/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "anv_private.h"
/*
* Descriptor set layouts.
*/
VkResult anv_CreateDescriptorSetLayout(
VkDevice _device,
const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorSetLayout* pSetLayout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
uint32_t max_binding = 0;
uint32_t immutable_sampler_count = 0;
for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
max_binding = MAX2(max_binding, pCreateInfo->pBindings[j].binding);
if (pCreateInfo->pBindings[j].pImmutableSamplers)
immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
}
struct anv_descriptor_set_layout *set_layout;
struct anv_descriptor_set_binding_layout *bindings;
struct anv_sampler **samplers;
ANV_MULTIALLOC(ma);
anv_multialloc_add(&ma, &set_layout, 1);
anv_multialloc_add(&ma, &bindings, max_binding + 1);
anv_multialloc_add(&ma, &samplers, immutable_sampler_count);
if (!anv_multialloc_alloc2(&ma, &device->alloc, pAllocator,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT))
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memset(set_layout, 0, sizeof(*set_layout));
set_layout->binding_count = max_binding + 1;
for (uint32_t b = 0; b <= max_binding; b++) {
/* Initialize all binding_layout entries to -1 */
memset(&set_layout->binding[b], -1, sizeof(set_layout->binding[b]));
set_layout->binding[b].array_size = 0;
set_layout->binding[b].immutable_samplers = NULL;
}
/* Initialize all samplers to 0 */
memset(samplers, 0, immutable_sampler_count * sizeof(*samplers));
uint32_t sampler_count[MESA_SHADER_STAGES] = { 0, };
uint32_t surface_count[MESA_SHADER_STAGES] = { 0, };
uint32_t image_count[MESA_SHADER_STAGES] = { 0, };
uint32_t buffer_count = 0;
uint32_t dynamic_offset_count = 0;
for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[j];
uint32_t b = binding->binding;
/* We temporarily store the pointer to the binding in the
* immutable_samplers pointer. This provides us with a quick-and-dirty
* way to sort the bindings by binding number.
*/
set_layout->binding[b].immutable_samplers = (void *)binding;
}
for (uint32_t b = 0; b <= max_binding; b++) {
const VkDescriptorSetLayoutBinding *binding =
(void *)set_layout->binding[b].immutable_samplers;
if (binding == NULL)
continue;
if (binding->descriptorCount == 0)
continue;
#ifndef NDEBUG
set_layout->binding[b].type = binding->descriptorType;
#endif
set_layout->binding[b].array_size = binding->descriptorCount;
set_layout->binding[b].descriptor_index = set_layout->size;
set_layout->size += binding->descriptorCount;
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
anv_foreach_stage(s, binding->stageFlags) {
set_layout->binding[b].stage[s].sampler_index = sampler_count[s];
sampler_count[s] += binding->descriptorCount;
}
break;
default:
break;
}
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
set_layout->binding[b].buffer_index = buffer_count;
buffer_count += binding->descriptorCount;
/* fall through */
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
anv_foreach_stage(s, binding->stageFlags) {
set_layout->binding[b].stage[s].surface_index = surface_count[s];
surface_count[s] += binding->descriptorCount;
}
break;
default:
break;
}
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
set_layout->binding[b].dynamic_offset_index = dynamic_offset_count;
dynamic_offset_count += binding->descriptorCount;
break;
default:
break;
}
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
anv_foreach_stage(s, binding->stageFlags) {
set_layout->binding[b].stage[s].image_index = image_count[s];
image_count[s] += binding->descriptorCount;
}
break;
default:
break;
}
if (binding->pImmutableSamplers) {
