/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_private.h"
static bool
lookup_blorp_shader(struct blorp_context *blorp,
const void *key, uint32_t key_size,
uint32_t *kernel_out, void *prog_data_out)
{
struct anv_device *device = blorp->driver_ctx;
/* The blorp cache must be a real cache */
assert(device->blorp_shader_cache.cache);
struct anv_shader_bin *bin =
anv_pipeline_cache_search(&device->blorp_shader_cache, key, key_size);
if (!bin)
return false;
/* The cache already has a reference and it's not going anywhere so there
* is no need to hold a second reference.
*/
anv_shader_bin_unref(device, bin);
*kernel_out = bin->kernel.offset;
*(const struct brw_stage_prog_data **)prog_data_out = bin->prog_data;
return true;
}
static bool
upload_blorp_shader(struct blorp_context *blorp,
const void *key, uint32_t key_size,
const void *kernel, uint32_t kernel_size,
const struct brw_stage_prog_data *prog_data,
uint32_t prog_data_size,
uint32_t *kernel_out, void *prog_data_out)
{
struct anv_device *device = blorp->driver_ctx;
/* The blorp cache must be a real cache */
assert(device->blorp_shader_cache.cache);
struct anv_pipeline_bind_map bind_map = {
.surface_count = 0,
.sampler_count = 0,
};
struct anv_shader_bin *bin =
anv_pipeline_cache_upload_kernel(&device->blorp_shader_cache,
key, key_size, kernel, kernel_size,
prog_data, prog_data_size, &bind_map);
if (!bin)
return false;
/* The cache already has a reference and it's not going anywhere so there
* is no need to hold a second reference.
*/
anv_shader_bin_unref(device, bin);
*kernel_out = bin->kernel.offset;
*(const struct brw_stage_prog_data **)prog_data_out = bin->prog_data;
return true;
}
void
anv_device_init_blorp(struct anv_device *device)
{
anv_pipeline_cache_init(&device->blorp_shader_cache, device, true);
blorp_init(&device->blorp, device, &device->isl_dev);
device->blorp.compiler = device->instance->physicalDevice.compiler;
device->blorp.lookup_shader = lookup_blorp_shader;
device->blorp.upload_shader = upload_blorp_shader;
switch (device->info.gen) {
case 7:
if (device->info.is_haswell) {
device->blorp.exec = gen75_blorp_exec;
} else {
device->blorp.exec = gen7_blorp_exec;
}
break;
case 8:
device->blorp.exec = gen8_blorp_exec;
break;
case 9:
device->blorp.exec = gen9_blorp_exec;
break;
case 10:
device->blorp.exec = gen10_blorp_exec;
break;
default:
unreachable("Unknown hardware generation");
}
}
void
anv_device_finish_blorp(struct anv_device *device)
{
blorp_finish(&device->blorp);
anv_pipeline_cache_finish(&device->blorp_shader_cache);
}
static void
get_blorp_surf_for_anv_buffer(struct anv_device *device,
struct anv_buffer *buffer, uint64_t offset,
uint32_t width, uint32_t height,
uint32_t row_pitch, enum isl_format format,
struct blorp_surf *blorp_surf,
struct isl_surf *isl_surf)
{
const struct isl_format_layout *fmtl =
isl_format_get_layout(format);
bool ok UNUSED;
/* ASTC is the only format which doesn't support linear layouts.
* Create an equivalently sized surface with ISL to get around this.
*/
if (fmtl->txc == ISL_TXC_ASTC) {
/* Use an equivalently sized format */
format = ISL_FORMAT_R32G32B32A32_UINT;
assert(fmtl->bpb == isl_format_get_layout(format)->bpb);
/* Shrink the dimensions for the new format */
width = DIV_ROUND_UP(width, fmtl->bw);
height = DIV_ROUND_UP(height, fmtl->bh);
}
*blorp_surf = (struct blorp_surf) {
.surf = isl_surf,
.addr = {
.buffer = buffer->bo,
.offset = buffer->offset + offset,
.mocs = device->default_mocs,
},
};
ok = isl_surf_init(&device->isl_dev, isl_surf,
.dim = ISL_SURF_DIM_2D,
.format = format,
.width = width,
.height = height,
.depth = 1,
.levels = 1,
.array_len = 1,
.samples = 1,
.row_pitch = row_pitch,
.usage = ISL_SURF_USAGE_TEXTURE_BIT |
ISL_SURF_USAGE_RENDER_TARGET_BIT,
.tiling_flags = ISL_TILING_LINEAR_BIT);
assert(ok);
}
#define ANV_AUX_USAGE_DEFAULT ((enum isl_aux_usage)0xff)
static struct blorp_address
anv_to_blorp_address(struct anv_address addr)
{
return (struct blorp_address) {
.buffer = addr.bo,
.offset = addr.offset,
};
}
static void
get_blorp_surf_for_anv_image(const struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlags aspect,
enum isl_aux_usage aux_usage,
struct blorp_surf *blorp_surf)
{
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
if (aux_usage == ANV_AUX_USAGE_DEFAULT)
aux_usage = image->planes[plane].aux_usage;
if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT ||
aux_usage == ISL_AUX_USAGE_HIZ)
aux_usage = ISL_AUX_USAGE_NONE;
