/**************************************************************************
*
* Copyright 2007 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* \file ffvertex_prog.c
*
* Create a vertex program to execute the current fixed function T&L pipeline.
* \author Keith Whitwell
*/
#include "main/glheader.h"
#include "main/mtypes.h"
#include "main/macros.h"
#include "main/enums.h"
#include "main/ffvertex_prog.h"
#include "program/program.h"
#include "program/prog_cache.h"
#include "program/prog_instruction.h"
#include "program/prog_parameter.h"
#include "program/prog_print.h"
#include "program/prog_statevars.h"
#include "util/bitscan.h"
/** Max of number of lights and texture coord units */
#define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
struct state_key {
unsigned light_color_material_mask:12;
unsigned light_global_enabled:1;
unsigned light_local_viewer:1;
unsigned light_twoside:1;
unsigned material_shininess_is_zero:1;
unsigned need_eye_coords:1;
unsigned normalize:1;
unsigned rescale_normals:1;
unsigned fog_source_is_depth:1;
unsigned fog_distance_mode:2;
unsigned separate_specular:1;
unsigned point_attenuated:1;
unsigned point_array:1;
unsigned texture_enabled_global:1;
unsigned fragprog_inputs_read:12;
GLbitfield varying_vp_inputs;
struct {
unsigned light_enabled:1;
unsigned light_eyepos3_is_zero:1;
unsigned light_spotcutoff_is_180:1;
unsigned light_attenuated:1;
unsigned texunit_really_enabled:1;
unsigned texmat_enabled:1;
unsigned coord_replace:1;
unsigned texgen_enabled:4;
unsigned texgen_mode0:4;
unsigned texgen_mode1:4;
unsigned texgen_mode2:4;
unsigned texgen_mode3:4;
} unit[NUM_UNITS];
};
#define TXG_NONE 0
#define TXG_OBJ_LINEAR 1
#define TXG_EYE_LINEAR 2
#define TXG_SPHERE_MAP 3
#define TXG_REFLECTION_MAP 4
#define TXG_NORMAL_MAP 5
static GLuint translate_texgen( GLboolean enabled, GLenum mode )
{
if (!enabled)
return TXG_NONE;
switch (mode) {
case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
default: return TXG_NONE;
}
}
#define FDM_EYE_RADIAL 0
#define FDM_EYE_PLANE 1
#define FDM_EYE_PLANE_ABS 2
static GLuint translate_fog_distance_mode( GLenum mode )
{
switch (mode) {
case GL_EYE_RADIAL_NV:
return FDM_EYE_RADIAL;
case GL_EYE_PLANE:
return FDM_EYE_PLANE;
default: /* shouldn't happen; fall through to a sensible default */
case GL_EYE_PLANE_ABSOLUTE_NV:
return FDM_EYE_PLANE_ABS;
}
}
static GLboolean check_active_shininess( struct gl_context *ctx,
const struct state_key *key,
GLuint side )
{
GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side;
if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
(key->light_color_material_mask & (1 << attr)))
return GL_TRUE;
if (key->varying_vp_inputs & VERT_BIT_GENERIC(attr))
return GL_TRUE;
if (ctx->Light.Material.Attrib[attr][0] != 0.0F)
return GL_TRUE;
return GL_FALSE;
}
static void make_state_key( struct gl_context *ctx, struct state_key *key )
{
const struct gl_program *fp = ctx->FragmentProgram._Current;
GLbitfield mask;
memset(key, 0, sizeof(struct state_key));
/* This now relies on texenvprogram.c being active:
*/
assert(fp);
key->need_eye_coords = ctx->_NeedEyeCoords;
key->fragprog_inputs_read = fp->info.inputs_read;
key->varying_vp_inputs = ctx->varying_vp_inputs;
if (ctx->RenderMode == GL_FEEDBACK) {
/* make sure the vertprog emits color and tex0 */
key->fragprog_inputs_read |= (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
}
key->separate_specular = (ctx->Light.Model.ColorControl ==
GL_SEPARATE_SPECULAR_COLOR);
if (ctx->Light.Enabled) {
key->light_global_enabled = 1;
if (ctx->Light.Model.LocalViewer)
key->light_local_viewer = 1;
if (ctx->Light.Model.TwoSide)
key->light_twoside = 1;
if (ctx->Light.ColorMaterialEnabled) {
key->light_color_material_mask = ctx->Light._ColorMaterialBitmask;
}
mask = ctx->Light._EnabledLights;
while (mask) {
const int i = u_bit_scan(&mask);
struct gl_light *light = &ctx->Light.Light[i];
key->unit[i].light_enabled = 1;
if (light->EyePosition[3] == 0.0F)
key->unit[i].light_eyepos3_is_zero = 1;
if (light->SpotCutoff == 180.0F)
key->unit[i].light_spotcutoff_is_180 = 1;
if (light->ConstantAttenuation != 1.0F ||
light->LinearAttenuation != 0.0F ||
light->QuadraticAttenuation != 0.0F)
key->unit[i].light_attenuated = 1;
}
if (check_active_shininess(ctx, key, 0)) {
key->material_shininess_is_zero = 0;
}
else if (key->light_twoside &&
check_active_shininess(ctx, key, 1)) {
key->material_shininess_is_zero = 0;
}
else {
key->material_shininess_is_zero = 1;
}
}
if (ctx->Transform.Normalize)
key->normalize = 1;
if (ctx->Transform.RescaleNormals)
key->rescale_normals = 1;
if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT) {
key->fog_source_is_depth = 1;
key->fog_distance_mode = translate_fog_distance_mode(ctx->Fog.FogDistanceMode);
