/* -*- c++ -*- */
/*
* Copyright © 2011-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BRW_IR_VEC4_H
#define BRW_IR_VEC4_H
#include "brw_shader.h"
namespace brw {
class dst_reg;
class src_reg : public backend_reg
{
public:
DECLARE_RALLOC_CXX_OPERATORS(src_reg)
void init();
src_reg(enum brw_reg_file file, int nr, const glsl_type *type);
src_reg();
src_reg(struct ::brw_reg reg);
bool equals(const src_reg &r) const;
src_reg(class vec4_visitor *v, const struct glsl_type *type);
src_reg(class vec4_visitor *v, const struct glsl_type *type, int size);
explicit src_reg(const dst_reg ®);
src_reg *reladdr;
};
static inline src_reg
retype(src_reg reg, enum brw_reg_type type)
{
reg.type = type;
return reg;
}
namespace detail {
static inline void
add_byte_offset(backend_reg *reg, unsigned bytes)
{
switch (reg->file) {
case BAD_FILE:
break;
case VGRF:
case ATTR:
case UNIFORM:
reg->offset += bytes;
assert(reg->offset % 16 == 0);
break;
case MRF: {
const unsigned suboffset = reg->offset + bytes;
reg->nr += suboffset / REG_SIZE;
reg->offset = suboffset % REG_SIZE;
assert(reg->offset % 16 == 0);
break;
}
case ARF:
case FIXED_GRF: {
const unsigned suboffset = reg->subnr + bytes;
reg->nr += suboffset / REG_SIZE;
reg->subnr = suboffset % REG_SIZE;
assert(reg->subnr % 16 == 0);
break;
}
default:
assert(bytes == 0);
}
}
} /* namepace detail */
static inline src_reg
byte_offset(src_reg reg, unsigned bytes)
{
detail::add_byte_offset(®, bytes);
return reg;
}
static inline src_reg
offset(src_reg reg, unsigned width, unsigned delta)
{
const unsigned stride = (reg.file == UNIFORM ? 0 : 4);
const unsigned num_components = MAX2(width / 4 * stride, 4);
return byte_offset(reg, num_components * type_sz(reg.type) * delta);
}
static inline src_reg
horiz_offset(src_reg reg, unsigned delta)
{
return byte_offset(reg, delta * type_sz(reg.type));
}
/**
* Reswizzle a given source register.
* \sa brw_swizzle().
*/
static inline src_reg
swizzle(src_reg reg, unsigned swizzle)
{
if (reg.file == IMM)
reg.ud = brw_swizzle_immediate(reg.type, reg.ud, swizzle);
else
reg.swizzle = brw_compose_swizzle(swizzle, reg.swizzle);
return reg;
}
static inline src_reg
negate(src_reg reg)
{
assert(reg.file != IMM);
reg.negate = !reg.negate;
return reg;
}
static inline bool
is_uniform(const src_reg ®)
{
return (reg.file == IMM || reg.file == UNIFORM || reg.is_null()) &&
(!reg.reladdr || is_uniform(*reg.reladdr));
}
class dst_reg : public backend_reg
{
public:
DECLARE_RALLOC_CXX_OPERATORS(dst_reg)
void init();
dst_reg();
dst_reg(enum brw_reg_file file, int nr);
dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
unsigned writemask);
dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
unsigned writemask);
dst_reg(struct ::brw_reg reg);
dst_reg(class vec4_visitor *v, const struct glsl_type *type);
explicit dst_reg(const src_reg ®);
bool equals(const dst_reg &r) const;
src_reg *reladdr;
};
static inline dst_reg
retype(dst_reg reg, enum brw_reg_type type)
{
reg.type = type;
return reg;
}
static inline dst_reg
byte_offset(dst_reg reg, unsigned bytes)
{
detail::add_byte_offset(®, bytes);
return reg;
}
static inline dst_reg
offset(dst_reg reg, unsigned width, unsigned delta)
{
const unsigned stride = (reg.file == UNIFORM ? 0 : 4);
const unsigned num_components = MAX2(width / 4 * stride, 4);
return byte_offset(reg, num_components * type_sz(reg.type) * delta);
}
static inline dst_reg
horiz_offset(const dst_reg ®, unsigned delta)
{
if (is_uniform(src_reg(reg)))
return reg;
else
return byte_offset(reg, delta * type_sz(reg.type));
}
static inline dst_reg
writemask(dst_reg reg, unsigned mask)
{
assert(reg.file != IMM);
assert((reg.writemask & mask) != 0);
reg.writemask &= mask;
return reg;
}
/**
* Return an integer identifying the discrete address space a register is
* contained in. A register is by definition fully contained in the single
* reg_space it belongs to, so two registers with different reg_space ids are
* guaranteed not to overlap. Most register files are a single reg_space of
* its own, only the VGRF file is composed of multiple discrete address
* spaces, one for each VGRF allocation.
