/*
* Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
* Copyright (C) 2008 VMware, Inc. All Rights Reserved.
* Copyright © 2010 Intel Corporation
* Copyright © 2011 Bryan Cain
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file glsl_to_tgsi.cpp
*
* Translate GLSL IR to TGSI.
*/
#include "st_glsl_to_tgsi.h"
#include "compiler/glsl/glsl_parser_extras.h"
#include "compiler/glsl/ir_optimization.h"
#include "compiler/glsl/program.h"
#include "main/errors.h"
#include "main/shaderobj.h"
#include "main/uniforms.h"
#include "main/shaderapi.h"
#include "main/shaderimage.h"
#include "program/prog_instruction.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "tgsi/tgsi_ureg.h"
#include "tgsi/tgsi_info.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "st_glsl_types.h"
#include "st_program.h"
#include "st_mesa_to_tgsi.h"
#include "st_format.h"
#include "st_nir.h"
#include "st_shader_cache.h"
#include "st_glsl_to_tgsi_temprename.h"
#include "util/hash_table.h"
#include <algorithm>
#define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
(1 << PROGRAM_CONSTANT) | \
(1 << PROGRAM_UNIFORM))
#define MAX_GLSL_TEXTURE_OFFSET 4
static unsigned is_precise(const ir_variable *ir)
{
if (!ir)
return 0;
return ir->data.precise || ir->data.invariant;
}
class variable_storage {
DECLARE_RZALLOC_CXX_OPERATORS(variable_storage)
public:
variable_storage(ir_variable *var, gl_register_file file, int index,
unsigned array_id = 0)
: file(file), index(index), component(0), var(var), array_id(array_id)
{
assert(file != PROGRAM_ARRAY || array_id != 0);
}
gl_register_file file;
int index;
/* Explicit component location. This is given in terms of the GLSL-style
* swizzles where each double is a single component, i.e. for 64-bit types
* it can only be 0 or 1.
*/
int component;
ir_variable *var; /* variable that maps to this, if any */
unsigned array_id;
};
class immediate_storage : public exec_node {
public:
immediate_storage(gl_constant_value *values, int size32, int type)
{
memcpy(this->values, values, size32 * sizeof(gl_constant_value));
this->size32 = size32;
this->type = type;
}
/* doubles are stored across 2 gl_constant_values */
gl_constant_value values[4];
int size32; /**< Number of 32-bit components (1-4) */
int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
};
static const st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
static const st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
struct inout_decl {
unsigned mesa_index;
unsigned array_id; /* TGSI ArrayID; 1-based: 0 means not an array */
unsigned size;
unsigned interp_loc;
unsigned gs_out_streams;
enum glsl_interp_mode interp;
enum glsl_base_type base_type;
ubyte usage_mask; /* GLSL-style usage-mask, i.e. single bit per double */
};
static struct inout_decl *
find_inout_array(struct inout_decl *decls, unsigned count, unsigned array_id)
{
assert(array_id != 0);
for (unsigned i = 0; i < count; i++) {
struct inout_decl *decl = &decls[i];
if (array_id == decl->array_id) {
return decl;
}
}
return NULL;
}
static enum glsl_base_type
find_array_type(struct inout_decl *decls, unsigned count, unsigned array_id)
{
if (!array_id)
return GLSL_TYPE_ERROR;
struct inout_decl *decl = find_inout_array(decls, count, array_id);
if (decl)
return decl->base_type;
return GLSL_TYPE_ERROR;
}
struct hwatomic_decl {
unsigned location;
unsigned binding;
unsigned size;
unsigned array_id;
};
struct glsl_to_tgsi_visitor : public ir_visitor {
public:
glsl_to_tgsi_visitor();
~glsl_to_tgsi_visitor();
struct gl_context *ctx;
struct gl_program *prog;
struct gl_shader_program *shader_program;
struct gl_linked_shader *shader;
struct gl_shader_compiler_options *options;
int next_temp;
unsigned *array_sizes;
unsigned max_num_arrays;
unsigned next_array;
struct inout_decl inputs[4 * PIPE_MAX_SHADER_INPUTS];
unsigned num_inputs;
unsigned num_input_arrays;
struct inout_decl outputs[4 * PIPE_MAX_SHADER_OUTPUTS];
unsigned num_outputs;
unsigned num_output_arrays;
struct hwatomic_decl atomic_info[PIPE_MAX_HW_ATOMIC_BUFFERS];
unsigned num_atomics;
unsigned num_atomic_arrays;
int num_address_regs;
uint32_t samplers_used;
glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
enum tgsi_texture_type sampler_targets[PIPE_MAX_SAMPLERS];
int images_used;
int image_targets[PIPE_MAX_SHADER_IMAGES];
enum pipe_format image_formats[PIPE_MAX_SHADER_IMAGES];
bool indirect_addr_consts;
int wpos_transform_const;
bool native_integers;
bool have_sqrt;
bool have_fma;
bool use_shared_memory;
bool has_tex_txf_lz;
bool precise;
bool need_uarl;
variable_storage *find_variable_storage(ir_variable *var);
int add_constant(gl_register_file file, gl_constant_value values[8],
int size, int datatype, uint16_t *swizzle_out);
st_src_reg get_temp(const glsl_type *type);
void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
st_src_reg st_src_reg_for_double(double val);
st_src_reg st_src_reg_for_float(float val);
st_src_reg st_src_reg_for_int(int val);
st_src_reg st_src_reg_for_int64(int64_t val);
st_src_reg st_src_reg_for_type(enum glsl_base_type type, int val);
/**
* \name Visit methods
*
* As typical for the visitor pattern, there must be one \c visit method for
* each concrete subclass of \c ir_instruction. Virtual base classes within
* the hierarchy should not have \c visit methods.