}
if (ctx->Point._Attenuated)
key->point_attenuated = 1;
if (ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_POINT_SIZE].Enabled)
key->point_array = 1;
if (ctx->Texture._TexGenEnabled ||
ctx->Texture._TexMatEnabled ||
ctx->Texture._MaxEnabledTexImageUnit != -1)
key->texture_enabled_global = 1;
mask = ctx->Texture._EnabledCoordUnits | ctx->Texture._TexGenEnabled
| ctx->Texture._TexMatEnabled | ctx->Point.CoordReplace;
while (mask) {
const int i = u_bit_scan(&mask);
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
if (texUnit->_Current)
key->unit[i].texunit_really_enabled = 1;
if (ctx->Point.PointSprite)
if (ctx->Point.CoordReplace & (1u << i))
key->unit[i].coord_replace = 1;
if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
key->unit[i].texmat_enabled = 1;
if (texUnit->TexGenEnabled) {
key->unit[i].texgen_enabled = 1;
key->unit[i].texgen_mode0 =
translate_texgen( texUnit->TexGenEnabled & (1<<0),
texUnit->GenS.Mode );
key->unit[i].texgen_mode1 =
translate_texgen( texUnit->TexGenEnabled & (1<<1),
texUnit->GenT.Mode );
key->unit[i].texgen_mode2 =
translate_texgen( texUnit->TexGenEnabled & (1<<2),
texUnit->GenR.Mode );
key->unit[i].texgen_mode3 =
translate_texgen( texUnit->TexGenEnabled & (1<<3),
texUnit->GenQ.Mode );
}
}
}
/* Very useful debugging tool - produces annotated listing of
* generated program with line/function references for each
* instruction back into this file:
*/
#define DISASSEM 0
/* Use uregs to represent registers internally, translate to Mesa's
* expected formats on emit.
*
* NOTE: These are passed by value extensively in this file rather
* than as usual by pointer reference. If this disturbs you, try
* remembering they are just 32bits in size.
*
* GCC is smart enough to deal with these dword-sized structures in
* much the same way as if I had defined them as dwords and was using
* macros to access and set the fields. This is much nicer and easier
* to evolve.
*/
struct ureg {
GLuint file:4;
GLint idx:9; /* relative addressing may be negative */
/* sizeof(idx) should == sizeof(prog_src_reg::Index) */
GLuint negate:1;
GLuint swz:12;
GLuint pad:6;
};
struct tnl_program {
const struct state_key *state;
struct gl_program *program;
GLuint max_inst; /** number of instructions allocated for program */
GLboolean mvp_with_dp4;
GLuint temp_in_use;
GLuint temp_reserved;
struct ureg eye_position;
struct ureg eye_position_z;
struct ureg eye_position_normalized;
struct ureg transformed_normal;
struct ureg identity;
GLuint materials;
GLuint color_materials;
};
static const struct ureg undef = {
PROGRAM_UNDEFINED,
0,
0,
0,
0
};
/* Local shorthand:
*/
#define X SWIZZLE_X
#define Y SWIZZLE_Y
#define Z SWIZZLE_Z
#define W SWIZZLE_W
/* Construct a ureg:
*/
static struct ureg make_ureg(GLuint file, GLint idx)
{
struct ureg reg;
reg.file = file;
reg.idx = idx;
reg.negate = 0;
reg.swz = SWIZZLE_NOOP;
reg.pad = 0;
return reg;
}
static struct ureg negate( struct ureg reg )
{
reg.negate ^= 1;
return reg;
}
static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
{
reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
GET_SWZ(reg.swz, y),
GET_SWZ(reg.swz, z),
GET_SWZ(reg.swz, w));
return reg;
}
static struct ureg swizzle1( struct ureg reg, int x )
{
return swizzle(reg, x, x, x, x);
}
static struct ureg get_temp( struct tnl_program *p )
{
int bit = ffs( ~p->temp_in_use );
if (!bit) {
_mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
exit(1);
}
if ((GLuint) bit > p->program->arb.NumTemporaries)
p->program->arb.NumTemporaries = bit;
p->temp_in_use |= 1<<(bit-1);
return make_ureg(PROGRAM_TEMPORARY, bit-1);
}
static struct ureg reserve_temp( struct tnl_program *p )
{
struct ureg temp = get_temp( p );
p->temp_reserved |= 1<<temp.idx;
return temp;
}
static void release_temp( struct tnl_program *p, struct ureg reg )
{
if (reg.file == PROGRAM_TEMPORARY) {
p->temp_in_use &= ~(1<<reg.idx);
p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
}
}
static void release_temps( struct tnl_program *p )
{
p->temp_in_use = p->temp_reserved;
}
static struct ureg register_param5(struct tnl_program *p,
GLint s0,
GLint s1,
GLint s2,
GLint s3,
GLint s4)
{
gl_state_index tokens[STATE_LENGTH];
GLint idx;
tokens[0] = s0;
tokens[1] = s1;
tokens[2] = s2;
tokens[3] = s3;
tokens[4] = s4;
idx = _mesa_add_state_reference(p->program->Parameters, tokens );
return make_ureg(PROGRAM_STATE_VAR, idx);
}
#define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
#define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
#define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
#define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
/**
* \param input one of VERT_ATTRIB_x tokens.