const struct anv_surface *surface = &image->planes[plane].surface;
*blorp_surf = (struct blorp_surf) {
.surf = &surface->isl,
.addr = {
.buffer = image->planes[plane].bo,
.offset = image->planes[plane].bo_offset + surface->offset,
.mocs = device->default_mocs,
},
};
if (aux_usage != ISL_AUX_USAGE_NONE) {
const struct anv_surface *aux_surface = &image->planes[plane].aux_surface;
blorp_surf->aux_surf = &aux_surface->isl,
blorp_surf->aux_addr = (struct blorp_address) {
.buffer = image->planes[plane].bo,
.offset = image->planes[plane].bo_offset + aux_surface->offset,
.mocs = device->default_mocs,
};
blorp_surf->aux_usage = aux_usage;
}
}
void anv_CmdCopyImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
for (unsigned r = 0; r < regionCount; r++) {
VkOffset3D srcOffset =
anv_sanitize_image_offset(src_image->type, pRegions[r].srcOffset);
VkOffset3D dstOffset =
anv_sanitize_image_offset(dst_image->type, pRegions[r].dstOffset);
VkExtent3D extent =
anv_sanitize_image_extent(src_image->type, pRegions[r].extent);
unsigned dst_base_layer, layer_count;
if (dst_image->type == VK_IMAGE_TYPE_3D) {
dst_base_layer = pRegions[r].dstOffset.z;
layer_count = pRegions[r].extent.depth;
} else {
dst_base_layer = pRegions[r].dstSubresource.baseArrayLayer;
layer_count =
anv_get_layerCount(dst_image, &pRegions[r].dstSubresource);
}
unsigned src_base_layer;
if (src_image->type == VK_IMAGE_TYPE_3D) {
src_base_layer = pRegions[r].srcOffset.z;
} else {
src_base_layer = pRegions[r].srcSubresource.baseArrayLayer;
assert(layer_count ==
anv_get_layerCount(src_image, &pRegions[r].srcSubresource));
}
VkImageAspectFlags src_mask = pRegions[r].srcSubresource.aspectMask,
dst_mask = pRegions[r].dstSubresource.aspectMask;
assert(anv_image_aspects_compatible(src_mask, dst_mask));
if (_mesa_bitcount(src_mask) > 1) {
uint32_t aspect_bit;
anv_foreach_image_aspect_bit(aspect_bit, src_image, src_mask) {
struct blorp_surf src_surf, dst_surf;
get_blorp_surf_for_anv_image(cmd_buffer->device,
src_image, 1UL << aspect_bit,
ANV_AUX_USAGE_DEFAULT, &src_surf);
get_blorp_surf_for_anv_image(cmd_buffer->device,
dst_image, 1UL << aspect_bit,
ANV_AUX_USAGE_DEFAULT, &dst_surf);
for (unsigned i = 0; i < layer_count; i++) {
blorp_copy(&batch, &src_surf, pRegions[r].srcSubresource.mipLevel,
src_base_layer + i,
&dst_surf, pRegions[r].dstSubresource.mipLevel,
dst_base_layer + i,
srcOffset.x, srcOffset.y,
dstOffset.x, dstOffset.y,
extent.width, extent.height);
}
}
} else {
struct blorp_surf src_surf, dst_surf;
get_blorp_surf_for_anv_image(cmd_buffer->device, src_image, src_mask,
ANV_AUX_USAGE_DEFAULT, &src_surf);
get_blorp_surf_for_anv_image(cmd_buffer->device, dst_image, dst_mask,
ANV_AUX_USAGE_DEFAULT, &dst_surf);
for (unsigned i = 0; i < layer_count; i++) {
blorp_copy(&batch, &src_surf, pRegions[r].srcSubresource.mipLevel,
src_base_layer + i,
&dst_surf, pRegions[r].dstSubresource.mipLevel,
dst_base_layer + i,
srcOffset.x, srcOffset.y,
dstOffset.x, dstOffset.y,
extent.width, extent.height);
}
}
}
blorp_batch_finish(&batch);
}
static void
copy_buffer_to_image(struct anv_cmd_buffer *cmd_buffer,
struct anv_buffer *anv_buffer,
struct anv_image *anv_image,
uint32_t regionCount,
const VkBufferImageCopy* pRegions,
bool buffer_to_image)
{
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
struct {
struct blorp_surf surf;
uint32_t level;
VkOffset3D offset;
} image, buffer, *src, *dst;
buffer.level = 0;
buffer.offset = (VkOffset3D) { 0, 0, 0 };
if (buffer_to_image) {
src = &buffer;
dst = ℑ
} else {
src = ℑ
dst = &buffer;
}
for (unsigned r = 0; r < regionCount; r++) {
const VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
get_blorp_surf_for_anv_image(cmd_buffer->device, anv_image, aspect,
ANV_AUX_USAGE_DEFAULT, &image.surf);
image.offset =
anv_sanitize_image_offset(anv_image->type, pRegions[r].imageOffset);
image.level = pRegions[r].imageSubresource.mipLevel;
VkExtent3D extent =
anv_sanitize_image_extent(anv_image->type, pRegions[r].imageExtent);
if (anv_image->type != VK_IMAGE_TYPE_3D) {
image.offset.z = pRegions[r].imageSubresource.baseArrayLayer;
extent.depth =
anv_get_layerCount(anv_image, &pRegions[r].imageSubresource);
}
const enum isl_format buffer_format =
anv_get_isl_format(&cmd_buffer->device->info, anv_image->vk_format,
aspect, VK_IMAGE_TILING_LINEAR);
const VkExtent3D bufferImageExtent = {
.width = pRegions[r].bufferRowLength ?
pRegions[r].bufferRowLength : extent.width,
.height = pRegions[r].bufferImageHeight ?
