/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_nir.h"
#include "program/prog_parameter.h"
#include "nir/nir_builder.h"
struct apply_pipeline_layout_state {
nir_shader *shader;
nir_builder builder;
struct anv_pipeline_layout *layout;
bool add_bounds_checks;
struct {
BITSET_WORD *used;
uint8_t *surface_offsets;
uint8_t *sampler_offsets;
uint8_t *image_offsets;
} set[MAX_SETS];
};
static void
add_binding(struct apply_pipeline_layout_state *state,
uint32_t set, uint32_t binding)
{
BITSET_SET(state->set[set].used, binding);
}
static void
add_var_binding(struct apply_pipeline_layout_state *state, nir_variable *var)
{
add_binding(state, var->data.descriptor_set, var->data.binding);
}
static void
get_used_bindings_block(nir_block *block,
struct apply_pipeline_layout_state *state)
{
nir_foreach_instr_safe(instr, block) {
switch (instr->type) {
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_vulkan_resource_index:
add_binding(state, nir_intrinsic_desc_set(intrin),
nir_intrinsic_binding(intrin));
break;
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_min:
case nir_intrinsic_image_atomic_max:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap:
case nir_intrinsic_image_size:
case nir_intrinsic_image_samples:
add_var_binding(state, intrin->variables[0]->var);
break;
default:
break;
}
break;
}
case nir_instr_type_tex: {
nir_tex_instr *tex = nir_instr_as_tex(instr);
assert(tex->texture);
add_var_binding(state, tex->texture->var);
if (tex->sampler)
add_var_binding(state, tex->sampler->var);
break;
}
default:
continue;
}
}
}
static void
lower_res_index_intrinsic(nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
nir_builder *b = &state->builder;
b->cursor = nir_before_instr(&intrin->instr);
uint32_t set = nir_intrinsic_desc_set(intrin);
uint32_t binding = nir_intrinsic_binding(intrin);
uint32_t surface_index = state->set[set].surface_offsets[binding];
uint32_t array_size =
state->layout->set[set].layout->binding[binding].array_size;
nir_const_value *const_array_index = nir_src_as_const_value(intrin->src[0]);
nir_ssa_def *block_index;
if (const_array_index) {
unsigned array_index = const_array_index->u32[0];
array_index = MIN2(array_index, array_size - 1);
block_index = nir_imm_int(b, surface_index + array_index);
} else {
block_index = nir_ssa_for_src(b, intrin->src[0], 1);
if (state->add_bounds_checks)
block_index = nir_umin(b, block_index, nir_imm_int(b, array_size - 1));
block_index = nir_iadd(b, nir_imm_int(b, surface_index), block_index);
}
assert(intrin->dest.is_ssa);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(block_index));
nir_instr_remove(&intrin->instr);
}
static void
lower_res_reindex_intrinsic(nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
nir_builder *b = &state->builder;
/* For us, the resource indices are just indices into the binding table and
* array elements are sequential. A resource_reindex just turns into an
* add of the two indices.
*/
assert(intrin->src[0].is_ssa && intrin->src[0].is_ssa);
nir_ssa_def *new_index = nir_iadd(b, intrin->src[0].ssa,
intrin->src[1].ssa);
assert(intrin->dest.is_ssa);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(new_index));
nir_instr_remove(&intrin->instr);
}
static void
lower_tex_deref(nir_tex_instr *tex, nir_deref_var *deref,
unsigned *const_index, unsigned array_size,
nir_tex_src_type src_type, bool allow_indirect,
struct apply_pipeline_layout_state *state)
{
nir_builder *b = &state->builder;
if (deref->deref.child) {
assert(deref->deref.child->deref_type == nir_deref_type_array);
nir_deref_array *deref_array = nir_deref_as_array(deref->deref.child);
if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
/* From VK_KHR_sampler_ycbcr_conversion:
*
* If sampler Y’CBCR conversion is enabled, the combined image
* sampler must be indexed only by constant integral expressions when
* aggregated into arrays in shader code, irrespective of the
* shaderSampledImageArrayDynamicIndexing feature.