*/
static struct ureg register_input( struct tnl_program *p, GLuint input )
{
assert(input < VERT_ATTRIB_MAX);
if (p->state->varying_vp_inputs & VERT_BIT(input)) {
p->program->info.inputs_read |= VERT_BIT(input);
return make_ureg(PROGRAM_INPUT, input);
}
else {
return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
}
}
/**
* \param input one of VARYING_SLOT_x tokens.
*/
static struct ureg register_output( struct tnl_program *p, GLuint output )
{
p->program->info.outputs_written |= BITFIELD64_BIT(output);
return make_ureg(PROGRAM_OUTPUT, output);
}
static struct ureg register_const4f( struct tnl_program *p,
GLfloat s0,
GLfloat s1,
GLfloat s2,
GLfloat s3)
{
gl_constant_value values[4];
GLint idx;
GLuint swizzle;
values[0].f = s0;
values[1].f = s1;
values[2].f = s2;
values[3].f = s3;
idx = _mesa_add_unnamed_constant(p->program->Parameters, values, 4,
&swizzle );
assert(swizzle == SWIZZLE_NOOP);
return make_ureg(PROGRAM_CONSTANT, idx);
}
#define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
#define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
#define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
static GLboolean is_undef( struct ureg reg )
{
return reg.file == PROGRAM_UNDEFINED;
}
static struct ureg get_identity_param( struct tnl_program *p )
{
if (is_undef(p->identity))
p->identity = register_const4f(p, 0,0,0,1);
return p->identity;
}
static void register_matrix_param5( struct tnl_program *p,
GLint s0, /* modelview, projection, etc */
GLint s1, /* texture matrix number */
GLint s2, /* first row */
GLint s3, /* last row */
GLint s4, /* inverse, transpose, etc */
struct ureg *matrix )
{
GLint i;
/* This is a bit sad as the support is there to pull the whole
* matrix out in one go:
*/
for (i = 0; i <= s3 - s2; i++)
matrix[i] = register_param5( p, s0, s1, i, i, s4 );
}
static void emit_arg( struct prog_src_register *src,
struct ureg reg )
{
src->File = reg.file;
src->Index = reg.idx;
src->Swizzle = reg.swz;
src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
src->RelAddr = 0;
/* Check that bitfield sizes aren't exceeded */
assert(src->Index == reg.idx);
}
static void emit_dst( struct prog_dst_register *dst,
struct ureg reg, GLuint mask )
{
dst->File = reg.file;
dst->Index = reg.idx;
/* allow zero as a shorthand for xyzw */
dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
/* Check that bitfield sizes aren't exceeded */
assert(dst->Index == reg.idx);
}
static void debug_insn( struct prog_instruction *inst, const char *fn,
GLuint line )
{
if (DISASSEM) {
static const char *last_fn;
if (fn != last_fn) {
last_fn = fn;
printf("%s:\n", fn);
}
printf("%d:\t", line);
_mesa_print_instruction(inst);
}
}
static void emit_op3fn(struct tnl_program *p,
enum prog_opcode op,
struct ureg dest,
GLuint mask,
struct ureg src0,
struct ureg src1,
struct ureg src2,
const char *fn,
GLuint line)
{
GLuint nr;
struct prog_instruction *inst;
assert(p->program->arb.NumInstructions <= p->max_inst);
if (p->program->arb.NumInstructions == p->max_inst) {
/* need to extend the program's instruction array */
struct prog_instruction *newInst;
/* double the size */
p->max_inst *= 2;
newInst =
rzalloc_array(p->program, struct prog_instruction, p->max_inst);
if (!newInst) {
_mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
return;
}
_mesa_copy_instructions(newInst, p->program->arb.Instructions,
p->program->arb.NumInstructions);
ralloc_free(p->program->arb.Instructions);
p->program->arb.Instructions = newInst;
}
nr = p->program->arb.NumInstructions++;
inst = &p->program->arb.Instructions[nr];
inst->Opcode = (enum prog_opcode) op;
emit_arg( &inst->SrcReg[0], src0 );
emit_arg( &inst->SrcReg[1], src1 );
emit_arg( &inst->SrcReg[2], src2 );
emit_dst( &inst->DstReg, dest, mask );
debug_insn(inst, fn, line);
}
#define emit_op3(p, op, dst, mask, src0, src1, src2) \
emit_op3fn(p, op, dst, mask, src0, src1, src2, __func__, __LINE__)
#define emit_op2(p, op, dst, mask, src0, src1) \
emit_op3fn(p, op, dst, mask, src0, src1, undef, __func__, __LINE__)
#define emit_op1(p, op, dst, mask, src0) \
emit_op3fn(p, op, dst, mask, src0, undef, undef, __func__, __LINE__)
static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
{
if (reg.file == PROGRAM_TEMPORARY &&
!(p->temp_reserved & (1<<reg.idx)))
return reg;
else {
struct ureg temp = get_temp(p);
emit_op1(p, OPCODE_MOV, temp, 0, reg);
return temp;
}
}
/* Currently no tracking performed of input/output/register size or
* active elements. Could be used to reduce these operations, as
* could the matrix type.
