/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "compiler/nir/nir_builder.h"
#include "brw_nir.h"
/**
* Implements the WaPreventHSTessLevelsInterference workaround (for Gen7-8).
*
* From the Broadwell PRM, Volume 7 (3D-Media-GPGPU), Page 494 (below the
* definition of the patch header layouts):
*
* "HW Bug: The Tessellation stage will incorrectly add domain points
* along patch edges under the following conditions, which may result
* in conformance failures and/or cracking artifacts:
*
* * QUAD domain
* * INTEGER partitioning
* * All three TessFactors in a given U or V direction (e.g., V
* direction: UEQ0, InsideV, UEQ1) are all exactly 1.0
* * All three TessFactors in the other direction are > 1.0 and all
* round up to the same integer value (e.g, U direction:
* VEQ0 = 3.1, InsideU = 3.7, VEQ1 = 3.4)
*
* The suggested workaround (to be implemented as part of the postamble
* to the HS shader in the HS kernel) is:
*
* if (
* (TF[UEQ0] > 1.0) ||
* (TF[VEQ0] > 1.0) ||
* (TF[UEQ1] > 1.0) ||
* (TF[VEQ1] > 1.0) ||
* (TF[INSIDE_U] > 1.0) ||
* (TF[INSIDE_V] > 1.0) )
* {
* TF[INSIDE_U] = (TF[INSIDE_U] == 1.0) ? 2.0 : TF[INSIDE_U];
* TF[INSIDE_V] = (TF[INSIDE_V] == 1.0) ? 2.0 : TF[INSIDE_V];
* }"
*
* There's a subtlety here. Intel internal HSD-ES bug 1208668495 notes
* that the above workaround fails to fix certain GL/ES CTS tests which
* have inside tessellation factors of -1.0. This can be explained by
* a quote from the ARB_tessellation_shader specification:
*
* "If "equal_spacing" is used, the floating-point tessellation level is
* first clamped to the range [1,<max>], where <max> is implementation-
* dependent maximum tessellation level (MAX_TESS_GEN_LEVEL)."
*
* In other words, the actual inner tessellation factor used is
* clamp(TF[INSIDE_*], 1.0, 64.0). So we want to compare the clamped
* value against 1.0. To accomplish this, we change the comparison from
* (TF[INSIDE_*] == 1.0) to (TF[INSIDE_*] <= 1.0).
*/
static inline nir_ssa_def *
load_output(nir_builder *b, int num_components, int offset, int component)
{
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_output);
nir_ssa_dest_init(&load->instr, &load->dest, num_components, 32, NULL);
load->num_components = num_components;
load->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
nir_intrinsic_set_base(load, offset);
nir_intrinsic_set_component(load, component);
nir_builder_instr_insert(b, &load->instr);
return &load->dest.ssa;
}
static void
emit_quads_workaround(nir_builder *b, nir_block *block)
{
b->cursor = nir_after_block_before_jump(block);
nir_ssa_def *inner = load_output(b, 2, 0, 2);
nir_ssa_def *outer = load_output(b, 4, 1, 0);
nir_ssa_def *any_greater_than_1 =
nir_ior(b, nir_bany(b, nir_flt(b, nir_imm_float(b, 1.0f), outer)),
nir_bany(b, nir_flt(b, nir_imm_float(b, 1.0f), inner)));
nir_if *if_stmt = nir_if_create(b->shader);
if_stmt->condition = nir_src_for_ssa(any_greater_than_1);
nir_builder_cf_insert(b, &if_stmt->cf_node);
/* Fill out the new then-block */
b->cursor = nir_after_cf_list(&if_stmt->then_list);
inner = nir_bcsel(b, nir_fge(b, nir_imm_float(b, 1.0f), inner),
nir_imm_float(b, 2.0f), inner);
nir_intrinsic_instr *store =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
store->num_components = 2;
nir_intrinsic_set_write_mask(store, WRITEMASK_XY);
nir_intrinsic_set_component(store, 2);
store->src[0] = nir_src_for_ssa(inner);
store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
nir_builder_instr_insert(b, &store->instr);
}
void
brw_nir_apply_tcs_quads_workaround(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_TESS_CTRL);
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_builder b;
nir_builder_init(&b, impl);
/* emit_quads_workaround() inserts an if statement into each block,
* which splits it in two. This changes the set of predecessors of
* the end block. We want to process the original set, so to be safe,
* save it off to an array first.
*/
const unsigned num_end_preds = impl->end_block->predecessors->entries;
nir_block *end_preds[num_end_preds];
unsigned i = 0;
struct set_entry *entry;
set_foreach(impl->end_block->predecessors, entry) {
end_preds[i++] = (nir_block *) entry->key;
}
for (i = 0; i < num_end_preds; i++) {
emit_quads_workaround(&b, end_preds[i]);
}
nir_metadata_preserve(impl, 0);
}