pRegions[r].bufferImageHeight : extent.height,
};
const struct isl_format_layout *buffer_fmtl =
isl_format_get_layout(buffer_format);
const uint32_t buffer_row_pitch =
DIV_ROUND_UP(bufferImageExtent.width, buffer_fmtl->bw) *
(buffer_fmtl->bpb / 8);
const uint32_t buffer_layer_stride =
DIV_ROUND_UP(bufferImageExtent.height, buffer_fmtl->bh) *
buffer_row_pitch;
struct isl_surf buffer_isl_surf;
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
anv_buffer, pRegions[r].bufferOffset,
extent.width, extent.height,
buffer_row_pitch, buffer_format,
&buffer.surf, &buffer_isl_surf);
for (unsigned z = 0; z < extent.depth; z++) {
blorp_copy(&batch, &src->surf, src->level, src->offset.z,
&dst->surf, dst->level, dst->offset.z,
src->offset.x, src->offset.y, dst->offset.x, dst->offset.y,
extent.width, extent.height);
image.offset.z++;
buffer.surf.addr.offset += buffer_layer_stride;
}
}
blorp_batch_finish(&batch);
}
void anv_CmdCopyBufferToImage(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
copy_buffer_to_image(cmd_buffer, src_buffer, dst_image,
regionCount, pRegions, true);
}
void anv_CmdCopyImageToBuffer(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkBuffer dstBuffer,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
copy_buffer_to_image(cmd_buffer, dst_buffer, src_image,
regionCount, pRegions, false);
}
static bool
flip_coords(unsigned *src0, unsigned *src1, unsigned *dst0, unsigned *dst1)
{
bool flip = false;
if (*src0 > *src1) {
unsigned tmp = *src0;
*src0 = *src1;
*src1 = tmp;
flip = !flip;
}
if (*dst0 > *dst1) {
unsigned tmp = *dst0;
*dst0 = *dst1;
*dst1 = tmp;
flip = !flip;
}
return flip;
}
void anv_CmdBlitImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkImageBlit* pRegions,
VkFilter filter)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
struct blorp_surf src, dst;
uint32_t gl_filter;
switch (filter) {
case VK_FILTER_NEAREST:
gl_filter = 0x2600; /* GL_NEAREST */
break;
case VK_FILTER_LINEAR:
gl_filter = 0x2601; /* GL_LINEAR */
break;
default:
unreachable("Invalid filter");
}
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
for (unsigned r = 0; r < regionCount; r++) {
const VkImageSubresourceLayers *src_res = &pRegions[r].srcSubresource;
const VkImageSubresourceLayers *dst_res = &pRegions[r].dstSubresource;
get_blorp_surf_for_anv_image(cmd_buffer->device,
src_image, src_res->aspectMask,
ANV_AUX_USAGE_DEFAULT, &src);
get_blorp_surf_for_anv_image(cmd_buffer->device,
dst_image, dst_res->aspectMask,
ANV_AUX_USAGE_DEFAULT, &dst);
struct anv_format_plane src_format =
anv_get_format_plane(&cmd_buffer->device->info, src_image->vk_format,
src_res->aspectMask, src_image->tiling);
struct anv_format_plane dst_format =
anv_get_format_plane(&cmd_buffer->device->info, dst_image->vk_format,
dst_res->aspectMask, dst_image->tiling);
unsigned dst_start, dst_end;
if (dst_image->type == VK_IMAGE_TYPE_3D) {
assert(dst_res->baseArrayLayer == 0);
dst_start = pRegions[r].dstOffsets[0].z;
dst_end = pRegions[r].dstOffsets[1].z;
} else {
dst_start = dst_res->baseArrayLayer;
dst_end = dst_start + anv_get_layerCount(dst_image, dst_res);
}
unsigned src_start, src_end;
if (src_image->type == VK_IMAGE_TYPE_3D) {
assert(src_res->baseArrayLayer == 0);
src_start = pRegions[r].srcOffsets[0].z;
src_end = pRegions[r].srcOffsets[1].z;
} else {
src_start = src_res->baseArrayLayer;
src_end = src_start + anv_get_layerCount(src_image, src_res);
}
bool flip_z = flip_coords(&src_start, &src_end, &dst_start, &dst_end);
float src_z_step = (float)(src_end + 1 - src_start) /
(float)(dst_end + 1 - dst_start);
if (flip_z) {
src_start = src_end;
src_z_step *= -1;
}
unsigned src_x0 = pRegions[r].srcOffsets[0].x;
unsigned src_x1 = pRegions[r].srcOffsets[1].x;
unsigned dst_x0 = pRegions[r].dstOffsets[0].x;
unsigned dst_x1 = pRegions[r].dstOffsets[1].x;
bool flip_x = flip_coords(&src_x0, &src_x1, &dst_x0, &dst_x1);
unsigned src_y0 = pRegions[r].srcOffsets[0].y;
unsigned src_y1 = pRegions[r].srcOffsets[1].y;
unsigned dst_y0 = pRegions[r].dstOffsets[0].y;
unsigned dst_y1 = pRegions[r].dstOffsets[1].y;
bool flip_y = flip_coords(&src_y0, &src_y1, &dst_y0, &dst_y1);
const unsigned num_layers = dst_end - dst_start;
for (unsigned i = 0; i < num_layers; i++) {
unsigned dst_z = dst_start + i;
unsigned src_z = src_start + i * src_z_step;
blorp_blit(&batch, &src, src_res->mipLevel, src_z,
src_format.isl_format, src_format.swizzle,
&dst, dst_res->mipLevel, dst_z,
dst_format.isl_format,
anv_swizzle_for_render(dst_format.swizzle),
src_x0, src_y0, src_x1, src_y1,
dst_x0, dst_y0, dst_x1, dst_y1,
gl_filter, flip_x, flip_y);
}
}
blorp_batch_finish(&batch);
}
static enum isl_format
isl_format_for_size(unsigned size_B)
{
switch (size_B) {
case 4: return ISL_FORMAT_R32_UINT;
case 8: return ISL_FORMAT_R32G32_UINT;
case 16: return ISL_FORMAT_R32G32B32A32_UINT;
default:
unreachable("Not a power-of-two format size");
}
}
/**
* Returns the greatest common divisor of a and b that is a power of two.
*/
static uint64_t
gcd_pow2_u64(uint64_t a, uint64_t b)
{
assert(a > 0 || b > 0);
unsigned a_log2 = ffsll(a) - 1;
unsigned b_log2 = ffsll(b) - 1;
/* If either a or b is 0, then a_log2 or b_log2 till be UINT_MAX in which
* case, the MIN2() will take the other one. If both are 0 then we will
* hit the assert above.
*/
return 1 << MIN2(a_log2, b_log2);
}
/* This is maximum possible width/height our HW can handle */
#define MAX_SURFACE_DIM (1ull << 14)
void anv_CmdCopyBuffer(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkBuffer dstBuffer,
uint32_t regionCount,
const VkBufferCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
for (unsigned r = 0; r < regionCount; r++) {
struct blorp_address src = {
.buffer = src_buffer->bo,
.offset = src_buffer->offset + pRegions[r].srcOffset,
.mocs = cmd_buffer->device->default_mocs,
};
struct blorp_address dst = {
.buffer = dst_buffer->bo,
.offset = dst_buffer->offset + pRegions[r].dstOffset,
.mocs = cmd_buffer->device->default_mocs,
};
blorp_buffer_copy(&batch, src, dst, pRegions[r].size);
}
blorp_batch_finish(&batch);
}
void anv_CmdUpdateBuffer(
VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize dataSize,
const void* pData)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
/* We can't quite grab a full block because the state stream needs a
* little data at the top to build its linked list.
*/
const uint32_t max_update_size =
cmd_buffer->device->dynamic_state_pool.block_size - 64;
assert(max_update_size < MAX_SURFACE_DIM * 4);
/* We're about to read data that was written from the CPU. Flush the
* texture cache so we don't get anything stale.