*/
static void emit_matrix_transform_vec4( struct tnl_program *p,
struct ureg dest,
const struct ureg *mat,
struct ureg src)
{
emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
}
/* This version is much easier to implement if writemasks are not
* supported natively on the target or (like SSE), the target doesn't
* have a clean/obvious dotproduct implementation.
*/
static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
struct ureg dest,
const struct ureg *mat,
struct ureg src)
{
struct ureg tmp;
if (dest.file != PROGRAM_TEMPORARY)
tmp = get_temp(p);
else
tmp = dest;
emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
if (dest.file != PROGRAM_TEMPORARY)
release_temp(p, tmp);
}
static void emit_matrix_transform_vec3( struct tnl_program *p,
struct ureg dest,
const struct ureg *mat,
struct ureg src)
{
emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
}
static void emit_normalize_vec3( struct tnl_program *p,
struct ureg dest,
struct ureg src )
{
struct ureg tmp = get_temp(p);
emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
release_temp(p, tmp);
}
static void emit_passthrough( struct tnl_program *p,
GLuint input,
GLuint output )
{
struct ureg out = register_output(p, output);
emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
}
static struct ureg get_eye_position( struct tnl_program *p )
{
if (is_undef(p->eye_position)) {
struct ureg pos = register_input( p, VERT_ATTRIB_POS );
struct ureg modelview[4];
p->eye_position = reserve_temp(p);
if (p->mvp_with_dp4) {
register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
0, modelview );
emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
}
else {
register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
STATE_MATRIX_TRANSPOSE, modelview );
emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
}
}
return p->eye_position;
}
static struct ureg get_eye_position_z( struct tnl_program *p )
{
if (!is_undef(p->eye_position))
return swizzle1(p->eye_position, Z);
if (is_undef(p->eye_position_z)) {
struct ureg pos = register_input( p, VERT_ATTRIB_POS );
struct ureg modelview[4];
p->eye_position_z = reserve_temp(p);
register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
0, modelview );
emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
}
return p->eye_position_z;
}
static struct ureg get_eye_position_normalized( struct tnl_program *p )
{
if (is_undef(p->eye_position_normalized)) {
struct ureg eye = get_eye_position(p);
p->eye_position_normalized = reserve_temp(p);
emit_normalize_vec3(p, p->eye_position_normalized, eye);
}
return p->eye_position_normalized;
}
static struct ureg get_transformed_normal( struct tnl_program *p )
{
if (is_undef(p->transformed_normal) &&
!p->state->need_eye_coords &&
!p->state->normalize &&
!(p->state->need_eye_coords == p->state->rescale_normals))
{
p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
}
else if (is_undef(p->transformed_normal))
{
struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
struct ureg mvinv[3];
struct ureg transformed_normal = reserve_temp(p);
if (p->state->need_eye_coords) {
register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
STATE_MATRIX_INVTRANS, mvinv );
/* Transform to eye space:
*/
emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
normal = transformed_normal;
}
/* Normalize/Rescale:
*/
if (p->state->normalize) {
emit_normalize_vec3( p, transformed_normal, normal );
normal = transformed_normal;
}
else if (p->state->need_eye_coords == p->state->rescale_normals) {
/* This is already adjusted for eye/non-eye rendering:
*/
struct ureg rescale = register_param2(p, STATE_INTERNAL,
STATE_NORMAL_SCALE);
emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
normal = transformed_normal;
}
assert(normal.file == PROGRAM_TEMPORARY);
p->transformed_normal = normal;
}
return p->transformed_normal;
}
static void build_hpos( struct tnl_program *p )
{
struct ureg pos = register_input( p, VERT_ATTRIB_POS );
struct ureg hpos = register_output( p, VARYING_SLOT_POS );
struct ureg mvp[4];
if (p->mvp_with_dp4) {
register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
0, mvp );
emit_matrix_transform_vec4( p, hpos, mvp, pos );
}
else {
register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
STATE_MATRIX_TRANSPOSE, mvp );
emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
}
}
static GLuint material_attrib( GLuint side, GLuint property )
{
return (property - STATE_AMBIENT) * 2 + side;
}
/**
* Get a bitmask of which material values vary on a per-vertex basis.