*/
/*@{*/
virtual void visit(ir_variable *);
virtual void visit(ir_loop *);
virtual void visit(ir_loop_jump *);
virtual void visit(ir_function_signature *);
virtual void visit(ir_function *);
virtual void visit(ir_expression *);
virtual void visit(ir_swizzle *);
virtual void visit(ir_dereference_variable *);
virtual void visit(ir_dereference_array *);
virtual void visit(ir_dereference_record *);
virtual void visit(ir_assignment *);
virtual void visit(ir_constant *);
virtual void visit(ir_call *);
virtual void visit(ir_return *);
virtual void visit(ir_discard *);
virtual void visit(ir_texture *);
virtual void visit(ir_if *);
virtual void visit(ir_emit_vertex *);
virtual void visit(ir_end_primitive *);
virtual void visit(ir_barrier *);
/*@}*/
void visit_expression(ir_expression *, st_src_reg *) ATTRIBUTE_NOINLINE;
void visit_atomic_counter_intrinsic(ir_call *);
void visit_ssbo_intrinsic(ir_call *);
void visit_membar_intrinsic(ir_call *);
void visit_shared_intrinsic(ir_call *);
void visit_image_intrinsic(ir_call *);
void visit_generic_intrinsic(ir_call *, unsigned op);
st_src_reg result;
/** List of variable_storage */
struct hash_table *variables;
/** List of immediate_storage */
exec_list immediates;
unsigned num_immediates;
/** List of glsl_to_tgsi_instruction */
exec_list instructions;
glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
st_dst_reg dst = undef_dst,
st_src_reg src0 = undef_src,
st_src_reg src1 = undef_src,
st_src_reg src2 = undef_src,
st_src_reg src3 = undef_src);
glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_dst_reg dst1,
st_src_reg src0 = undef_src,
st_src_reg src1 = undef_src,
st_src_reg src2 = undef_src,
st_src_reg src3 = undef_src);
unsigned get_opcode(unsigned op,
st_dst_reg dst,
st_src_reg src0, st_src_reg src1);
/**
* Emit the correct dot-product instruction for the type of arguments
*/
glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
st_dst_reg dst,
st_src_reg src0,
st_src_reg src1,
unsigned elements);
void emit_scalar(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_src_reg src0);
void emit_scalar(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_src_reg src0, st_src_reg src1);
void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
void get_deref_offsets(ir_dereference *ir,
unsigned *array_size,
unsigned *base,
uint16_t *index,
st_src_reg *reladdr,
bool opaque);
void calc_deref_offsets(ir_dereference *tail,
unsigned *array_elements,
uint16_t *index,
st_src_reg *indirect,
unsigned *location);
st_src_reg canonicalize_gather_offset(st_src_reg offset);
bool try_emit_mad(ir_expression *ir,
int mul_operand);
bool try_emit_mad_for_and_not(ir_expression *ir,
int mul_operand);
void emit_swz(ir_expression *ir);
bool process_move_condition(ir_rvalue *ir);
void simplify_cmp(void);
void rename_temp_registers(struct rename_reg_pair *renames);
void get_first_temp_read(int *first_reads);
void get_first_temp_write(int *first_writes);
void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
void get_last_temp_write(int *last_writes);
void copy_propagate(void);
int eliminate_dead_code(void);
void merge_two_dsts(void);
void merge_registers(void);
void renumber_registers(void);
void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
st_dst_reg *l, st_src_reg *r,
st_src_reg *cond, bool cond_swap);
void *mem_ctx;
};
static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
static void
fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
static void
fail_link(struct gl_shader_program *prog, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
ralloc_vasprintf_append(&prog->data->InfoLog, fmt, args);
va_end(args);
prog->data->LinkStatus = linking_failure;
}
int
swizzle_for_size(int size)
{
static const int size_swizzles[4] = {
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
};
assert((size >= 1) && (size <= 4));
return size_swizzles[size - 1];
}
glsl_to_tgsi_instruction *
glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_dst_reg dst1,
st_src_reg src0, st_src_reg src1,
st_src_reg src2, st_src_reg src3)
{
glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
int num_reladdr = 0, i, j;
bool dst_is_64bit[2];
op = get_opcode(op, dst, src0, src1);
/* If we have to do relative addressing, we want to load the ARL
* reg directly for one of the regs, and preload the other reladdr
* sources into temps.