*/
static inline uint32_t
reg_space(const backend_reg &r)
{
return r.file << 16 | (r.file == VGRF ? r.nr : 0);
}
/**
* Return the base offset in bytes of a register relative to the start of its
* reg_space().
*/
static inline unsigned
reg_offset(const backend_reg &r)
{
return (r.file == VGRF || r.file == IMM ? 0 : r.nr) *
(r.file == UNIFORM ? 16 : REG_SIZE) + r.offset +
(r.file == ARF || r.file == FIXED_GRF ? r.subnr : 0);
}
/**
* Return whether the register region starting at \p r and spanning \p dr
* bytes could potentially overlap the register region starting at \p s and
* spanning \p ds bytes.
*/
static inline bool
regions_overlap(const backend_reg &r, unsigned dr,
const backend_reg &s, unsigned ds)
{
if (r.file == MRF && (r.nr & BRW_MRF_COMPR4)) {
/* COMPR4 regions are translated by the hardware during decompression
* into two separate half-regions 4 MRFs apart from each other.
*/
backend_reg t0 = r;
t0.nr &= ~BRW_MRF_COMPR4;
backend_reg t1 = t0;
t1.offset += 4 * REG_SIZE;
return regions_overlap(t0, dr / 2, s, ds) ||
regions_overlap(t1, dr / 2, s, ds);
} else if (s.file == MRF && (s.nr & BRW_MRF_COMPR4)) {
return regions_overlap(s, ds, r, dr);
} else {
return reg_space(r) == reg_space(s) &&
!(reg_offset(r) + dr <= reg_offset(s) ||
reg_offset(s) + ds <= reg_offset(r));
}
}
class vec4_instruction : public backend_instruction {
public:
DECLARE_RALLOC_CXX_OPERATORS(vec4_instruction)
vec4_instruction(enum opcode opcode,
const dst_reg &dst = dst_reg(),
const src_reg &src0 = src_reg(),
const src_reg &src1 = src_reg(),
const src_reg &src2 = src_reg());
dst_reg dst;
src_reg src[3];
enum brw_urb_write_flags urb_write_flags;
unsigned sol_binding; /**< gen6: SOL binding table index */
bool sol_final_write; /**< gen6: send commit message */
unsigned sol_vertex; /**< gen6: used for setting dst index in SVB header */
bool is_send_from_grf();
unsigned size_read(unsigned arg) const;
bool can_reswizzle(const struct gen_device_info *devinfo, int dst_writemask,
int swizzle, int swizzle_mask);
void reswizzle(int dst_writemask, int swizzle);
bool can_do_source_mods(const struct gen_device_info *devinfo);
bool can_do_writemask(const struct gen_device_info *devinfo);
bool can_change_types() const;
bool has_source_and_destination_hazard() const;
bool is_align1_partial_write()
{
return opcode == VEC4_OPCODE_SET_LOW_32BIT ||
opcode == VEC4_OPCODE_SET_HIGH_32BIT;
}
bool reads_flag()
{
return predicate || opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2;
}
bool reads_flag(unsigned c)
{
if (opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2)
return true;
switch (predicate) {
case BRW_PREDICATE_NONE:
return false;
case BRW_PREDICATE_ALIGN16_REPLICATE_X:
return c == 0;
case BRW_PREDICATE_ALIGN16_REPLICATE_Y:
return c == 1;
case BRW_PREDICATE_ALIGN16_REPLICATE_Z:
return c == 2;
case BRW_PREDICATE_ALIGN16_REPLICATE_W:
return c == 3;
default:
return true;
}
}
bool writes_flag()
{
return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
opcode != BRW_OPCODE_IF &&
opcode != BRW_OPCODE_WHILE));
}
bool reads_g0_implicitly() const
{
switch (opcode) {
case SHADER_OPCODE_TEX:
case SHADER_OPCODE_TXL:
case SHADER_OPCODE_TXD:
case SHADER_OPCODE_TXF:
case SHADER_OPCODE_TXF_CMS_W:
case SHADER_OPCODE_TXF_CMS:
case SHADER_OPCODE_TXF_MCS:
case SHADER_OPCODE_TXS:
case SHADER_OPCODE_TG4:
case SHADER_OPCODE_TG4_OFFSET:
case SHADER_OPCODE_SAMPLEINFO:
case VS_OPCODE_PULL_CONSTANT_LOAD:
case GS_OPCODE_SET_PRIMITIVE_ID:
case GS_OPCODE_GET_INSTANCE_ID:
case SHADER_OPCODE_GEN4_SCRATCH_READ:
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
return true;
default:
return false;
}
}
};
/**
* Make the execution of \p inst dependent on the evaluation of a possibly
* inverted predicate.