*/
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
while (dataSize) {
const uint32_t copy_size = MIN2(dataSize, max_update_size);
struct anv_state tmp_data =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, copy_size, 64);
memcpy(tmp_data.map, pData, copy_size);
anv_state_flush(cmd_buffer->device, tmp_data);
struct blorp_address src = {
.buffer = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
.offset = tmp_data.offset,
.mocs = cmd_buffer->device->default_mocs,
};
struct blorp_address dst = {
.buffer = dst_buffer->bo,
.offset = dst_buffer->offset + dstOffset,
.mocs = cmd_buffer->device->default_mocs,
};
blorp_buffer_copy(&batch, src, dst, copy_size);
dataSize -= copy_size;
dstOffset += copy_size;
pData = (void *)pData + copy_size;
}
blorp_batch_finish(&batch);
}
void anv_CmdFillBuffer(
VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize fillSize,
uint32_t data)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
struct blorp_surf surf;
struct isl_surf isl_surf;
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
fillSize = anv_buffer_get_range(dst_buffer, dstOffset, fillSize);
/* From the Vulkan spec:
*
* "size is the number of bytes to fill, and must be either a multiple
* of 4, or VK_WHOLE_SIZE to fill the range from offset to the end of
* the buffer. If VK_WHOLE_SIZE is used and the remaining size of the
* buffer is not a multiple of 4, then the nearest smaller multiple is
* used."
*/
fillSize &= ~3ull;
/* First, we compute the biggest format that can be used with the
* given offsets and size.
*/
int bs = 16;
bs = gcd_pow2_u64(bs, dstOffset);
bs = gcd_pow2_u64(bs, fillSize);
enum isl_format isl_format = isl_format_for_size(bs);
union isl_color_value color = {
.u32 = { data, data, data, data },
};
const uint64_t max_fill_size = MAX_SURFACE_DIM * MAX_SURFACE_DIM * bs;
while (fillSize >= max_fill_size) {
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
dst_buffer, dstOffset,
MAX_SURFACE_DIM, MAX_SURFACE_DIM,
MAX_SURFACE_DIM * bs, isl_format,
&surf, &isl_surf);
blorp_clear(&batch, &surf, isl_format, ISL_SWIZZLE_IDENTITY,
0, 0, 1, 0, 0, MAX_SURFACE_DIM, MAX_SURFACE_DIM,
color, NULL);
fillSize -= max_fill_size;
dstOffset += max_fill_size;
}
uint64_t height = fillSize / (MAX_SURFACE_DIM * bs);
assert(height < MAX_SURFACE_DIM);
if (height != 0) {
const uint64_t rect_fill_size = height * MAX_SURFACE_DIM * bs;
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
dst_buffer, dstOffset,
MAX_SURFACE_DIM, height,
MAX_SURFACE_DIM * bs, isl_format,
&surf, &isl_surf);
blorp_clear(&batch, &surf, isl_format, ISL_SWIZZLE_IDENTITY,
0, 0, 1, 0, 0, MAX_SURFACE_DIM, height,
color, NULL);
fillSize -= rect_fill_size;
dstOffset += rect_fill_size;
}
if (fillSize != 0) {
const uint32_t width = fillSize / bs;
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
dst_buffer, dstOffset,
width, 1,
width * bs, isl_format,
&surf, &isl_surf);
blorp_clear(&batch, &surf, isl_format, ISL_SWIZZLE_IDENTITY,
0, 0, 1, 0, 0, width, 1,
color, NULL);
}
blorp_batch_finish(&batch);
}
void anv_CmdClearColorImage(
VkCommandBuffer commandBuffer,
VkImage _image,
VkImageLayout imageLayout,
const VkClearColorValue* pColor,
uint32_t rangeCount,
const VkImageSubresourceRange* pRanges)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, image, _image);
static const bool color_write_disable[4] = { false, false, false, false };
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
for (unsigned r = 0; r < rangeCount; r++) {
if (pRanges[r].aspectMask == 0)
continue;
assert(pRanges[r].aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, pRanges[r].aspectMask,
ANV_AUX_USAGE_DEFAULT, &surf);
struct anv_format_plane src_format =
anv_get_format_plane(&cmd_buffer->device->info, image->vk_format,
VK_IMAGE_ASPECT_COLOR_BIT, image->tiling);
unsigned base_layer = pRanges[r].baseArrayLayer;
unsigned layer_count = anv_get_layerCount(image, &pRanges[r]);
for (unsigned i = 0; i < anv_get_levelCount(image, &pRanges[r]); i++) {
const unsigned level = pRanges[r].baseMipLevel + i;
const unsigned level_width = anv_minify(image->extent.width, level);
const unsigned level_height = anv_minify(image->extent.height, level);
if (image->type == VK_IMAGE_TYPE_3D) {
base_layer = 0;
layer_count = anv_minify(image->extent.depth, level);
}
blorp_clear(&batch, &surf,
src_format.isl_format, src_format.swizzle,
level, base_layer, layer_count,
0, 0, level_width, level_height,
vk_to_isl_color(*pColor), color_write_disable);
}
}
blorp_batch_finish(&batch);
}
void anv_CmdClearDepthStencilImage(
VkCommandBuffer commandBuffer,
VkImage image_h,
VkImageLayout imageLayout,
const VkClearDepthStencilValue* pDepthStencil,
uint32_t rangeCount,
const VkImageSubresourceRange* pRanges)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, image, image_h);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
struct blorp_surf depth, stencil;
if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_DEPTH_BIT,
ISL_AUX_USAGE_NONE, &depth);
} else {
memset(&depth, 0, sizeof(depth));
}
if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_STENCIL_BIT,
ISL_AUX_USAGE_NONE, &stencil);
} else {
memset(&stencil, 0, sizeof(stencil));
}
for (unsigned r = 0; r < rangeCount; r++) {
if (pRanges[r].aspectMask == 0)
continue;
bool clear_depth = pRanges[r].aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT;
bool clear_stencil = pRanges[r].aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT;
unsigned base_layer = pRanges[r].baseArrayLayer;
unsigned layer_count = anv_get_layerCount(image, &pRanges[r]);
for (unsigned i = 0; i < anv_get_levelCount(image, &pRanges[r]); i++) {
const unsigned level = pRanges[r].baseMipLevel + i;
const unsigned level_width = anv_minify(image->extent.width, level);
const unsigned level_height = anv_minify(image->extent.height, level);
if (image->type == VK_IMAGE_TYPE_3D)
layer_count = anv_minify(image->extent.depth, level);
blorp_clear_depth_stencil(&batch, &depth, &stencil,
level, base_layer, layer_count,
0, 0, level_width, level_height,
clear_depth, pDepthStencil->depth,
clear_stencil ? 0xff : 0,
pDepthStencil->stencil);
}
}
blorp_batch_finish(&batch);
}
VkResult
anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
uint32_t num_entries,
uint32_t *state_offset,
struct anv_state *bt_state)
{
*bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer, num_entries,
state_offset);
if (bt_state->map == NULL) {
/* We ran out of space. Grab a new binding table block. */
VkResult result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
if (result != VK_SUCCESS)
return result;
/* Re-emit state base addresses so we get the new surface state base
* address before we start emitting binding tables etc.