*/
static void set_material_flags( struct tnl_program *p )
{
p->color_materials = 0;
p->materials = 0;
if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
p->materials =
p->color_materials = p->state->light_color_material_mask;
}
p->materials |= (p->state->varying_vp_inputs >> VERT_ATTRIB_GENERIC0);
}
static struct ureg get_material( struct tnl_program *p, GLuint side,
GLuint property )
{
GLuint attrib = material_attrib(side, property);
if (p->color_materials & (1<<attrib))
return register_input(p, VERT_ATTRIB_COLOR0);
else if (p->materials & (1<<attrib)) {
/* Put material values in the GENERIC slots -- they are not used
* for anything in fixed function mode.
*/
return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
}
else
return register_param3( p, STATE_MATERIAL, side, property );
}
#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
MAT_BIT_FRONT_AMBIENT | \
MAT_BIT_FRONT_DIFFUSE) << (side))
/**
* Either return a precalculated constant value or emit code to
* calculate these values dynamically in the case where material calls
* are present between begin/end pairs.
*
* Probably want to shift this to the program compilation phase - if
* we always emitted the calculation here, a smart compiler could
* detect that it was constant (given a certain set of inputs), and
* lift it out of the main loop. That way the programs created here
* would be independent of the vertex_buffer details.
*/
static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
{
if (p->materials & SCENE_COLOR_BITS(side)) {
struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
struct ureg material_emission = get_material(p, side, STATE_EMISSION);
struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
struct ureg tmp = make_temp(p, material_diffuse);
emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
material_ambient, material_emission);
return tmp;
}
else
return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
}
static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
GLuint side, GLuint property )
{
GLuint attrib = material_attrib(side, property);
if (p->materials & (1<<attrib)) {
struct ureg light_value =
register_param3(p, STATE_LIGHT, light, property);
struct ureg material_value = get_material(p, side, property);
struct ureg tmp = get_temp(p);
emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
return tmp;
}
else
return register_param4(p, STATE_LIGHTPROD, light, side, property);
}
static struct ureg calculate_light_attenuation( struct tnl_program *p,
GLuint i,
struct ureg VPpli,
struct ureg dist )
{
struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
STATE_ATTENUATION);
struct ureg att = undef;
/* Calculate spot attenuation:
*/
if (!p->state->unit[i].light_spotcutoff_is_180) {
struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
struct ureg spot = get_temp(p);
struct ureg slt = get_temp(p);
att = get_temp(p);
emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
emit_op1(p, OPCODE_ABS, spot, 0, spot);
emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
release_temp(p, spot);
release_temp(p, slt);
}
/* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
*
* Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
*/
if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
if (is_undef(att))
att = get_temp(p);
/* 1/d,d,d,1/d */
emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
/* 1,d,d*d,1/d */
emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
/* 1/dist-atten */
emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
if (!p->state->unit[i].light_spotcutoff_is_180) {
/* dist-atten */
emit_op1(p, OPCODE_RCP, dist, 0, dist);
/* spot-atten * dist-atten */
emit_op2(p, OPCODE_MUL, att, 0, dist, att);
}
else {
/* dist-atten */
emit_op1(p, OPCODE_RCP, att, 0, dist);
}
}
return att;
}
/**
* Compute:
* lit.y = MAX(0, dots.x)
* lit.z = SLT(0, dots.x)
*/
static void emit_degenerate_lit( struct tnl_program *p,
struct ureg lit,
struct ureg dots )
{
struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
/* Note that lit.x & lit.w will not be examined. Note also that
* dots.xyzw == dots.xxxx.
*/
/* MAX lit, id, dots;
*/
emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
/* result[2] = (in > 0 ? 1 : 0)
* SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
*/
emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
}
/* Need to add some addtional parameters to allow lighting in object
* space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
* space lighting.
*/
static void build_lighting( struct tnl_program *p )
{
const GLboolean twoside = p->state->light_twoside;
const GLboolean separate = p->state->separate_specular;
GLuint nr_lights = 0, count = 0;
struct ureg normal = get_transformed_normal(p);
struct ureg lit = get_temp(p);
struct ureg dots = get_temp(p);
struct ureg _col0 = undef, _col1 = undef;
struct ureg _bfc0 = undef, _bfc1 = undef;
GLuint i;
/*
* NOTE:
* dots.x = dot(normal, VPpli)
* dots.y = dot(normal, halfAngle)
* dots.z = back.shininess
* dots.w = front.shininess
*/
for (i = 0; i < MAX_LIGHTS; i++)
if (p->state->unit[i].light_enabled)
nr_lights++;
set_material_flags(p);
{
if (!p->state->material_shininess_is_zero) {
struct ureg shininess = get_material(p, 0, STATE_SHININESS);
emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
release_temp(p, shininess);
}
_col0 = make_temp(p, get_scenecolor(p, 0));
if (separate)
_col1 = make_temp(p, get_identity_param(p));
else
_col1 = _col0;
}
if (twoside) {
if (!p->state->material_shininess_is_zero) {
/* Note that we negate the back-face specular exponent here.