*/
num_reladdr += dst.reladdr != NULL || dst.reladdr2;
assert(!dst1.reladdr); /* should be lowered in earlier passes */
num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
reladdr_to_temp(ir, &src3, &num_reladdr);
reladdr_to_temp(ir, &src2, &num_reladdr);
reladdr_to_temp(ir, &src1, &num_reladdr);
reladdr_to_temp(ir, &src0, &num_reladdr);
if (dst.reladdr || dst.reladdr2) {
if (dst.reladdr)
emit_arl(ir, address_reg, *dst.reladdr);
if (dst.reladdr2)
emit_arl(ir, address_reg2, *dst.reladdr2);
num_reladdr--;
}
assert(num_reladdr == 0);
/* inst->op has only 8 bits. */
STATIC_ASSERT(TGSI_OPCODE_LAST <= 255);
inst->op = op;
inst->precise = this->precise;
inst->info = tgsi_get_opcode_info(op);
inst->dst[0] = dst;
inst->dst[1] = dst1;
inst->src[0] = src0;
inst->src[1] = src1;
inst->src[2] = src2;
inst->src[3] = src3;
inst->is_64bit_expanded = false;
inst->ir = ir;
inst->dead_mask = 0;
inst->tex_offsets = NULL;
inst->tex_offset_num_offset = 0;
inst->saturate = 0;
inst->tex_shadow = 0;
/* default to float, for paths where this is not initialized
* (since 0==UINT which is likely wrong):
*/
inst->tex_type = GLSL_TYPE_FLOAT;
/* Update indirect addressing status used by TGSI */
if (dst.reladdr || dst.reladdr2) {
switch(dst.file) {
case PROGRAM_STATE_VAR:
case PROGRAM_CONSTANT:
case PROGRAM_UNIFORM:
this->indirect_addr_consts = true;
break;
case PROGRAM_IMMEDIATE:
assert(!"immediates should not have indirect addressing");
break;
default:
break;
}
}
else {
for (i = 0; i < 4; i++) {
if(inst->src[i].reladdr) {
switch(inst->src[i].file) {
case PROGRAM_STATE_VAR:
case PROGRAM_CONSTANT:
case PROGRAM_UNIFORM:
this->indirect_addr_consts = true;
break;
case PROGRAM_IMMEDIATE:
assert(!"immediates should not have indirect addressing");
break;
default:
break;
}
}
}
}
/*
* This section contains the double processing.
* GLSL just represents doubles as single channel values,
* however most HW and TGSI represent doubles as pairs of register channels.
*
* so we have to fixup destination writemask/index and src swizzle/indexes.
* dest writemasks need to translate from single channel write mask
* to a dual-channel writemask, but also need to modify the index,
* if we are touching the Z,W fields in the pre-translated writemask.
*
* src channels have similiar index modifications along with swizzle
* changes to we pick the XY, ZW pairs from the correct index.
*
* GLSL [0].x -> TGSI [0].xy
* GLSL [0].y -> TGSI [0].zw
* GLSL [0].z -> TGSI [1].xy
* GLSL [0].w -> TGSI [1].zw
*/
for (j = 0; j < 2; j++) {
dst_is_64bit[j] = glsl_base_type_is_64bit(inst->dst[j].type);
if (!dst_is_64bit[j] && inst->dst[j].file == PROGRAM_OUTPUT && inst->dst[j].type == GLSL_TYPE_ARRAY) {
enum glsl_base_type type = find_array_type(this->outputs, this->num_outputs, inst->dst[j].array_id);
if (glsl_base_type_is_64bit(type))
dst_is_64bit[j] = true;
}
}
if (dst_is_64bit[0] || dst_is_64bit[1] ||
glsl_base_type_is_64bit(inst->src[0].type)) {
glsl_to_tgsi_instruction *dinst = NULL;
int initial_src_swz[4], initial_src_idx[4];
int initial_dst_idx[2], initial_dst_writemask[2];
/* select the writemask for dst0 or dst1 */
unsigned writemask = inst->dst[1].file == PROGRAM_UNDEFINED ? inst->dst[0].writemask : inst->dst[1].writemask;
/* copy out the writemask, index and swizzles for all src/dsts. */
for (j = 0; j < 2; j++) {
initial_dst_writemask[j] = inst->dst[j].writemask;
initial_dst_idx[j] = inst->dst[j].index;
}
for (j = 0; j < 4; j++) {
initial_src_swz[j] = inst->src[j].swizzle;
initial_src_idx[j] = inst->src[j].index;
}
/*
* scan all the components in the dst writemask
* generate an instruction for each of them if required.