*/
anv_cmd_buffer_emit_state_base_address(cmd_buffer);
*bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer, num_entries,
state_offset);
assert(bt_state->map != NULL);
}
return VK_SUCCESS;
}
static VkResult
binding_table_for_surface_state(struct anv_cmd_buffer *cmd_buffer,
struct anv_state surface_state,
uint32_t *bt_offset)
{
uint32_t state_offset;
struct anv_state bt_state;
VkResult result =
anv_cmd_buffer_alloc_blorp_binding_table(cmd_buffer, 1, &state_offset,
&bt_state);
if (result != VK_SUCCESS)
return result;
uint32_t *bt_map = bt_state.map;
bt_map[0] = surface_state.offset + state_offset;
*bt_offset = bt_state.offset;
return VK_SUCCESS;
}
static void
clear_color_attachment(struct anv_cmd_buffer *cmd_buffer,
struct blorp_batch *batch,
const VkClearAttachment *attachment,
uint32_t rectCount, const VkClearRect *pRects)
{
const struct anv_subpass *subpass = cmd_buffer->state.subpass;
const uint32_t color_att = attachment->colorAttachment;
const uint32_t att_idx = subpass->color_attachments[color_att].attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
return;
struct anv_render_pass_attachment *pass_att =
&cmd_buffer->state.pass->attachments[att_idx];
struct anv_attachment_state *att_state =
&cmd_buffer->state.attachments[att_idx];
uint32_t binding_table;
VkResult result =
binding_table_for_surface_state(cmd_buffer, att_state->color.state,
&binding_table);
if (result != VK_SUCCESS)
return;
union isl_color_value clear_color =
vk_to_isl_color(attachment->clearValue.color);
/* If multiview is enabled we ignore baseArrayLayer and layerCount */
if (subpass->view_mask) {
uint32_t view_idx;
for_each_bit(view_idx, subpass->view_mask) {
for (uint32_t r = 0; r < rectCount; ++r) {
const VkOffset2D offset = pRects[r].rect.offset;
const VkExtent2D extent = pRects[r].rect.extent;
blorp_clear_attachments(batch, binding_table,
ISL_FORMAT_UNSUPPORTED, pass_att->samples,
view_idx, 1,
offset.x, offset.y,
offset.x + extent.width,
offset.y + extent.height,
true, clear_color, false, 0.0f, 0, 0);
}
}
return;
}
for (uint32_t r = 0; r < rectCount; ++r) {
const VkOffset2D offset = pRects[r].rect.offset;
const VkExtent2D extent = pRects[r].rect.extent;
assert(pRects[r].layerCount != VK_REMAINING_ARRAY_LAYERS);
blorp_clear_attachments(batch, binding_table,
ISL_FORMAT_UNSUPPORTED, pass_att->samples,
pRects[r].baseArrayLayer,
pRects[r].layerCount,
offset.x, offset.y,
offset.x + extent.width, offset.y + extent.height,
true, clear_color, false, 0.0f, 0, 0);
}
}
static void
clear_depth_stencil_attachment(struct anv_cmd_buffer *cmd_buffer,
struct blorp_batch *batch,
const VkClearAttachment *attachment,
uint32_t rectCount, const VkClearRect *pRects)
{
static const union isl_color_value color_value = { .u32 = { 0, } };
const struct anv_subpass *subpass = cmd_buffer->state.subpass;
const uint32_t att_idx = subpass->depth_stencil_attachment.attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
return;
struct anv_render_pass_attachment *pass_att =
&cmd_buffer->state.pass->attachments[att_idx];
bool clear_depth = attachment->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT;
bool clear_stencil = attachment->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT;
enum isl_format depth_format = ISL_FORMAT_UNSUPPORTED;
if (clear_depth) {
depth_format = anv_get_isl_format(&cmd_buffer->device->info,
pass_att->format,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_TILING_OPTIMAL);
}
uint32_t binding_table;
VkResult result =
binding_table_for_surface_state(cmd_buffer,
cmd_buffer->state.null_surface_state,
&binding_table);
if (result != VK_SUCCESS)
return;
/* If multiview is enabled we ignore baseArrayLayer and layerCount */
if (subpass->view_mask) {
uint32_t view_idx;
for_each_bit(view_idx, subpass->view_mask) {
for (uint32_t r = 0; r < rectCount; ++r) {
const VkOffset2D offset = pRects[r].rect.offset;
const VkExtent2D extent = pRects[r].rect.extent;
VkClearDepthStencilValue value = attachment->clearValue.depthStencil;
blorp_clear_attachments(batch, binding_table,
depth_format, pass_att->samples,
view_idx, 1,
offset.x, offset.y,
offset.x + extent.width,
offset.y + extent.height,
false, color_value,
clear_depth, value.depth,
clear_stencil ? 0xff : 0, value.stencil);
}
}
return;
}
for (uint32_t r = 0; r < rectCount; ++r) {
const VkOffset2D offset = pRects[r].rect.offset;
const VkExtent2D extent = pRects[r].rect.extent;
VkClearDepthStencilValue value = attachment->clearValue.depthStencil;
assert(pRects[r].layerCount != VK_REMAINING_ARRAY_LAYERS);
blorp_clear_attachments(batch, binding_table,
depth_format, pass_att->samples,
pRects[r].baseArrayLayer,
pRects[r].layerCount,
offset.x, offset.y,
offset.x + extent.width, offset.y + extent.height,
false, color_value,
clear_depth, value.depth,
clear_stencil ? 0xff : 0, value.stencil);
}
}
void anv_CmdClearAttachments(
VkCommandBuffer commandBuffer,
uint32_t attachmentCount,
const VkClearAttachment* pAttachments,
uint32_t rectCount,
const VkClearRect* pRects)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
/* Because this gets called within a render pass, we tell blorp not to
* trash our depth and stencil buffers.