* The negation will be un-done later in the back-face code below.
*/
struct ureg shininess = get_material(p, 1, STATE_SHININESS);
emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
negate(swizzle1(shininess,X)));
release_temp(p, shininess);
}
_bfc0 = make_temp(p, get_scenecolor(p, 1));
if (separate)
_bfc1 = make_temp(p, get_identity_param(p));
else
_bfc1 = _bfc0;
}
/* If no lights, still need to emit the scenecolor.
*/
{
struct ureg res0 = register_output( p, VARYING_SLOT_COL0 );
emit_op1(p, OPCODE_MOV, res0, 0, _col0);
}
if (separate) {
struct ureg res1 = register_output( p, VARYING_SLOT_COL1 );
emit_op1(p, OPCODE_MOV, res1, 0, _col1);
}
if (twoside) {
struct ureg res0 = register_output( p, VARYING_SLOT_BFC0 );
emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
}
if (twoside && separate) {
struct ureg res1 = register_output( p, VARYING_SLOT_BFC1 );
emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
}
if (nr_lights == 0) {
release_temps(p);
return;
}
for (i = 0; i < MAX_LIGHTS; i++) {
if (p->state->unit[i].light_enabled) {
struct ureg half = undef;
struct ureg att = undef, VPpli = undef;
struct ureg dist = undef;
count++;
if (p->state->unit[i].light_eyepos3_is_zero) {
VPpli = register_param3(p, STATE_INTERNAL,
STATE_LIGHT_POSITION_NORMALIZED, i);
} else {
struct ureg Ppli = register_param3(p, STATE_INTERNAL,
STATE_LIGHT_POSITION, i);
struct ureg V = get_eye_position(p);
VPpli = get_temp(p);
dist = get_temp(p);
/* Calculate VPpli vector
*/
emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
/* Normalize VPpli. The dist value also used in
* attenuation below.
*/
emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
emit_op1(p, OPCODE_RSQ, dist, 0, dist);
emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
}
/* Calculate attenuation:
*/
att = calculate_light_attenuation(p, i, VPpli, dist);
release_temp(p, dist);
/* Calculate viewer direction, or use infinite viewer:
*/
if (!p->state->material_shininess_is_zero) {
if (p->state->light_local_viewer) {
struct ureg eye_hat = get_eye_position_normalized(p);
half = get_temp(p);
emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
emit_normalize_vec3(p, half, half);
} else if (p->state->unit[i].light_eyepos3_is_zero) {
half = register_param3(p, STATE_INTERNAL,
STATE_LIGHT_HALF_VECTOR, i);
} else {
struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
half = get_temp(p);
emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
emit_normalize_vec3(p, half, half);
}
}
/* Calculate dot products:
*/
if (p->state->material_shininess_is_zero) {
emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
}
else {
emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
}
/* Front face lighting:
*/
{
struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
struct ureg res0, res1;
GLuint mask0, mask1;
if (count == nr_lights) {
if (separate) {
mask0 = WRITEMASK_XYZ;
mask1 = WRITEMASK_XYZ;
res0 = register_output( p, VARYING_SLOT_COL0 );
res1 = register_output( p, VARYING_SLOT_COL1 );
}
else {
mask0 = 0;
mask1 = WRITEMASK_XYZ;
res0 = _col0;
res1 = register_output( p, VARYING_SLOT_COL0 );
}
}
else {
mask0 = 0;
mask1 = 0;
res0 = _col0;
res1 = _col1;
}
if (!is_undef(att)) {
/* light is attenuated by distance */
emit_op1(p, OPCODE_LIT, lit, 0, dots);
emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
}
else if (!p->state->material_shininess_is_zero) {
/* there's a non-zero specular term */
emit_op1(p, OPCODE_LIT, lit, 0, dots);
emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
}
else {
/* no attenutation, no specular */
emit_degenerate_lit(p, lit, dots);
emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
}
emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
release_temp(p, ambient);
release_temp(p, diffuse);
release_temp(p, specular);
}
/* Back face lighting:
*/
if (twoside) {
struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
struct ureg res0, res1;
GLuint mask0, mask1;
if (count == nr_lights) {
if (separate) {
mask0 = WRITEMASK_XYZ;
mask1 = WRITEMASK_XYZ;
res0 = register_output( p, VARYING_SLOT_BFC0 );
res1 = register_output( p, VARYING_SLOT_BFC1 );
}
else {
mask0 = 0;
mask1 = WRITEMASK_XYZ;
res0 = _bfc0;
res1 = register_output( p, VARYING_SLOT_BFC0 );
}
}
else {
res0 = _bfc0;
res1 = _bfc1;
mask0 = 0;
mask1 = 0;
}
/* For the back face we need to negate the X and Y component
* dot products. dots.Z has the negated back-face specular
* exponent. We swizzle that into the W position. This
* negation makes the back-face specular term positive again.