*/
st_src_reg addr;
while (writemask) {
int i = u_bit_scan(&writemask);
/* before emitting the instruction, see if we have to adjust load / store
* address */
if (i > 1 && (inst->op == TGSI_OPCODE_LOAD || inst->op == TGSI_OPCODE_STORE) &&
addr.file == PROGRAM_UNDEFINED) {
/* We have to advance the buffer address by 16 */
addr = get_temp(glsl_type::uint_type);
emit_asm(ir, TGSI_OPCODE_UADD, st_dst_reg(addr),
inst->src[0], st_src_reg_for_int(16));
}
/* first time use previous instruction */
if (dinst == NULL) {
dinst = inst;
} else {
/* create a new instructions for subsequent attempts */
dinst = new(mem_ctx) glsl_to_tgsi_instruction();
*dinst = *inst;
dinst->next = NULL;
dinst->prev = NULL;
}
this->instructions.push_tail(dinst);
dinst->is_64bit_expanded = true;
/* modify the destination if we are splitting */
for (j = 0; j < 2; j++) {
if (dst_is_64bit[j]) {
dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
dinst->dst[j].index = initial_dst_idx[j];
if (i > 1) {
if (dinst->op == TGSI_OPCODE_LOAD || dinst->op == TGSI_OPCODE_STORE)
dinst->src[0] = addr;
if (dinst->op != TGSI_OPCODE_STORE)
dinst->dst[j].index++;
}
} else {
/* if we aren't writing to a double, just get the bit of the initial writemask
for this channel */
dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
}
}
/* modify the src registers */
for (j = 0; j < 4; j++) {
int swz = GET_SWZ(initial_src_swz[j], i);
if (glsl_base_type_is_64bit(dinst->src[j].type)) {
dinst->src[j].index = initial_src_idx[j];
if (swz > 1) {
dinst->src[j].double_reg2 = true;
dinst->src[j].index++;
}
if (swz & 1)
dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
else
dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
} else {
/* some opcodes are special case in what they use as sources
- [FUI]2D/[UI]2I64 is a float/[u]int src0, (D)LDEXP is integer src1 */
if (op == TGSI_OPCODE_F2D || op == TGSI_OPCODE_U2D || op == TGSI_OPCODE_I2D ||
op == TGSI_OPCODE_I2I64 || op == TGSI_OPCODE_U2I64 ||
op == TGSI_OPCODE_DLDEXP || op == TGSI_OPCODE_LDEXP ||
(op == TGSI_OPCODE_UCMP && dst_is_64bit[0])) {
dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
}
}
}
}
inst = dinst;
} else {
this->instructions.push_tail(inst);
}
return inst;
}
glsl_to_tgsi_instruction *
glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
st_dst_reg dst,
st_src_reg src0, st_src_reg src1,
st_src_reg src2, st_src_reg src3)
{
return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
}
/**
* Determines whether to use an integer, unsigned integer, or float opcode
* based on the operands and input opcode, then emits the result.
*/
unsigned
glsl_to_tgsi_visitor::get_opcode(unsigned op,
st_dst_reg dst,
st_src_reg src0, st_src_reg src1)
{
enum glsl_base_type type = GLSL_TYPE_FLOAT;
if (op == TGSI_OPCODE_MOV)
return op;
assert(src0.type != GLSL_TYPE_ARRAY);
assert(src0.type != GLSL_TYPE_STRUCT);
assert(src1.type != GLSL_TYPE_ARRAY);
assert(src1.type != GLSL_TYPE_STRUCT);
if (is_resource_instruction(op))
type = src1.type;
else if (src0.type == GLSL_TYPE_INT64 || src1.type == GLSL_TYPE_INT64)
type = GLSL_TYPE_INT64;
else if (src0.type == GLSL_TYPE_UINT64 || src1.type == GLSL_TYPE_UINT64)
type = GLSL_TYPE_UINT64;
else if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
type = GLSL_TYPE_DOUBLE;
else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
type = GLSL_TYPE_FLOAT;
else if (native_integers)
type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
#define case7(c, f, i, u, d, i64, ui64) \
case TGSI_OPCODE_##c: \
if (type == GLSL_TYPE_UINT64) \
op = TGSI_OPCODE_##ui64; \
else if (type == GLSL_TYPE_INT64) \
op = TGSI_OPCODE_##i64; \
else if (type == GLSL_TYPE_DOUBLE) \
op = TGSI_OPCODE_##d; \
else if (type == GLSL_TYPE_INT) \
op = TGSI_OPCODE_##i; \
else if (type == GLSL_TYPE_UINT) \
op = TGSI_OPCODE_##u; \
else \
op = TGSI_OPCODE_##f; \
break;
#define casecomp(c, f, i, u, d, i64, ui64) \
case TGSI_OPCODE_##c: \
if (type == GLSL_TYPE_INT64) \
op = TGSI_OPCODE_##i64; \
else if (type == GLSL_TYPE_UINT64) \
op = TGSI_OPCODE_##ui64; \
else if (type == GLSL_TYPE_DOUBLE) \
op = TGSI_OPCODE_##d; \
else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE) \
op = TGSI_OPCODE_##i; \
else if (type == GLSL_TYPE_UINT) \
op = TGSI_OPCODE_##u; \
else if (native_integers) \
op = TGSI_OPCODE_##f; \
else \
op = TGSI_OPCODE_##c; \
break;
switch(op) {
/* Some instructions are initially selected without considering the type.
