump_return:
default:
unreachable("unknown jump");
}
}
/**
* This helper takes the result of a load operation that reads 32-bit elements
* in this format:
*
* x x x x x x x x
* y y y y y y y y
* z z z z z z z z
* w w w w w w w w
*
* and shuffles the data to get this:
*
* x y x y x y x y
* x y x y x y x y
* z w z w z w z w
* z w z w z w z w
*
* Which is exactly what we want if the load is reading 64-bit components
* like doubles, where x represents the low 32-bit of the x double component
* and y represents the high 32-bit of the x double component (likewise with
* z and w for double component y). The parameter @components represents
* the number of 64-bit components present in @src. This would typically be
* 2 at most, since we can only fit 2 double elements in the result of a
* vec4 load.
*
* Notice that @dst and @src can be the same register.
*/
void
shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
const fs_reg &dst,
const fs_reg &src,
uint32_t components)
{
assert(type_sz(src.type) == 4);
assert(type_sz(dst.type) == 8);
/* A temporary that we will use to shuffle the 32-bit data of each
* component in the vector into valid 64-bit data. We can't write directly
* to dst because dst can be (and would usually be) the same as src
* and in that case the first MOV in the loop below would overwrite the
* data read in the second MOV.
*/
fs_reg tmp = bld.vgrf(dst.type);
for (unsigned i = 0; i < components; i++) {
const fs_reg component_i = offset(src, bld, 2 * i);
bld.MOV(subscript(tmp, src.type, 0), component_i);
bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
bld.MOV(offset(dst, bld, i), tmp);
}
}
void
shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
const fs_reg &dst,
const fs_reg &src,
uint32_t components)
{
assert(type_sz(src.type) == 4);
assert(type_sz(dst.type) == 2);
/* A temporary is used to un-shuffle the 32-bit data of each component in
* into a valid 16-bit vector. We can't write directly to dst because it
* can be the same register as src and in that case the first MOV in the
* loop below would overwrite the data read in the second MOV.
*/
fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
for (unsigned i = 0; i < components; i++) {
const fs_reg component_i =
subscript(offset(src, bld, i / 2), dst.type, i % 2);
bld.MOV(offset(tmp, bld, i % 2), component_i);
if (i % 2) {
bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
}
}
if (components % 2) {
bld.MOV(offset(dst, bld, components - 1), tmp);
}
}
/**
* This helper does the inverse operation of
* SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
*
* We need to do this when we are going to use untyped write messsages that
* operate with 32-bit components in order to arrange our 64-bit data to be
* in the expected layout.
*
* Notice that callers of this function, unlike in the case of the inverse
* operation, would typically need to call this with dst and src being
* different registers, since they would otherwise corrupt the original
* 64-bit data they are about to write. Because of this the function checks
* that the src and dst regions involved in the operation do not overlap.
*/
fs_reg
shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
const fs_reg &src,
uint32_t components)
{
assert(type_sz(src.type) == 8);
fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
for (unsigned i = 0; i < components; i++) {
const fs_reg component_i = offset(src, bld, i);
bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
}
return dst;
}
void
shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
const fs_reg &dst,
const fs_reg &src,
uint32_t components)
{
assert(type_sz(src.type) == 2);
assert(type_sz(dst.type) == 4);
/* A temporary is used to shuffle the 16-bit data of each component in the
* 32-bit data vector. We can't write directly to dst because it can be the
* same register as src and in that case the first MOV in the loop below
* would overwrite the data read in the second MOV.
*/
fs_reg tmp = bld.vgrf(dst.type);
for (unsigned i = 0; i < components; i++) {
const fs_reg component_i = offset(src, bld, i);
bld.MOV(subscript(tmp, src.type, i % 2), component_i);
if (i % 2) {
bld.MOV(offset(dst, bld, i / 2), tmp);
}
}
if (components % 2) {
bld.MOV(offset(dst, bld, components / 2), tmp);
}
}
fs_reg
setup_imm_df(const fs_builder &bld, double v)
{
const struct gen_device_info *devinfo = bld.shader->devinfo;
assert(devinfo->gen >= 7);
if (devinfo->gen >= 8)
return brw_imm_df(v);
/* gen7.5 does not support DF immediates straighforward but the DIM
* instruction allows to set the 64-bit immediate value.
*/
if (devinfo->is_haswell) {
const fs_builder ubld = bld.exec_all().group(1, 0);
fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
ubld.DIM(dst, brw_imm_df(v));
return component(dst, 0);
}
/* gen7 does not support DF immediates, so we generate a 64-bit constant by
* writing the low 32-bit of the constant to suboffset 0 of a VGRF and
* the high 32-bit to suboffset 4 and then applying a stride of 0.
*
* Alternatively, we could also produce a normal VGRF (without stride 0)
* by writing to all the channels in the VGRF, however, that would hit the
* gen7 bug where we have to split writes that span more than 1 register
* into instructions with a width of 4 (otherwise the write to the second
* register written runs into an execmask hardware bug) which isn't very
* nice.
*/
union {
double d;
struct {
uint32_t i1;
uint32_t i2;
};
} di;
di.d = v;
const fs_builder ubld = bld.exec_all().group(1, 0);
const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
ubld.MOV(tmp, brw_imm_ud(di.i1));
ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
}