*/
dots = negate(swizzle(dots,X,Y,W,Z));
if (!is_undef(att)) {
emit_op1(p, OPCODE_LIT, lit, 0, dots);
emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
}
else if (!p->state->material_shininess_is_zero) {
emit_op1(p, OPCODE_LIT, lit, 0, dots);
emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
}
else {
emit_degenerate_lit(p, lit, dots);
emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
}
emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
/* restore dots to its original state for subsequent lights
* by negating and swizzling again.
*/
dots = negate(swizzle(dots,X,Y,W,Z));
release_temp(p, ambient);
release_temp(p, diffuse);
release_temp(p, specular);
}
release_temp(p, half);
release_temp(p, VPpli);
release_temp(p, att);
}
}
release_temps( p );
}
static void build_fog( struct tnl_program *p )
{
struct ureg fog = register_output(p, VARYING_SLOT_FOGC);
struct ureg input;
if (p->state->fog_source_is_depth) {
switch (p->state->fog_distance_mode) {
case FDM_EYE_RADIAL: /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
input = get_eye_position(p);
emit_op2(p, OPCODE_DP3, fog, WRITEMASK_X, input, input);
emit_op1(p, OPCODE_RSQ, fog, WRITEMASK_X, fog);
emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, fog);
break;
case FDM_EYE_PLANE: /* Z = Ze */
input = get_eye_position_z(p);
emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
break;
case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
input = get_eye_position_z(p);
emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
break;
default:
assert(!"Bad fog mode in build_fog()");
break;
}
}
else {
input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
}
emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
}
static void build_reflect_texgen( struct tnl_program *p,
struct ureg dest,
GLuint writemask )
{
struct ureg normal = get_transformed_normal(p);
struct ureg eye_hat = get_eye_position_normalized(p);
struct ureg tmp = get_temp(p);
/* n.u */
emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
/* 2n.u */
emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
/* (-2n.u)n + u */
emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
release_temp(p, tmp);
}
static void build_sphere_texgen( struct tnl_program *p,
struct ureg dest,
GLuint writemask )
{
struct ureg normal = get_transformed_normal(p);
struct ureg eye_hat = get_eye_position_normalized(p);
struct ureg tmp = get_temp(p);
struct ureg half = register_scalar_const(p, .5);
struct ureg r = get_temp(p);
struct ureg inv_m = get_temp(p);
struct ureg id = get_identity_param(p);
/* Could share the above calculations, but it would be
* a fairly odd state for someone to set (both sphere and
* reflection active for different texture coordinate
* components. Of course - if two texture units enable
* reflect and/or sphere, things start to tilt in favour
* of seperating this out:
*/
/* n.u */
emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
/* 2n.u */
emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
/* (-2n.u)n + u */
emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
/* r + 0,0,1 */
emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
/* rx^2 + ry^2 + (rz+1)^2 */
emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
/* 2/m */
emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
/* 1/m */
emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
/* r/m + 1/2 */
emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
release_temp(p, tmp);
release_temp(p, r);
release_temp(p, inv_m);
}
static void build_texture_transform( struct tnl_program *p )
{
GLuint i, j;
for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
if (!(p->state->fragprog_inputs_read & VARYING_BIT_TEX(i)))
continue;
if (p->state->unit[i].coord_replace)
continue;
if (p->state->unit[i].texgen_enabled ||
p->state->unit[i].texmat_enabled) {
GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
struct ureg out = register_output(p, VARYING_SLOT_TEX0 + i);
struct ureg out_texgen = undef;
if (p->state->unit[i].texgen_enabled) {
GLuint copy_mask = 0;
GLuint sphere_mask = 0;
GLuint reflect_mask = 0;
GLuint normal_mask = 0;
GLuint modes[4];
if (texmat_enabled)
out_texgen = get_temp(p);
else
out_texgen = out;
modes[0] = p->state->unit[i].texgen_mode0;
modes[1] = p->state->unit[i].texgen_mode1;
modes[2] = p->state->unit[i].texgen_mode2;
modes[3] = p->state->unit[i].texgen_mode3;
for (j = 0; j < 4; j++) {
switch (modes[j]) {
case TXG_OBJ_LINEAR: {
struct ureg obj = register_input(p, VERT_ATTRIB_POS);
struct ureg plane =
register_param3(p, STATE_TEXGEN, i,
STATE_TEXGEN_OBJECT_S + j);
emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
obj, plane );
break;
}
case TXG_EYE_LINEAR: {
struct ureg eye = get_eye_position(p);
struct ureg plane =
register_param3(p, STATE_TEXGEN, i,
STATE_TEXGEN_EYE_S + j);
emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
eye, plane );
break;
}
case TXG_SPHERE_MAP:
sphere_mask |= WRITEMASK_X << j;
break;
case TXG_REFLECTION_MAP:
reflect_mask |= WRITEMASK_X << j;
break;
case TXG_NORMAL_MAP:
normal_mask |= WRITEMASK_X << j;
break;
case TXG_NONE:
copy_mask |= WRITEMASK_X << j;
}
}
if (sphere_mask) {
build_sphere_texgen(p, out_texgen, sphere_mask);
}
if (reflect_mask) {
build_reflect_texgen(p, out_texgen, reflect_mask);
}
if (normal_mask) {
struct ureg normal = get_transformed_normal(p);
emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
}
if (copy_mask) {
struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
}
}
if (texmat_enabled) {
struct ureg texmat[4];
struct ureg in = (!is_undef(out_texgen) ?