set_layout->binding[b].immutable_samplers = samplers;
samplers += binding->descriptorCount;
for (uint32_t i = 0; i < binding->descriptorCount; i++)
set_layout->binding[b].immutable_samplers[i] =
anv_sampler_from_handle(binding->pImmutableSamplers[i]);
} else {
set_layout->binding[b].immutable_samplers = NULL;
}
set_layout->shader_stages |= binding->stageFlags;
}
set_layout->buffer_count = buffer_count;
set_layout->dynamic_offset_count = dynamic_offset_count;
*pSetLayout = anv_descriptor_set_layout_to_handle(set_layout);
return VK_SUCCESS;
}
void anv_DestroyDescriptorSetLayout(
VkDevice _device,
VkDescriptorSetLayout _set_layout,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout, _set_layout);
if (!set_layout)
return;
vk_free2(&device->alloc, pAllocator, set_layout);
}
static void
sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
const struct anv_descriptor_set_layout *layout)
{
size_t size = sizeof(*layout) +
sizeof(layout->binding[0]) * layout->binding_count;
_mesa_sha1_update(ctx, layout, size);
}
/*
* Pipeline layouts. These have nothing to do with the pipeline. They are
* just multiple descriptor set layouts pasted together
*/
VkResult anv_CreatePipelineLayout(
VkDevice _device,
const VkPipelineLayoutCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipelineLayout* pPipelineLayout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_pipeline_layout *layout;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
layout = vk_alloc2(&device->alloc, pAllocator, sizeof(*layout), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (layout == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
layout->num_sets = pCreateInfo->setLayoutCount;
unsigned dynamic_offset_count = 0;
memset(layout->stage, 0, sizeof(layout->stage));
for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout,
pCreateInfo->pSetLayouts[set]);
layout->set[set].layout = set_layout;
layout->set[set].dynamic_offset_start = dynamic_offset_count;
for (uint32_t b = 0; b < set_layout->binding_count; b++) {
if (set_layout->binding[b].dynamic_offset_index < 0)
continue;
dynamic_offset_count += set_layout->binding[b].array_size;
for (gl_shader_stage s = 0; s < MESA_SHADER_STAGES; s++) {
if (set_layout->binding[b].stage[s].surface_index >= 0)
layout->stage[s].has_dynamic_offsets = true;
}
}
}
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
for (unsigned s = 0; s < layout->num_sets; s++) {
sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
_mesa_sha1_update(&ctx, &layout->set[s].dynamic_offset_start,
sizeof(layout->set[s].dynamic_offset_start));
}
_mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
_mesa_sha1_update(&ctx, &layout->stage[s].has_dynamic_offsets,
sizeof(layout->stage[s].has_dynamic_offsets));
}
_mesa_sha1_final(&ctx, layout->sha1);
*pPipelineLayout = anv_pipeline_layout_to_handle(layout);
return VK_SUCCESS;
}
void anv_DestroyPipelineLayout(
VkDevice _device,
VkPipelineLayout _pipelineLayout,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, _pipelineLayout);
if (!pipeline_layout)
return;
vk_free2(&device->alloc, pAllocator, pipeline_layout);
}
/*
* Descriptor pools.
*
* These are implemented using a big pool of memory and a free-list for the
* host memory allocations and a state_stream and a free list for the buffer
* view surface state. The spec allows us to fail to allocate due to
* fragmentation in all cases but two: 1) after pool reset, allocating up
* until the pool size with no freeing must succeed and 2) allocating and
* freeing only descriptor sets with the same layout. Case 1) is easy enogh,
* and the free lists lets us recycle blocks for case 2).