* This fixes the type:
*
* INIT FLOAT SINT UINT DOUBLE SINT64 UINT64
*/
case7(ADD, ADD, UADD, UADD, DADD, U64ADD, U64ADD);
case7(CEIL, CEIL, LAST, LAST, DCEIL, LAST, LAST);
case7(DIV, DIV, IDIV, UDIV, DDIV, I64DIV, U64DIV);
case7(FMA, FMA, UMAD, UMAD, DFMA, LAST, LAST);
case7(FLR, FLR, LAST, LAST, DFLR, LAST, LAST);
case7(FRC, FRC, LAST, LAST, DFRAC, LAST, LAST);
case7(MUL, MUL, UMUL, UMUL, DMUL, U64MUL, U64MUL);
case7(MAD, MAD, UMAD, UMAD, DMAD, LAST, LAST);
case7(MAX, MAX, IMAX, UMAX, DMAX, I64MAX, U64MAX);
case7(MIN, MIN, IMIN, UMIN, DMIN, I64MIN, U64MIN);
case7(RCP, RCP, LAST, LAST, DRCP, LAST, LAST);
case7(ROUND, ROUND,LAST, LAST, DROUND, LAST, LAST);
case7(RSQ, RSQ, LAST, LAST, DRSQ, LAST, LAST);
case7(SQRT, SQRT, LAST, LAST, DSQRT, LAST, LAST);
case7(SSG, SSG, ISSG, ISSG, DSSG, I64SSG, I64SSG);
case7(TRUNC, TRUNC,LAST, LAST, DTRUNC, LAST, LAST);
case7(MOD, LAST, MOD, UMOD, LAST, I64MOD, U64MOD);
case7(SHL, LAST, SHL, SHL, LAST, U64SHL, U64SHL);
case7(IBFE, LAST, IBFE, UBFE, LAST, LAST, LAST);
case7(IMSB, LAST, IMSB, UMSB, LAST, LAST, LAST);
case7(IMUL_HI, LAST, IMUL_HI, UMUL_HI, LAST, LAST, LAST);
case7(ISHR, LAST, ISHR, USHR, LAST, I64SHR, U64SHR);
case7(ATOMIMAX,LAST, ATOMIMAX,ATOMUMAX,LAST, LAST, LAST);
case7(ATOMIMIN,LAST, ATOMIMIN,ATOMUMIN,LAST, LAST, LAST);
casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ, U64SEQ, U64SEQ);
casecomp(SNE, FSNE, USNE, USNE, DSNE, U64SNE, U64SNE);
casecomp(SGE, FSGE, ISGE, USGE, DSGE, I64SGE, U64SGE);
casecomp(SLT, FSLT, ISLT, USLT, DSLT, I64SLT, U64SLT);
default: break;
}
assert(op != TGSI_OPCODE_LAST);
return op;
}
glsl_to_tgsi_instruction *
glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
st_dst_reg dst, st_src_reg src0, st_src_reg src1,
unsigned elements)
{
static const unsigned dot_opcodes[] = {
TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
};
return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
}
/**
* Emits TGSI scalar opcodes to produce unique answers across channels.
*
* Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
* channel determines the result across all channels. So to do a vec4
* of this operation, we want to emit a scalar per source channel used
* to produce dest channels.
*/
void
glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
st_dst_reg dst,
st_src_reg orig_src0, st_src_reg orig_src1)
{
int i, j;
int done_mask = ~dst.writemask;
/* TGSI RCP is a scalar operation splatting results to all channels,
* like ARB_fp/vp. So emit as many RCPs as necessary to cover our
* dst channels.
*/
for (i = 0; i < 4; i++) {
GLuint this_mask = (1 << i);
st_src_reg src0 = orig_src0;
st_src_reg src1 = orig_src1;
if (done_mask & this_mask)
continue;
GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
for (j = i + 1; j < 4; j++) {
/* If there is another enabled component in the destination that is
* derived from the same inputs, generate its value on this pass as
* well.
*/
if (!(done_mask & (1 << j)) &&
GET_SWZ(src0.swizzle, j) == src0_swiz &&
GET_SWZ(src1.swizzle, j) == src1_swiz) {
this_mask |= (1 << j);
}
}
src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
src0_swiz, src0_swiz);
src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
src1_swiz, src1_swiz);
dst.writemask = this_mask;
emit_asm(ir, op, dst, src0, src1);
done_mask |= this_mask;
}
}
void
glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_src_reg src0)
{
st_src_reg undef = undef_src;
undef.swizzle = SWIZZLE_XXXX;
emit_scalar(ir, op, dst, src0, undef);
}
void
glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
st_dst_reg dst, st_src_reg src0)
{
int op = TGSI_OPCODE_ARL;
if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT) {
if (!this->need_uarl && src0.is_legal_tgsi_address_operand())
return;
op = TGSI_OPCODE_UARL;
}
assert(dst.file == PROGRAM_ADDRESS);
if (dst.index >= this->num_address_regs)
this->num_address_regs = dst.index + 1;
emit_asm(NULL, op, dst, src0);
}
int
glsl_to_tgsi_visitor::add_constant(gl_register_file file,
gl_constant_value values[8], int size, int datatype,
uint16_t *swizzle_out)
{
if (file == PROGRAM_CONSTANT) {
GLuint swizzle = swizzle_out ? *swizzle_out : 0;
int result = _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
size, datatype, &swizzle);
if (swizzle_out)
*swizzle_out = swizzle;
return result;
}
assert(file == PROGRAM_IMMEDIATE);
int index = 0;
immediate_storage *entry;
int size32 = size * ((datatype == GL_DOUBLE ||
datatype == GL_INT64_ARB ||
datatype == GL_UNSIGNED_INT64_ARB)? 2 : 1);
int i;
/* Search immediate storage to see if we already have an identical
* immediate that we can use instead of adding a duplicate entry.