*/
assert(allow_indirect);
nir_ssa_def *index =
nir_iadd(b, nir_imm_int(b, deref_array->base_offset),
nir_ssa_for_src(b, deref_array->indirect, 1));
if (state->add_bounds_checks)
index = nir_umin(b, index, nir_imm_int(b, array_size - 1));
nir_tex_instr_add_src(tex, src_type, nir_src_for_ssa(index));
} else {
*const_index += MIN2(deref_array->base_offset, array_size - 1);
}
}
}
static void
cleanup_tex_deref(nir_tex_instr *tex, nir_deref_var *deref)
{
if (deref->deref.child == NULL)
return;
nir_deref_array *deref_array = nir_deref_as_array(deref->deref.child);
if (deref_array->deref_array_type != nir_deref_array_type_indirect)
return;
nir_instr_rewrite_src(&tex->instr, &deref_array->indirect, NIR_SRC_INIT);
}
static bool
has_tex_src_plane(nir_tex_instr *tex)
{
for (unsigned i = 0; i < tex->num_srcs; i++) {
if (tex->src[i].src_type == nir_tex_src_plane)
return true;
}
return false;
}
static uint32_t
extract_tex_src_plane(nir_tex_instr *tex)
{
unsigned plane = 0;
int plane_src_idx = -1;
for (unsigned i = 0; i < tex->num_srcs; i++) {
if (tex->src[i].src_type == nir_tex_src_plane) {
nir_const_value *const_plane =
nir_src_as_const_value(tex->src[i].src);
/* Our color conversion lowering pass should only ever insert
* constants. */
assert(const_plane);
plane = const_plane->u32[0];
plane_src_idx = i;
}
}
assert(plane_src_idx >= 0);
nir_tex_instr_remove_src(tex, plane_src_idx);
return plane;
}
static void
lower_tex(nir_tex_instr *tex, struct apply_pipeline_layout_state *state)
{
/* No one should have come by and lowered it already */
assert(tex->texture);
state->builder.cursor = nir_before_instr(&tex->instr);
unsigned set = tex->texture->var->data.descriptor_set;
unsigned binding = tex->texture->var->data.binding;
unsigned array_size =
state->layout->set[set].layout->binding[binding].array_size;
bool has_plane = has_tex_src_plane(tex);
unsigned plane = has_plane ? extract_tex_src_plane(tex) : 0;
tex->texture_index = state->set[set].surface_offsets[binding];
lower_tex_deref(tex, tex->texture, &tex->texture_index, array_size,
nir_tex_src_texture_offset, !has_plane, state);
tex->texture_index += plane;
if (tex->sampler) {
unsigned set = tex->sampler->var->data.descriptor_set;
unsigned binding = tex->sampler->var->data.binding;
unsigned array_size =
state->layout->set[set].layout->binding[binding].array_size;
tex->sampler_index = state->set[set].sampler_offsets[binding];
lower_tex_deref(tex, tex->sampler, &tex->sampler_index, array_size,
nir_tex_src_sampler_offset, !has_plane, state);
tex->sampler_index += plane;
}
/* The backend only ever uses this to mark used surfaces. We don't care
* about that little optimization so it just needs to be non-zero.
*/
tex->texture_array_size = 1;
cleanup_tex_deref(tex, tex->texture);
if (tex->sampler)
cleanup_tex_deref(tex, tex->sampler);
tex->texture = NULL;
tex->sampler = NULL;
}
static void
apply_pipeline_layout_block(nir_block *block,
struct apply_pipeline_layout_state *state)
{
nir_foreach_instr_safe(instr, block) {
switch (instr->type) {
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_vulkan_resource_index:
lower_res_index_intrinsic(intrin, state);
break;
case nir_intrinsic_vulkan_resource_reindex:
lower_res_reindex_intrinsic(intrin, state);
break;
default:
break;
}
break;
}
case nir_instr_type_tex:
lower_tex(nir_instr_as_tex(instr), state);
break;
default:
continue;
}
}
}
static void
setup_vec4_uniform_value(uint32_t *params, uint32_t offset, unsigned n)
{
for (unsigned i = 0; i < n; ++i)
params[i] = ANV_PARAM_PUSH(offset + i * sizeof(uint32_t));
for (unsigned i = n; i < 4; ++i)
params[i] = BRW_PARAM_BUILTIN_ZERO;
}
void
anv_nir_apply_pipeline_layout(struct anv_pipeline *pipeline,
nir_shader *shader,
struct brw_stage_prog_data *prog_data,
struct anv_pipeline_bind_map *map)
{
struct anv_pipeline_layout *layout = pipeline->layout;
gl_shader_stage stage = shader->info.stage;
struct apply_pipeline_layout_state state = {
.shader = shader,
.layout = layout,
.add_bounds_checks = pipeline->device->robust_buffer_access,
};
void *mem_ctx = ralloc_context(NULL);
for (unsigned s = 0; s < layout->num_sets; s++) {
const unsigned count = layout->set[s].layout->binding_count;
const unsigned words = BITSET_WORDS(count);
state.set[s].used = rzalloc_array(mem_ctx, BITSET_WORD, words);
state.set[s].surface_offsets = rzalloc_array(mem_ctx, uint8_t, count);
state.set[s].sampler_offsets = rzalloc_array(mem_ctx, uint8_t, count);
state.set[s].image_offsets = rzalloc_array(mem_ctx, uint8_t, count);
}
nir_foreach_function(function, shader) {
if (!function->impl)
continue;
nir_foreach_block(block, function->impl)
get_used_bindings_block(block, &state);
}
for (uint32_t set = 0; set < layout->num_sets; set++) {
struct anv_descriptor_set_layout *set_layout = layout->set[set].layout;
BITSET_WORD b, _tmp;