*/
#define EMPTY 1
VkResult anv_CreateDescriptorPool(
VkDevice _device,
const VkDescriptorPoolCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorPool* pDescriptorPool)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_descriptor_pool *pool;
uint32_t descriptor_count = 0;
uint32_t buffer_count = 0;
for (uint32_t i = 0; i < pCreateInfo->poolSizeCount; i++) {
switch (pCreateInfo->pPoolSizes[i].type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
buffer_count += pCreateInfo->pPoolSizes[i].descriptorCount;
default:
descriptor_count += pCreateInfo->pPoolSizes[i].descriptorCount;
break;
}
}
const size_t pool_size =
pCreateInfo->maxSets * sizeof(struct anv_descriptor_set) +
descriptor_count * sizeof(struct anv_descriptor) +
buffer_count * sizeof(struct anv_buffer_view);
const size_t total_size = sizeof(*pool) + pool_size;
pool = vk_alloc2(&device->alloc, pAllocator, total_size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!pool)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
pool->size = pool_size;
pool->next = 0;
pool->free_list = EMPTY;
anv_state_stream_init(&pool->surface_state_stream,
&device->surface_state_pool, 4096);
pool->surface_state_free_list = NULL;
*pDescriptorPool = anv_descriptor_pool_to_handle(pool);
return VK_SUCCESS;
}
void anv_DestroyDescriptorPool(
VkDevice _device,
VkDescriptorPool _pool,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_pool, pool, _pool);
if (!pool)
return;
anv_state_stream_finish(&pool->surface_state_stream);
vk_free2(&device->alloc, pAllocator, pool);
}
VkResult anv_ResetDescriptorPool(
VkDevice _device,
VkDescriptorPool descriptorPool,
VkDescriptorPoolResetFlags flags)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
pool->next = 0;
pool->free_list = EMPTY;
anv_state_stream_finish(&pool->surface_state_stream);
anv_state_stream_init(&pool->surface_state_stream,
&device->surface_state_pool, 4096);
pool->surface_state_free_list = NULL;
return VK_SUCCESS;
}
struct pool_free_list_entry {
uint32_t next;
uint32_t size;
};
size_t
anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout)
{
return
sizeof(struct anv_descriptor_set) +
layout->size * sizeof(struct anv_descriptor) +
layout->buffer_count * sizeof(struct anv_buffer_view);
}
size_t
anv_descriptor_set_binding_layout_get_hw_size(const struct anv_descriptor_set_binding_layout *binding)
{
if (!binding->immutable_samplers)
return binding->array_size;
uint32_t total_plane_count = 0;
for (uint32_t i = 0; i < binding->array_size; i++)
total_plane_count += binding->immutable_samplers[i]->n_planes;
return total_plane_count;
}
struct surface_state_free_list_entry {
void *next;
struct anv_state state;
};
VkResult
anv_descriptor_set_create(struct anv_device *device,
struct anv_descriptor_pool *pool,
const struct anv_descriptor_set_layout *layout,
struct anv_descriptor_set **out_set)
{
struct anv_descriptor_set *set;
const size_t size = anv_descriptor_set_layout_size(layout);
set = NULL;
if (size <= pool->size - pool->next) {
set = (struct anv_descriptor_set *) (pool->data + pool->next);
pool->next += size;
} else {
struct pool_free_list_entry *entry;
uint32_t *link = &pool->free_list;
for (uint32_t f = pool->free_list; f != EMPTY; f = entry->next) {
entry = (struct pool_free_list_entry *) (pool->data + f);
if (size <= entry->size) {
*link = entry->next;
set = (struct anv_descriptor_set *) entry;
break;
}
link = &entry->next;
}
}
if (set == NULL) {
if (pool->free_list != EMPTY) {
return vk_error(VK_ERROR_FRAGMENTED_POOL);
} else {
return vk_error(VK_ERROR_OUT_OF_POOL_MEMORY_KHR);
}
}
set->size = size;
set->layout = layout;
set->buffer_views =
(struct anv_buffer_view *) &set->descriptors[layout->size];
set->buffer_count = layout->buffer_count;
/* By defining the descriptors to be zero now, we can later verify that
* a descriptor has not been populated with user data.
*/
memset(set->descriptors, 0, sizeof(struct anv_descriptor) * layout->size);
/* Go through and fill out immutable samplers if we have any */
struct anv_descriptor *desc = set->descriptors;
for (uint32_t b = 0; b < layout->binding_count; b++) {
if (layout->binding[b].immutable_samplers) {
for (uint32_t i = 0; i < layout->binding[b].array_size; i++) {
/* The type will get changed to COMBINED_IMAGE_SAMPLER in
* UpdateDescriptorSets if needed. However, if the descriptor
* set has an immutable sampler, UpdateDescriptorSets may never
* touch it, so we need to make sure it's 100% valid now.