*/
foreach_in_list(immediate_storage, entry, &this->immediates) {
immediate_storage *tmp = entry;
for (i = 0; i * 4 < size32; i++) {
int slot_size = MIN2(size32 - (i * 4), 4);
if (tmp->type != datatype || tmp->size32 != slot_size)
break;
if (memcmp(tmp->values, &values[i * 4],
slot_size * sizeof(gl_constant_value)))
break;
/* Everything matches, keep going until the full size is matched */
tmp = (immediate_storage *)tmp->next;
}
/* The full value matched */
if (i * 4 >= size32)
return index;
index++;
}
for (i = 0; i * 4 < size32; i++) {
int slot_size = MIN2(size32 - (i * 4), 4);
/* Add this immediate to the list. */
entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
this->immediates.push_tail(entry);
this->num_immediates++;
}
return index;
}
st_src_reg
glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
{
st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
union gl_constant_value uval;
uval.f = val;
src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
return src;
}
st_src_reg
glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
{
st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
union gl_constant_value uval[2];
memcpy(uval, &val, sizeof(uval));
src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
return src;
}
st_src_reg
glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
{
st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
union gl_constant_value uval;
assert(native_integers);
uval.i = val;
src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
return src;
}
st_src_reg
glsl_to_tgsi_visitor::st_src_reg_for_int64(int64_t val)
{
st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT64);
union gl_constant_value uval[2];
memcpy(uval, &val, sizeof(uval));
src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
return src;
}
st_src_reg
glsl_to_tgsi_visitor::st_src_reg_for_type(enum glsl_base_type type, int val)
{
if (native_integers)
return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
st_src_reg_for_int(val);
else
return st_src_reg_for_float(val);
}
static int
attrib_type_size(const struct glsl_type *type, bool is_vs_input)
{
return type->count_attribute_slots(is_vs_input);
}
static int
type_size(const struct glsl_type *type)
{
return type->count_attribute_slots(false);
}
static void
add_buffer_to_load_and_stores(glsl_to_tgsi_instruction *inst, st_src_reg *buf,
exec_list *instructions, ir_constant *access)
{
/**
* emit_asm() might have actually split the op into pieces, e.g. for
* double stores. We have to go back and fix up all the generated ops.
*/
unsigned op = inst->op;
do {
inst->resource = *buf;
if (access)
inst->buffer_access = access->value.u[0];
if (inst == instructions->get_head_raw())
break;
inst = (glsl_to_tgsi_instruction *)inst->get_prev();
if (inst->op == TGSI_OPCODE_UADD) {
if (inst == instructions->get_head_raw())
break;
inst = (glsl_to_tgsi_instruction *)inst->get_prev();
}
} while (inst->op == op && inst->resource.file == PROGRAM_UNDEFINED);
}
/**
* If the given GLSL type is an array or matrix or a structure containing
* an array/matrix member, return true. Else return false.
*
* This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
* or PROGRAM_ARRAY) should be used for variables of this type. Anytime
* we have an array that might be indexed with a variable, we need to use
* the later storage type.
*/
static bool
type_has_array_or_matrix(const glsl_type *type)
{
if (type->is_array() || type->is_matrix())
return true;
if (type->is_record()) {
for (unsigned i = 0; i < type->length; i++) {
if (type_has_array_or_matrix(type->fields.structure[i].type)) {
return true;
}
}
}
return false;
}
/**
* In the initial pass of codegen, we assign temporary numbers to
* intermediate results. (not SSA -- variable assignments will reuse
* storage).
*/
st_src_reg
glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
{
st_src_reg src;
src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
src.reladdr = NULL;
src.negate = 0;
src.abs = 0;
if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
if (next_array >= max_num_arrays) {
max_num_arrays += 32;
array_sizes = (unsigned*)
realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
}
src.file = PROGRAM_ARRAY;
src.index = 0;
src.array_id = next_array + 1;
array_sizes[next_array] = type_size(type);
++next_array;
} else {
src.file = PROGRAM_TEMPORARY;
src.index = next_temp;
next_temp += type_size(type);
}
if (type->is_array() || type->is_record()) {
src.swizzle = SWIZZLE_NOOP;
} else {
src.swizzle = swizzle_for_size(type->vector_elements);
}
return src;
}
variable_storage *
glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
{
struct hash_entry *entry;
entry = _mesa_hash_table_search(this->variables, var);
if (!entry)
return NULL;
return (variable_storage *)entry->data;
}
void
glsl_to_tgsi_visitor::visit(ir_variable *ir)
{
if (strcmp(ir->name, "gl_FragCoord") == 0) {
this->prog->OriginUpperLeft = ir->data.origin_upper_left;
this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
}
if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
unsigned int i;
const ir_state_slot *const slots = ir->get_state_slots();
assert(slots != NULL);
/* Check if this statevar's setup in the STATE file exactly
* matches how we'll want to reference it as a
* struct/array/whatever. If not, then we need to move it into
* temporary storage and hope that it'll get copy-propagated
* out.
*/
for (i = 0; i < ir->get_num_state_slots(); i++) {
if (slots[i].swizzle != SWIZZLE_XYZW) {
break;
}
}
variable_storage *storage;
st_dst_reg dst;
if (i == ir->get_num_state_slots()) {
/* We'll set the index later. */
storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
_mesa_hash_table_insert(this->variables, ir, storage);
dst = undef_dst;
} else {
/* The variable_storage constructor allocates slots based on the size
* of the type. However, this had better match the number of state
* elements that we're going to copy into the new temporary.
*/
assert((int) ir->get_num_state_slots() == type_size(ir->type));
dst = st_dst_reg(get_temp(ir->type));
storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index,
dst.array_id);
_mesa_hash_table_insert(this->variables, ir, storage);
}
for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
int index = _mesa_add_state_reference(this->prog->Parameters,
(gl_state_index *)slots[i].tokens);
if (storage->file == PROGRAM_STATE_VAR) {
if (storage->index == -1) {
storage->index = index;
} else {
assert(index == storage->index + (int)i);
}
} else {
/* We use GLSL_TYPE_FLOAT here regardless of the actual type of
* the data being moved since MOV does not care about the type of
* data it is moving, and we don't want to declare registers with
* array or struct types.