*/
inline vec4_instruction *
set_predicate_inv(enum brw_predicate pred, bool inverse,
vec4_instruction *inst)
{
inst->predicate = pred;
inst->predicate_inverse = inverse;
return inst;
}
/**
* Make the execution of \p inst dependent on the evaluation of a predicate.
*/
inline vec4_instruction *
set_predicate(enum brw_predicate pred, vec4_instruction *inst)
{
return set_predicate_inv(pred, false, inst);
}
/**
* Write the result of evaluating the condition given by \p mod to a flag
* register.
*/
inline vec4_instruction *
set_condmod(enum brw_conditional_mod mod, vec4_instruction *inst)
{
inst->conditional_mod = mod;
return inst;
}
/**
* Clamp the result of \p inst to the saturation range of its destination
* datatype.
*/
inline vec4_instruction *
set_saturate(bool saturate, vec4_instruction *inst)
{
inst->saturate = saturate;
return inst;
}
/**
* Return the number of dataflow registers written by the instruction (either
* fully or partially) counted from 'floor(reg_offset(inst->dst) /
* register_size)'. The somewhat arbitrary register size unit is 16B for the
* UNIFORM and IMM files and 32B for all other files.
*/
inline unsigned
regs_written(const vec4_instruction *inst)
{
assert(inst->dst.file != UNIFORM && inst->dst.file != IMM);
return DIV_ROUND_UP(reg_offset(inst->dst) % REG_SIZE + inst->size_written,
REG_SIZE);
}
/**
* Return the number of dataflow registers read by the instruction (either
* fully or partially) counted from 'floor(reg_offset(inst->src[i]) /
* register_size)'. The somewhat arbitrary register size unit is 16B for the
* UNIFORM and IMM files and 32B for all other files.
*/
inline unsigned
regs_read(const vec4_instruction *inst, unsigned i)
{
const unsigned reg_size =
inst->src[i].file == UNIFORM || inst->src[i].file == IMM ? 16 : REG_SIZE;
return DIV_ROUND_UP(reg_offset(inst->src[i]) % reg_size + inst->size_read(i),
reg_size);
}
static inline enum brw_reg_type
get_exec_type(const vec4_instruction *inst)
{
enum brw_reg_type exec_type = BRW_REGISTER_TYPE_B;
for (int i = 0; i < 3; i++) {
if (inst->src[i].file != BAD_FILE) {
const brw_reg_type t = get_exec_type(brw_reg_type(inst->src[i].type));
if (type_sz(t) > type_sz(exec_type))
exec_type = t;
else if (type_sz(t) == type_sz(exec_type) &&
brw_reg_type_is_floating_point(t))
exec_type = t;
}
}
if (exec_type == BRW_REGISTER_TYPE_B)
exec_type = inst->dst.type;
/* TODO: We need to handle half-float conversions. */
assert(exec_type != BRW_REGISTER_TYPE_HF ||
inst->dst.type == BRW_REGISTER_TYPE_HF);
assert(exec_type != BRW_REGISTER_TYPE_B);
return exec_type;
}
static inline unsigned
get_exec_type_size(const vec4_instruction *inst)
{
return type_sz(get_exec_type(inst));
}
} /* namespace brw */
#endif