*/
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer,
BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
for (uint32_t a = 0; a < attachmentCount; ++a) {
if (pAttachments[a].aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
assert(pAttachments[a].aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
clear_color_attachment(cmd_buffer, &batch,
&pAttachments[a],
rectCount, pRects);
} else {
clear_depth_stencil_attachment(cmd_buffer, &batch,
&pAttachments[a],
rectCount, pRects);
}
}
blorp_batch_finish(&batch);
}
enum subpass_stage {
SUBPASS_STAGE_LOAD,
SUBPASS_STAGE_DRAW,
SUBPASS_STAGE_RESOLVE,
};
static bool
subpass_needs_clear(const struct anv_cmd_buffer *cmd_buffer)
{
const struct anv_cmd_state *cmd_state = &cmd_buffer->state;
uint32_t ds = cmd_state->subpass->depth_stencil_attachment.attachment;
for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) {
uint32_t a = cmd_state->subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
assert(a < cmd_state->pass->attachment_count);
if (cmd_state->attachments[a].pending_clear_aspects) {
return true;
}
}
if (ds != VK_ATTACHMENT_UNUSED) {
assert(ds < cmd_state->pass->attachment_count);
if (cmd_state->attachments[ds].pending_clear_aspects)
return true;
}
return false;
}
void
anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer)
{
const struct anv_cmd_state *cmd_state = &cmd_buffer->state;
const VkRect2D render_area = cmd_buffer->state.render_area;
if (!subpass_needs_clear(cmd_buffer))
return;
/* Because this gets called within a render pass, we tell blorp not to
* trash our depth and stencil buffers.
*/
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer,
BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
VkClearRect clear_rect = {
.rect = cmd_buffer->state.render_area,
.baseArrayLayer = 0,
.layerCount = cmd_buffer->state.framebuffer->layers,
};
struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) {
const uint32_t a = cmd_state->subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
assert(a < cmd_state->pass->attachment_count);
struct anv_attachment_state *att_state = &cmd_state->attachments[a];
if (!att_state->pending_clear_aspects)
continue;
assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
struct anv_image_view *iview = fb->attachments[a];
const struct anv_image *image = iview->image;
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_COLOR_BIT,
att_state->aux_usage, &surf);
if (att_state->fast_clear) {
surf.clear_color = vk_to_isl_color(att_state->clear_value.color);
/* From the Sky Lake PRM Vol. 7, "Render Target Fast Clear":
*
* "After Render target fast clear, pipe-control with color cache
* write-flush must be issued before sending any DRAW commands on
* that render target."
*
* This comment is a bit cryptic and doesn't really tell you what's
* going or what's really needed. It appears that fast clear ops are
* not properly synchronized with other drawing. This means that we
* cannot have a fast clear operation in the pipe at the same time as
* other regular drawing operations. We need to use a PIPE_CONTROL
* to ensure that the contents of the previous draw hit the render
* target before we resolve and then use a second PIPE_CONTROL after
* the resolve to ensure that it is completed before any additional
* drawing occurs.
*/
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
assert(image->n_planes == 1);
blorp_fast_clear(&batch, &surf, iview->planes[0].isl.format,
iview->planes[0].isl.base_level,
iview->planes[0].isl.base_array_layer, fb->layers,
render_area.offset.x, render_area.offset.y,
render_area.offset.x + render_area.extent.width,
render_area.offset.y + render_area.extent.height);
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
} else {
assert(image->n_planes == 1);
blorp_clear(&batch, &surf, iview->planes[0].isl.format,
anv_swizzle_for_render(iview->planes[0].isl.swizzle),
iview->planes[0].isl.base_level,
iview->planes[0].isl.base_array_layer, fb->layers,
render_area.offset.x, render_area.offset.y,
render_area.offset.x + render_area.extent.width,
render_area.offset.y + render_area.extent.height,
vk_to_isl_color(att_state->clear_value.color), NULL);
}
att_state->pending_clear_aspects = 0;
}
const uint32_t ds = cmd_state->subpass->depth_stencil_attachment.attachment;
assert(ds == VK_ATTACHMENT_UNUSED || ds < cmd_state->pass->attachment_count);
if (ds != VK_ATTACHMENT_UNUSED &&
cmd_state->attachments[ds].pending_clear_aspects) {
VkClearAttachment clear_att = {
.aspectMask = cmd_state->attachments[ds].pending_clear_aspects,
.clearValue = cmd_state->attachments[ds].clear_value,
};
const uint8_t gen = cmd_buffer->device->info.gen;
bool clear_with_hiz = gen >= 8 && cmd_state->attachments[ds].aux_usage ==
ISL_AUX_USAGE_HIZ;
const struct anv_image_view *iview = fb->attachments[ds];
if (clear_with_hiz) {
const bool clear_depth = clear_att.aspectMask &
VK_IMAGE_ASPECT_DEPTH_BIT;
const bool clear_stencil = clear_att.aspectMask &
VK_IMAGE_ASPECT_STENCIL_BIT;
/* Check against restrictions for depth buffer clearing. A great GPU
* performance benefit isn't expected when using the HZ sequence for
* stencil-only clears. Therefore, we don't emit a HZ op sequence for
* a stencil clear in addition to using the BLORP-fallback for depth.
*/
if (clear_depth) {
if (!blorp_can_hiz_clear_depth(gen, iview->planes[0].isl.format,
iview->image->samples,
render_area.offset.x,
render_area.offset.y,
render_area.offset.x +
render_area.extent.width,
render_area.offset.y +
render_area.extent.height)) {
clear_with_hiz = false;
} else if (clear_att.clearValue.depthStencil.depth !=
ANV_HZ_FC_VAL) {
/* Don't enable fast depth clears for any color not equal to
* ANV_HZ_FC_VAL.
*/
clear_with_hiz = false;
} else if (gen == 8 &&
anv_can_sample_with_hiz(&cmd_buffer->device->info,
iview->image)) {
/* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
* fast-cleared portion of a HiZ buffer. Testing has revealed
* that Gen8 only supports returning 0.0f. Gens prior to gen8 do
* not support this feature at all.