*/
st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
src.swizzle = slots[i].swizzle;
emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
/* even a float takes up a whole vec4 reg in a struct/array. */
dst.index++;
}
}
if (storage->file == PROGRAM_TEMPORARY &&
dst.index != storage->index + (int) ir->get_num_state_slots()) {
fail_link(this->shader_program,
"failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
ir->name, dst.index - storage->index,
type_size(ir->type));
}
}
}
void
glsl_to_tgsi_visitor::visit(ir_loop *ir)
{
emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
visit_exec_list(&ir->body_instructions, this);
emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
}
void
glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
{
switch (ir->mode) {
case ir_loop_jump::jump_break:
emit_asm(NULL, TGSI_OPCODE_BRK);
break;
case ir_loop_jump::jump_continue:
emit_asm(NULL, TGSI_OPCODE_CONT);
break;
}
}
void
glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
{
assert(0);
(void)ir;
}
void
glsl_to_tgsi_visitor::visit(ir_function *ir)
{
/* Ignore function bodies other than main() -- we shouldn't see calls to
* them since they should all be inlined before we get to glsl_to_tgsi.
*/
if (strcmp(ir->name, "main") == 0) {
const ir_function_signature *sig;
exec_list empty;
sig = ir->matching_signature(NULL, &empty, false);
assert(sig);
foreach_in_list(ir_instruction, ir, &sig->body) {
ir->accept(this);
}
}
}
bool
glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
{
int nonmul_operand = 1 - mul_operand;
st_src_reg a, b, c;
st_dst_reg result_dst;
ir_expression *expr = ir->operands[mul_operand]->as_expression();
if (!expr || expr->operation != ir_binop_mul)
return false;
expr->operands[0]->accept(this);
a = this->result;
expr->operands[1]->accept(this);
b = this->result;
ir->operands[nonmul_operand]->accept(this);
c = this->result;
this->result = get_temp(ir->type);
result_dst = st_dst_reg(this->result);
result_dst.writemask = (1 << ir->type->vector_elements) - 1;
emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
return true;
}
/**
* Emit MAD(a, -b, a) instead of AND(a, NOT(b))
*
* The logic values are 1.0 for true and 0.0 for false. Logical-and is
* implemented using multiplication, and logical-or is implemented using
* addition. Logical-not can be implemented as (true - x), or (1.0 - x).
* As result, the logical expression (a & !b) can be rewritten as:
*
* - a * !b
* - a * (1 - b)
* - (a * 1) - (a * b)
* - a + -(a * b)
* - a + (a * -b)
*
* This final expression can be implemented as a single MAD(a, -b, a)
* instruction.
*/
bool
glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
{
const int other_operand = 1 - try_operand;
st_src_reg a, b;
ir_expression *expr = ir->operands[try_operand]->as_expression();
if (!expr || expr->operation != ir_unop_logic_not)
return false;
ir->operands[other_operand]->accept(this);
a = this->result;
expr->operands[0]->accept(this);
b = this->result;
b.negate = ~b.negate;
this->result = get_temp(ir->type);
emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
return true;
}
void
glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
st_src_reg *reg, int *num_reladdr)
{
if (!reg->reladdr && !reg->reladdr2)
return;
if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
if (*num_reladdr != 1) {
st_src_reg temp = get_temp(glsl_type::get_instance(reg->type, 4, 1));
emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
*reg = temp;
}
(*num_reladdr)--;
}
void
glsl_to_tgsi_visitor::visit(ir_expression *ir)
{
st_src_reg op[ARRAY_SIZE(ir->operands)];
/* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
*/
if (!this->precise && ir->operation == ir_binop_add) {
if (try_emit_mad(ir, 1))
return;
if (try_emit_mad(ir, 0))
return;
}
/* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
*/
if (!native_integers && ir->operation == ir_binop_logic_and) {
if (try_emit_mad_for_and_not(ir, 1))
return;
if (try_emit_mad_for_and_not(ir, 0))
return;
}
if (ir->operation == ir_quadop_vector)
assert(!"ir_quadop_vector should have been lowered");
for (unsigned int operand = 0; operand < ir->num_operands; operand++) {
this->result.file = PROGRAM_UNDEFINED;
ir->operands[operand]->accept(this);
if (this->result.file == PROGRAM_UNDEFINED) {
printf("Failed to get tree for expression operand:\n");
ir->operands[operand]->print();
printf("\n");
exit(1);
}
op[operand] = this->result;
/* Matrix expression operands should have been broken down to vector
* operations already.
*/
assert(!ir->operands[operand]->type->is_matrix());
}
visit_expression(ir, op);
}
/* The non-recursive part of the expression visitor lives in a separate
* function and should be prevented from being inlined, to avoid a stack
* explosion when deeply nested expressions are visited.