out_texgen :
register_input(p, VERT_ATTRIB_TEX0+i));
if (p->mvp_with_dp4) {
register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
0, texmat );
emit_matrix_transform_vec4( p, out, texmat, in );
}
else {
register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
STATE_MATRIX_TRANSPOSE, texmat );
emit_transpose_matrix_transform_vec4( p, out, texmat, in );
}
}
release_temps(p);
}
else {
emit_passthrough(p, VERT_ATTRIB_TEX0+i, VARYING_SLOT_TEX0+i);
}
}
}
/**
* Point size attenuation computation.
*/
static void build_atten_pointsize( struct tnl_program *p )
{
struct ureg eye = get_eye_position_z(p);
struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
struct ureg ut = get_temp(p);
/* dist = |eyez| */
emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
/* p1 + dist * (p2 + dist * p3); */
emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
ut, swizzle1(state_attenuation, X));
/* 1 / sqrt(factor) */
emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
#if 0
/* out = pointSize / sqrt(factor) */
emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
#else
/* this is a good place to clamp the point size since there's likely
* no hardware registers to clamp point size at rasterization time.
*/
emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
#endif
release_temp(p, ut);
}
/**
* Pass-though per-vertex point size, from user's point size array.
*/
static void build_array_pointsize( struct tnl_program *p )
{
struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
}
static void build_tnl_program( struct tnl_program *p )
{
/* Emit the program, starting with the modelview, projection transforms:
*/
build_hpos(p);
/* Lighting calculations:
*/
if (p->state->fragprog_inputs_read & (VARYING_BIT_COL0|VARYING_BIT_COL1)) {
if (p->state->light_global_enabled)
build_lighting(p);
else {
if (p->state->fragprog_inputs_read & VARYING_BIT_COL0)
emit_passthrough(p, VERT_ATTRIB_COLOR0, VARYING_SLOT_COL0);
if (p->state->fragprog_inputs_read & VARYING_BIT_COL1)
emit_passthrough(p, VERT_ATTRIB_COLOR1, VARYING_SLOT_COL1);
}
}
if (p->state->fragprog_inputs_read & VARYING_BIT_FOGC)
build_fog(p);
if (p->state->fragprog_inputs_read & VARYING_BITS_TEX_ANY)
build_texture_transform(p);
if (p->state->point_attenuated)
build_atten_pointsize(p);
else if (p->state->point_array)
build_array_pointsize(p);
/* Finish up:
*/
emit_op1(p, OPCODE_END, undef, 0, undef);
/* Disassemble:
*/
if (DISASSEM) {
printf ("\n");
}
}
static void
create_new_program( const struct state_key *key,
struct gl_program *program,
GLboolean mvp_with_dp4,
GLuint max_temps)
{
struct tnl_program p;
memset(&p, 0, sizeof(p));
p.state = key;
p.program = program;
p.eye_position = undef;
p.eye_position_z = undef;
p.eye_position_normalized = undef;
p.transformed_normal = undef;
p.identity = undef;
p.temp_in_use = 0;
p.mvp_with_dp4 = mvp_with_dp4;
if (max_temps >= sizeof(int) * 8)
p.temp_reserved = 0;
else
p.temp_reserved = ~((1<<max_temps)-1);
/* Start by allocating 32 instructions.
* If we need more, we'll grow the instruction array as needed.
*/
p.max_inst = 32;
p.program->arb.Instructions =
rzalloc_array(program, struct prog_instruction, p.max_inst);
p.program->String = NULL;
p.program->arb.NumInstructions =
p.program->arb.NumTemporaries =
p.program->arb.NumParameters =
p.program->arb.NumAttributes = p.program->arb.NumAddressRegs = 0;
p.program->Parameters = _mesa_new_parameter_list();
p.program->info.inputs_read = 0;
p.program->info.outputs_written = 0;
build_tnl_program( &p );
}
/**
* Return a vertex program which implements the current fixed-function
* transform/lighting/texgen operations.
*/
struct gl_program *
_mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
{
struct gl_program *prog;
struct state_key key;
/* Grab all the relevant state and put it in a single structure:
*/
make_state_key(ctx, &key);
/* Look for an already-prepared program for this state:
*/
prog = _mesa_search_program_cache(ctx->VertexProgram.Cache, &key,
sizeof(key));
if (!prog) {
/* OK, we'll have to build a new one */
if (0)
printf("Build new TNL program\n");
prog = ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0, true);
if (!prog)
return NULL;
create_new_program( &key, prog,
ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS,
ctx->Const.Program[MESA_SHADER_VERTEX].MaxTemps );
if (ctx->Driver.ProgramStringNotify)
ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB, prog);
_mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache, &key,
sizeof(key), prog);
}
return prog;
}