*/
desc[i] = (struct anv_descriptor) {
.type = VK_DESCRIPTOR_TYPE_SAMPLER,
.sampler = layout->binding[b].immutable_samplers[i],
};
}
}
desc += layout->binding[b].array_size;
}
/* Allocate surface state for the buffer views. */
for (uint32_t b = 0; b < layout->buffer_count; b++) {
struct surface_state_free_list_entry *entry =
pool->surface_state_free_list;
struct anv_state state;
if (entry) {
state = entry->state;
pool->surface_state_free_list = entry->next;
assert(state.alloc_size == 64);
} else {
state = anv_state_stream_alloc(&pool->surface_state_stream, 64, 64);
}
set->buffer_views[b].surface_state = state;
}
*out_set = set;
return VK_SUCCESS;
}
void
anv_descriptor_set_destroy(struct anv_device *device,
struct anv_descriptor_pool *pool,
struct anv_descriptor_set *set)
{
/* Put the buffer view surface state back on the free list. */
for (uint32_t b = 0; b < set->buffer_count; b++) {
struct surface_state_free_list_entry *entry =
set->buffer_views[b].surface_state.map;
entry->next = pool->surface_state_free_list;
entry->state = set->buffer_views[b].surface_state;
pool->surface_state_free_list = entry;
}
/* Put the descriptor set allocation back on the free list. */
const uint32_t index = (char *) set - pool->data;
if (index + set->size == pool->next) {
pool->next = index;
} else {
struct pool_free_list_entry *entry = (struct pool_free_list_entry *) set;
entry->next = pool->free_list;
entry->size = set->size;
pool->free_list = (char *) entry - pool->data;
}
}
VkResult anv_AllocateDescriptorSets(
VkDevice _device,
const VkDescriptorSetAllocateInfo* pAllocateInfo,
VkDescriptorSet* pDescriptorSets)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_pool, pool, pAllocateInfo->descriptorPool);
VkResult result = VK_SUCCESS;
struct anv_descriptor_set *set;
uint32_t i;
for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
ANV_FROM_HANDLE(anv_descriptor_set_layout, layout,
pAllocateInfo->pSetLayouts[i]);
result = anv_descriptor_set_create(device, pool, layout, &set);
if (result != VK_SUCCESS)
break;
pDescriptorSets[i] = anv_descriptor_set_to_handle(set);
}
if (result != VK_SUCCESS)
anv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
i, pDescriptorSets);
return result;
}
VkResult anv_FreeDescriptorSets(
VkDevice _device,
VkDescriptorPool descriptorPool,
uint32_t count,
const VkDescriptorSet* pDescriptorSets)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
for (uint32_t i = 0; i < count; i++) {
ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
if (!set)
continue;
anv_descriptor_set_destroy(device, pool, set);
}
return VK_SUCCESS;
}
void
anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
const struct gen_device_info * const devinfo,
const VkDescriptorImageInfo * const info,
VkDescriptorType type,
uint32_t binding,
uint32_t element)
{
const struct anv_descriptor_set_binding_layout *bind_layout =
&set->layout->binding[binding];
struct anv_descriptor *desc =
&set->descriptors[bind_layout->descriptor_index + element];
struct anv_image_view *image_view = NULL;
struct anv_sampler *sampler = NULL;
assert(type == bind_layout->type);
switch (type) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
sampler = anv_sampler_from_handle(info->sampler);
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
image_view = anv_image_view_from_handle(info->imageView);
sampler = anv_sampler_from_handle(info->sampler);
break;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
image_view = anv_image_view_from_handle(info->imageView);
break;
default:
unreachable("invalid descriptor type");
}
/* If this descriptor has an immutable sampler, we don't want to stomp on
* it.