*/
clear_with_hiz = false;
}
}
if (clear_with_hiz) {
blorp_gen8_hiz_clear_attachments(&batch, iview->image->samples,
render_area.offset.x,
render_area.offset.y,
render_area.offset.x +
render_area.extent.width,
render_area.offset.y +
render_area.extent.height,
clear_depth, clear_stencil,
clear_att.clearValue.
depthStencil.stencil);
/* From the SKL PRM, Depth Buffer Clear:
*
* Depth Buffer Clear Workaround
* Depth buffer clear pass using any of the methods (WM_STATE,
* 3DSTATE_WM or 3DSTATE_WM_HZ_OP) must be followed by a
* PIPE_CONTROL command with DEPTH_STALL bit and Depth FLUSH bits
* “set” before starting to render. DepthStall and DepthFlush are
* not needed between consecutive depth clear passes nor is it
* required if the depth-clear pass was done with “full_surf_clear”
* bit set in the 3DSTATE_WM_HZ_OP.
*/
if (clear_depth) {
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | ANV_PIPE_DEPTH_STALL_BIT;
}
}
}
if (!clear_with_hiz) {
clear_depth_stencil_attachment(cmd_buffer, &batch,
&clear_att, 1, &clear_rect);
}
cmd_state->attachments[ds].pending_clear_aspects = 0;
}
blorp_batch_finish(&batch);
}
static void
resolve_surface(struct blorp_batch *batch,
struct blorp_surf *src_surf,
uint32_t src_level, uint32_t src_layer,
struct blorp_surf *dst_surf,
uint32_t dst_level, uint32_t dst_layer,
uint32_t src_x, uint32_t src_y, uint32_t dst_x, uint32_t dst_y,
uint32_t width, uint32_t height)
{
blorp_blit(batch,
src_surf, src_level, src_layer,
ISL_FORMAT_UNSUPPORTED, ISL_SWIZZLE_IDENTITY,
dst_surf, dst_level, dst_layer,
ISL_FORMAT_UNSUPPORTED, ISL_SWIZZLE_IDENTITY,
src_x, src_y, src_x + width, src_y + height,
dst_x, dst_y, dst_x + width, dst_y + height,
0x2600 /* GL_NEAREST */, false, false);
}
static void
resolve_image(struct anv_device *device,
struct blorp_batch *batch,
const struct anv_image *src_image,
uint32_t src_level, uint32_t src_layer,
const struct anv_image *dst_image,
uint32_t dst_level, uint32_t dst_layer,
VkImageAspectFlags aspect_mask,
uint32_t src_x, uint32_t src_y, uint32_t dst_x, uint32_t dst_y,
uint32_t width, uint32_t height)
{
assert(src_image->type == VK_IMAGE_TYPE_2D);
assert(src_image->samples > 1);
assert(dst_image->type == VK_IMAGE_TYPE_2D);
assert(dst_image->samples == 1);
assert(src_image->n_planes == dst_image->n_planes);
uint32_t aspect_bit;
anv_foreach_image_aspect_bit(aspect_bit, src_image, aspect_mask) {
struct blorp_surf src_surf, dst_surf;
get_blorp_surf_for_anv_image(device, src_image, 1UL << aspect_bit,
ANV_AUX_USAGE_DEFAULT, &src_surf);
get_blorp_surf_for_anv_image(device, dst_image, 1UL << aspect_bit,
ANV_AUX_USAGE_DEFAULT, &dst_surf);
assert(!src_image->format->can_ycbcr);
assert(!dst_image->format->can_ycbcr);
resolve_surface(batch,
&src_surf, src_level, src_layer,
&dst_surf, dst_level, dst_layer,
src_x, src_y, dst_x, dst_y, width, height);
}
}
void anv_CmdResolveImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkImageResolve* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
for (uint32_t r = 0; r < regionCount; r++) {
assert(pRegions[r].srcSubresource.aspectMask ==
pRegions[r].dstSubresource.aspectMask);
assert(anv_get_layerCount(src_image, &pRegions[r].srcSubresource) ==
anv_get_layerCount(dst_image, &pRegions[r].dstSubresource));
const uint32_t layer_count =
anv_get_layerCount(dst_image, &pRegions[r].dstSubresource);
VkImageAspectFlags src_mask = pRegions[r].srcSubresource.aspectMask,
dst_mask = pRegions[r].dstSubresource.aspectMask;
assert(anv_image_aspects_compatible(src_mask, dst_mask));
for (uint32_t layer = 0; layer < layer_count; layer++) {
resolve_image(cmd_buffer->device, &batch,
src_image,
pRegions[r].srcSubresource.mipLevel,
pRegions[r].srcSubresource.baseArrayLayer + layer,
dst_image,
pRegions[r].dstSubresource.mipLevel,
pRegions[r].dstSubresource.baseArrayLayer + layer,
pRegions[r].dstSubresource.aspectMask,
pRegions[r].srcOffset.x, pRegions[r].srcOffset.y,
pRegions[r].dstOffset.x, pRegions[r].dstOffset.y,
pRegions[r].extent.width, pRegions[r].extent.height);
}
}
blorp_batch_finish(&batch);
}
static enum isl_aux_usage
fast_clear_aux_usage(const struct anv_image *image,
VkImageAspectFlagBits aspect)
{
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
return ISL_AUX_USAGE_CCS_D;
else
return image->planes[plane].aux_usage;
}
void
anv_image_fast_clear(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
const uint32_t base_level, const uint32_t level_count,
const uint32_t base_layer, uint32_t layer_count)
{
assert(image->type == VK_IMAGE_TYPE_3D || image->extent.depth == 1);
if (image->type == VK_IMAGE_TYPE_3D) {
assert(base_layer == 0);
assert(layer_count == anv_minify(image->extent.depth, base_level));
}
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device, image, aspect,
fast_clear_aux_usage(image, aspect),
&surf);
/* From the Sky Lake PRM Vol. 7, "Render Target Fast Clear":
*
* "After Render target fast clear, pipe-control with color cache
* write-flush must be issued before sending any DRAW commands on
* that render target."
*
* This comment is a bit cryptic and doesn't really tell you what's going
* or what's really needed. It appears that fast clear ops are not
* properly synchronized with other drawing. This means that we cannot
* have a fast clear operation in the pipe at the same time as other
* regular drawing operations. We need to use a PIPE_CONTROL to ensure
* that the contents of the previous draw hit the render target before we
* resolve and then use a second PIPE_CONTROL after the resolve to ensure
* that it is completed before any additional drawing occurs.