BITSET_FOREACH_SET(b, _tmp, state.set[set].used,
set_layout->binding_count) {
if (set_layout->binding[b].stage[stage].surface_index >= 0) {
map->surface_count +=
anv_descriptor_set_binding_layout_get_hw_size(&set_layout->binding[b]);
}
if (set_layout->binding[b].stage[stage].sampler_index >= 0) {
map->sampler_count +=
anv_descriptor_set_binding_layout_get_hw_size(&set_layout->binding[b]);
}
if (set_layout->binding[b].stage[stage].image_index >= 0)
map->image_count += set_layout->binding[b].array_size;
}
}
unsigned surface = 0;
unsigned sampler = 0;
unsigned image = 0;
for (uint32_t set = 0; set < layout->num_sets; set++) {
struct anv_descriptor_set_layout *set_layout = layout->set[set].layout;
BITSET_WORD b, _tmp;
BITSET_FOREACH_SET(b, _tmp, state.set[set].used,
set_layout->binding_count) {
struct anv_descriptor_set_binding_layout *binding =
&set_layout->binding[b];
if (binding->stage[stage].surface_index >= 0) {
state.set[set].surface_offsets[b] = surface;
struct anv_sampler **samplers = binding->immutable_samplers;
for (unsigned i = 0; i < binding->array_size; i++) {
uint8_t planes = samplers ? samplers[i]->n_planes : 1;
for (uint8_t p = 0; p < planes; p++) {
map->surface_to_descriptor[surface].set = set;
map->surface_to_descriptor[surface].binding = b;
map->surface_to_descriptor[surface].index = i;
map->surface_to_descriptor[surface].plane = p;
surface++;
}
}
}
if (binding->stage[stage].sampler_index >= 0) {
state.set[set].sampler_offsets[b] = sampler;
struct anv_sampler **samplers = binding->immutable_samplers;
for (unsigned i = 0; i < binding->array_size; i++) {
uint8_t planes = samplers ? samplers[i]->n_planes : 1;
for (uint8_t p = 0; p < planes; p++) {
map->sampler_to_descriptor[sampler].set = set;
map->sampler_to_descriptor[sampler].binding = b;
map->sampler_to_descriptor[sampler].index = i;
map->sampler_to_descriptor[sampler].plane = p;
sampler++;
}
}
}
if (binding->stage[stage].image_index >= 0) {
state.set[set].image_offsets[b] = image;
image += binding->array_size;
}
}
}
nir_foreach_variable(var, &shader->uniforms) {
if (!glsl_type_is_image(var->interface_type))
continue;
enum glsl_sampler_dim dim = glsl_get_sampler_dim(var->interface_type);
const uint32_t set = var->data.descriptor_set;
const uint32_t binding = var->data.binding;
const uint32_t array_size =
layout->set[set].layout->binding[binding].array_size;
if (!BITSET_TEST(state.set[set].used, binding))
continue;
struct anv_pipeline_binding *pipe_binding =
&map->surface_to_descriptor[state.set[set].surface_offsets[binding]];
for (unsigned i = 0; i < array_size; i++) {
assert(pipe_binding[i].set == set);
assert(pipe_binding[i].binding == binding);
assert(pipe_binding[i].index == i);
if (dim == GLSL_SAMPLER_DIM_SUBPASS ||
dim == GLSL_SAMPLER_DIM_SUBPASS_MS)
pipe_binding[i].input_attachment_index = var->data.index + i;
pipe_binding[i].write_only = var->data.image.write_only;
}
}
nir_foreach_function(function, shader) {
if (!function->impl)
continue;
nir_builder_init(&state.builder, function->impl);
nir_foreach_block(block, function->impl)
apply_pipeline_layout_block(block, &state);
nir_metadata_preserve(function->impl, nir_metadata_block_index |
nir_metadata_dominance);
}
if (map->image_count > 0) {
assert(map->image_count <= MAX_IMAGES);
nir_foreach_variable(var, &shader->uniforms) {
if (glsl_type_is_image(var->type) ||
(glsl_type_is_array(var->type) &&
glsl_type_is_image(glsl_get_array_element(var->type)))) {
/* Images are represented as uniform push constants and the actual
* information required for reading/writing to/from the image is
* storred in the uniform.
*/
unsigned set = var->data.descriptor_set;
unsigned binding = var->data.binding;
unsigned image_index = state.set[set].image_offsets[binding];
var->data.driver_location = shader->num_uniforms +
image_index * BRW_IMAGE_PARAM_SIZE * 4;
}
}
uint32_t *param = brw_stage_prog_data_add_params(prog_data,
map->image_count *
BRW_IMAGE_PARAM_SIZE);
struct anv_push_constants *null_data = NULL;
const struct brw_image_param *image_param = null_data->images;
for (uint32_t i = 0; i < map->image_count; i++) {
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET,
(uintptr_t)&image_param->surface_idx, 1);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
(uintptr_t)image_param->offset, 2);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
(uintptr_t)image_param->size, 3);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
(uintptr_t)image_param->stride, 4);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET,
(uintptr_t)image_param->tiling, 3);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
(uintptr_t)image_param->swizzling, 2);
param += BRW_IMAGE_PARAM_SIZE;
image_param ++;
}
assert(param == prog_data->param + prog_data->nr_params);
shader->num_uniforms += map->image_count * BRW_IMAGE_PARAM_SIZE * 4;
}
ralloc_free(mem_ctx);
}