*/
sampler = bind_layout->immutable_samplers ?
bind_layout->immutable_samplers[element] :
sampler;
*desc = (struct anv_descriptor) {
.type = type,
.layout = info->imageLayout,
.image_view = image_view,
.sampler = sampler,
};
}
void
anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
VkDescriptorType type,
struct anv_buffer_view *buffer_view,
uint32_t binding,
uint32_t element)
{
const struct anv_descriptor_set_binding_layout *bind_layout =
&set->layout->binding[binding];
struct anv_descriptor *desc =
&set->descriptors[bind_layout->descriptor_index + element];
assert(type == bind_layout->type);
*desc = (struct anv_descriptor) {
.type = type,
.buffer_view = buffer_view,
};
}
void
anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
struct anv_device *device,
struct anv_state_stream *alloc_stream,
VkDescriptorType type,
struct anv_buffer *buffer,
uint32_t binding,
uint32_t element,
VkDeviceSize offset,
VkDeviceSize range)
{
const struct anv_descriptor_set_binding_layout *bind_layout =
&set->layout->binding[binding];
struct anv_descriptor *desc =
&set->descriptors[bind_layout->descriptor_index + element];
assert(type == bind_layout->type);
if (type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
*desc = (struct anv_descriptor) {
.type = type,
.buffer = buffer,
.offset = offset,
.range = range,
};
} else {
struct anv_buffer_view *bview =
&set->buffer_views[bind_layout->buffer_index + element];
bview->format = anv_isl_format_for_descriptor_type(type);
bview->bo = buffer->bo;
bview->offset = buffer->offset + offset;
bview->range = anv_buffer_get_range(buffer, offset, range);
/* If we're writing descriptors through a push command, we need to
* allocate the surface state from the command buffer. Otherwise it will
* be allocated by the descriptor pool when calling
* vkAllocateDescriptorSets. */
if (alloc_stream)
bview->surface_state = anv_state_stream_alloc(alloc_stream, 64, 64);
anv_fill_buffer_surface_state(device, bview->surface_state,
bview->format,
bview->offset, bview->range, 1);
*desc = (struct anv_descriptor) {
.type = type,
.buffer_view = bview,
};
}
}
void anv_UpdateDescriptorSets(
VkDevice _device,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet* pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet* pDescriptorCopies)
{
ANV_FROM_HANDLE(anv_device, device, _device);
for (uint32_t i = 0; i < descriptorWriteCount; i++) {
const VkWriteDescriptorSet *write = &pDescriptorWrites[i];
ANV_FROM_HANDLE(anv_descriptor_set, set, write->dstSet);
switch (write->descriptorType) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
for (uint32_t j = 0; j < write->descriptorCount; j++) {
anv_descriptor_set_write_image_view(set, &device->info,
write->pImageInfo + j,
write->descriptorType,
write->dstBinding,
write->dstArrayElement + j);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
for (uint32_t j = 0; j < write->descriptorCount; j++) {
ANV_FROM_HANDLE(anv_buffer_view, bview,
write->pTexelBufferView[j]);
anv_descriptor_set_write_buffer_view(set,
write->descriptorType,
bview,
write->dstBinding,
write->dstArrayElement + j);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
for (uint32_t j = 0; j < write->descriptorCount; j++) {
assert(write->pBufferInfo[j].buffer);
ANV_FROM_HANDLE(anv_buffer, buffer, write->pBufferInfo[j].buffer);
assert(buffer);
anv_descriptor_set_write_buffer(set,
device,
NULL,
write->descriptorType,
buffer,
write->dstBinding,
write->dstArrayElement + j,
write->pBufferInfo[j].offset,
write->pBufferInfo[j].range);
}
break;
default:
break;
}
}
for (uint32_t i = 0; i < descriptorCopyCount; i++) {
const VkCopyDescriptorSet *copy = &pDescriptorCopies[i];
ANV_FROM_HANDLE(anv_descriptor_set, src, copy->srcSet);
ANV_FROM_HANDLE(anv_descriptor_set, dst, copy->dstSet);
const struct anv_descriptor_set_binding_layout *src_layout =
&src->layout->binding[copy->srcBinding];
struct anv_descriptor *src_desc =
&src->descriptors[src_layout->descriptor_index];
src_desc += copy->srcArrayElement;
const struct anv_descriptor_set_binding_layout *dst_layout =
&dst->layout->binding[copy->dstBinding];
struct anv_descriptor *dst_desc =
&dst->descriptors[dst_layout->descriptor_index];
dst_desc += copy->dstArrayElement;
for (uint32_t j = 0; j < copy->descriptorCount; j++)
dst_desc[j] = src_desc[j];
}
}
/*
* Descriptor update templates.