*/
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
uint32_t width_div = image->format->planes[plane].denominator_scales[0];
uint32_t height_div = image->format->planes[plane].denominator_scales[1];
for (uint32_t l = 0; l < level_count; l++) {
const uint32_t level = base_level + l;
const VkExtent3D extent = {
.width = anv_minify(image->extent.width, level),
.height = anv_minify(image->extent.height, level),
.depth = anv_minify(image->extent.depth, level),
};
if (image->type == VK_IMAGE_TYPE_3D)
layer_count = extent.depth;
assert(level < anv_image_aux_levels(image, aspect));
assert(base_layer + layer_count <= anv_image_aux_layers(image, aspect, level));
blorp_fast_clear(&batch, &surf, surf.surf->format,
level, base_layer, layer_count,
0, 0,
extent.width / width_div,
extent.height / height_div);
}
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
}
void
anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
struct anv_subpass *subpass = cmd_buffer->state.subpass;
if (subpass->has_resolve) {
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
/* We are about to do some MSAA resolves. We need to flush so that the
* result of writes to the MSAA color attachments show up in the sampler
* when we blit to the single-sampled resolve target.
*/
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
for (uint32_t i = 0; i < subpass->color_count; ++i) {
uint32_t src_att = subpass->color_attachments[i].attachment;
uint32_t dst_att = subpass->resolve_attachments[i].attachment;
if (dst_att == VK_ATTACHMENT_UNUSED)
continue;
assert(src_att < cmd_buffer->state.pass->attachment_count);
assert(dst_att < cmd_buffer->state.pass->attachment_count);
if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
/* From the Vulkan 1.0 spec:
*
* If the first use of an attachment in a render pass is as a
* resolve attachment, then the loadOp is effectively ignored
* as the resolve is guaranteed to overwrite all pixels in the
* render area.
*/
cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
}
struct anv_image_view *src_iview = fb->attachments[src_att];
struct anv_image_view *dst_iview = fb->attachments[dst_att];
enum isl_aux_usage src_aux_usage =
cmd_buffer->state.attachments[src_att].aux_usage;
enum isl_aux_usage dst_aux_usage =
cmd_buffer->state.attachments[dst_att].aux_usage;
const VkRect2D render_area = cmd_buffer->state.render_area;
assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
struct blorp_surf src_surf, dst_surf;
get_blorp_surf_for_anv_image(cmd_buffer->device, src_iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
src_aux_usage, &src_surf);
get_blorp_surf_for_anv_image(cmd_buffer->device, dst_iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
dst_aux_usage, &dst_surf);
assert(!src_iview->image->format->can_ycbcr);
assert(!dst_iview->image->format->can_ycbcr);
resolve_surface(&batch,
&src_surf,
src_iview->planes[0].isl.base_level,
src_iview->planes[0].isl.base_array_layer,
&dst_surf,
dst_iview->planes[0].isl.base_level,
dst_iview->planes[0].isl.base_array_layer,
render_area.offset.x, render_area.offset.y,
render_area.offset.x, render_area.offset.y,
render_area.extent.width, render_area.extent.height);
}
blorp_batch_finish(&batch);
}
}
void
anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
uint32_t base_level, uint32_t level_count,
uint32_t base_layer, uint32_t layer_count)
{
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT && image->n_planes == 1);
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_COLOR_BIT,
ISL_AUX_USAGE_NONE, &surf);
struct blorp_surf shadow_surf = {
.surf = &image->planes[0].shadow_surface.isl,
.addr = {
.buffer = image->planes[0].bo,
.offset = image->planes[0].bo_offset +
image->planes[0].shadow_surface.offset,
.mocs = cmd_buffer->device->default_mocs,
},
};
for (uint32_t l = 0; l < level_count; l++) {
const uint32_t level = base_level + l;
const VkExtent3D extent = {
.width = anv_minify(image->extent.width, level),
.height = anv_minify(image->extent.height, level),
.depth = anv_minify(image->extent.depth, level),
};
if (image->type == VK_IMAGE_TYPE_3D)
layer_count = extent.depth;
for (uint32_t a = 0; a < layer_count; a++) {
const uint32_t layer = base_layer + a;
blorp_copy(&batch, &surf, level, layer,
&shadow_surf, level, layer,
0, 0, 0, 0, extent.width, extent.height);
}
}
blorp_batch_finish(&batch);
}
void
anv_gen8_hiz_op_resolve(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
enum blorp_hiz_op op)
{
assert(image);
assert(anv_image_aspect_to_plane(image->aspects,
VK_IMAGE_ASPECT_DEPTH_BIT) == 0);
/* Don't resolve depth buffers without an auxiliary HiZ buffer and
* don't perform such a resolve on gens that don't support it.
*/
if (cmd_buffer->device->info.gen < 8 ||
image->planes[0].aux_usage != ISL_AUX_USAGE_HIZ)
return;
assert(op == BLORP_HIZ_OP_HIZ_RESOLVE ||
op == BLORP_HIZ_OP_DEPTH_RESOLVE);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_DEPTH_BIT,
ISL_AUX_USAGE_NONE, &surf);
/* Manually add the aux HiZ surf */
surf.aux_surf = &image->planes[0].aux_surface.isl,
surf.aux_addr = (struct blorp_address) {
.buffer = image->planes[0].bo,
.offset = image->planes[0].bo_offset +
image->planes[0].aux_surface.offset,
.mocs = cmd_buffer->device->default_mocs,
};
surf.aux_usage = ISL_AUX_USAGE_HIZ;
surf.clear_color.f32[0] = ANV_HZ_FC_VAL;
blorp_hiz_op(&batch, &surf, 0, 0, 1, op);
blorp_batch_finish(&batch);
}
void
anv_ccs_resolve(struct anv_cmd_buffer * const cmd_buffer,
const struct anv_image * const image,
VkImageAspectFlagBits aspect,
const uint8_t level,
const uint32_t start_layer, const uint32_t layer_count,
const enum blorp_fast_clear_op op)
{
assert(cmd_buffer && image);
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
/* The resolved subresource range must have a CCS buffer. */
assert(level < anv_image_aux_levels(image, aspect));
assert(start_layer + layer_count <=
anv_image_aux_layers(image, aspect, level));
assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV && image->samples == 1);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer,
BLORP_BATCH_PREDICATE_ENABLE);
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device, image, aspect,
fast_clear_aux_usage(image, aspect),
&surf);
surf.clear_color_addr = anv_to_blorp_address(
anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level));
blorp_ccs_resolve(&batch, &surf, level, start_layer, layer_count,
image->planes[plane].surface.isl.format, op);
blorp_batch_finish(&batch);
}