*/
void
anv_descriptor_set_write_template(struct anv_descriptor_set *set,
struct anv_device *device,
struct anv_state_stream *alloc_stream,
const struct anv_descriptor_update_template *template,
const void *data)
{
const struct anv_descriptor_set_layout *layout = set->layout;
for (uint32_t i = 0; i < template->entry_count; i++) {
const struct anv_descriptor_template_entry *entry =
&template->entries[i];
const struct anv_descriptor_set_binding_layout *bind_layout =
&layout->binding[entry->binding];
struct anv_descriptor *desc = &set->descriptors[bind_layout->descriptor_index];
desc += entry->array_element;
switch (entry->type) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
for (uint32_t j = 0; j < entry->array_count; j++) {
const VkDescriptorImageInfo *info =
data + entry->offset + j * entry->stride;
anv_descriptor_set_write_image_view(set, &device->info,
info, entry->type,
entry->binding,
entry->array_element + j);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
for (uint32_t j = 0; j < entry->array_count; j++) {
const VkBufferView *_bview =
data + entry->offset + j * entry->stride;
ANV_FROM_HANDLE(anv_buffer_view, bview, *_bview);
anv_descriptor_set_write_buffer_view(set,
entry->type,
bview,
entry->binding,
entry->array_element + j);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
for (uint32_t j = 0; j < entry->array_count; j++) {
const VkDescriptorBufferInfo *info =
data + entry->offset + j * entry->stride;
ANV_FROM_HANDLE(anv_buffer, buffer, info->buffer);
anv_descriptor_set_write_buffer(set,
device,
alloc_stream,
entry->type,
buffer,
entry->binding,
entry->array_element + j,
info->offset, info->range);
}
break;
default:
break;
}
}
}
VkResult anv_CreateDescriptorUpdateTemplateKHR(
VkDevice _device,
const VkDescriptorUpdateTemplateCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorUpdateTemplateKHR* pDescriptorUpdateTemplate)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_descriptor_update_template *template;
size_t size = sizeof(*template) +
pCreateInfo->descriptorUpdateEntryCount * sizeof(template->entries[0]);
template = vk_alloc2(&device->alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (template == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
template->bind_point = pCreateInfo->pipelineBindPoint;
if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR)
template->set = pCreateInfo->set;
template->entry_count = pCreateInfo->descriptorUpdateEntryCount;
for (uint32_t i = 0; i < template->entry_count; i++) {
const VkDescriptorUpdateTemplateEntryKHR *pEntry =
&pCreateInfo->pDescriptorUpdateEntries[i];
template->entries[i] = (struct anv_descriptor_template_entry) {
.type = pEntry->descriptorType,
.binding = pEntry->dstBinding,
.array_element = pEntry->dstArrayElement,
.array_count = pEntry->descriptorCount,
.offset = pEntry->offset,
.stride = pEntry->stride,
};
}
*pDescriptorUpdateTemplate =
anv_descriptor_update_template_to_handle(template);
return VK_SUCCESS;
}
void anv_DestroyDescriptorUpdateTemplateKHR(
VkDevice _device,
VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_update_template, template,
descriptorUpdateTemplate);
vk_free2(&device->alloc, pAllocator, template);
}
void anv_UpdateDescriptorSetWithTemplateKHR(
VkDevice _device,
VkDescriptorSet descriptorSet,
VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
const void* pData)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_set, set, descriptorSet);
ANV_FROM_HANDLE(anv_descriptor_update_template, template,
descriptorUpdateTemplate);
anv_descriptor_set_write_template(set, device, NULL, template, pData);
}