*/
void
glsl_to_tgsi_visitor::visit_expression(ir_expression* ir, st_src_reg *op)
{
st_src_reg result_src;
st_dst_reg result_dst;
int vector_elements = ir->operands[0]->type->vector_elements;
if (ir->operands[1] &&
ir->operation != ir_binop_interpolate_at_offset &&
ir->operation != ir_binop_interpolate_at_sample) {
st_src_reg *swz_op = NULL;
if (vector_elements > ir->operands[1]->type->vector_elements) {
assert(ir->operands[1]->type->vector_elements == 1);
swz_op = &op[1];
} else if (vector_elements < ir->operands[1]->type->vector_elements) {
assert(ir->operands[0]->type->vector_elements == 1);
swz_op = &op[0];
}
if (swz_op) {
uint16_t swizzle_x = GET_SWZ(swz_op->swizzle, 0);
swz_op->swizzle = MAKE_SWIZZLE4(swizzle_x, swizzle_x,
swizzle_x, swizzle_x);
}
vector_elements = MAX2(vector_elements,
ir->operands[1]->type->vector_elements);
}
if (ir->operands[2] &&
ir->operands[2]->type->vector_elements != vector_elements) {
/* This can happen with ir_triop_lrp, i.e. glsl mix */
assert(ir->operands[2]->type->vector_elements == 1);
uint16_t swizzle_x = GET_SWZ(op[2].swizzle, 0);
op[2].swizzle = MAKE_SWIZZLE4(swizzle_x, swizzle_x,
swizzle_x, swizzle_x);
}
this->result.file = PROGRAM_UNDEFINED;
/* Storage for our result. Ideally for an assignment we'd be using
* the actual storage for the result here, instead.
*/
result_src = get_temp(ir->type);
/* convenience for the emit functions below. */
result_dst = st_dst_reg(result_src);
/* Limit writes to the channels that will be used by result_src later.
* This does limit this temp's use as a temporary for multi-instruction
* sequences.
*/
result_dst.writemask = (1 << ir->type->vector_elements) - 1;
switch (ir->operation) {
case ir_unop_logic_not:
if (result_dst.type != GLSL_TYPE_FLOAT)
emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
else {
/* Previously 'SEQ dst, src, 0.0' was used for this. However, many
* older GPUs implement SEQ using multiple instructions (i915 uses two
* SGE instructions and a MUL instruction). Since our logic values are
* 0.0 and 1.0, 1-x also implements !x.
*/
op[0].negate = ~op[0].negate;
emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
}
break;
case ir_unop_neg:
if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
emit_asm(ir, TGSI_OPCODE_I64NEG, result_dst, op[0]);
else if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
else if (result_dst.type == GLSL_TYPE_DOUBLE)
emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
else {
op[0].negate = ~op[0].negate;
result_src = op[0];
}
break;
case ir_unop_subroutine_to_int:
emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
break;
case ir_unop_abs:
if (result_dst.type == GLSL_TYPE_FLOAT)
emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0].get_abs());
else if (result_dst.type == GLSL_TYPE_DOUBLE)
emit_asm(ir, TGSI_OPCODE_DABS, result_dst, op[0]);
else if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
emit_asm(ir, TGSI_OPCODE_I64ABS, result_dst, op[0]);
else
emit_asm(ir, TGSI_OPCODE_IABS, result_dst, op[0]);
break;
case ir_unop_sign:
emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
break;
case ir_unop_rcp:
emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
break;
case ir_unop_exp2:
emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
break;
case ir_unop_exp:
assert(!"not reached: should be handled by exp_to_exp2");
break;
case ir_unop_log:
assert(!"not reached: should be handled by log_to_log2");
break;
case ir_unop_log2:
emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
break;
case ir_unop_sin:
emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
break;
case ir_unop_cos:
emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
break;
case ir_unop_saturate: {
glsl_to_tgsi_instruction *inst;
inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
inst->saturate = true;
break;
}
case ir_unop_dFdx:
case ir_unop_dFdx_coarse:
emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
break;
case ir_unop_dFdx_fine:
emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
break;
case ir_unop_dFdy:
case ir_unop_dFdy_coarse:
case ir_unop_dFdy_fine:
{
/* The X component contains 1 or -1 depending on whether the framebuffer
* is a FBO or the window system buffer, respectively.
* It is then multiplied with the source operand of DDY.
*/
static const gl_state_index transform_y_state[STATE_LENGTH]
= { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
unsigned transform_y_index =
_mesa_add_state_reference(this->prog->Parameters,
transform_y_state);
st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
transform_y_index,
glsl_type::vec4_type);
transform_y.swizzle = SWIZZLE_XXXX;
st_src_reg temp = get_temp(glsl_type::vec4_type);
emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
break;
}
case ir_unop_frexp_sig:
emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
break;
case ir_unop_frexp_exp:
emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
break;
case ir_unop_noise: {
/* At some point, a motivated person could add a better
* implementation of noise. Currently not even the nvidia
* binary drivers do anything more than this. In any case, the
* place to do this is in the GL state tracker, not the poor
* driver.
*/
emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
break;
}
case ir_binop_add:
emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
break;
case ir_binop_sub:
op[1].negate = ~op[1].negate;
emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
break;
case ir_binop_mul:
emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
break;
case ir_binop_div:
emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
break;
case ir_binop_mod:
if (result_dst.type == GLSL_TYPE_FLOAT)
assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
else
emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
break;
case ir_binop_less:
emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
break;
case ir_binop_gequal:
emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
break;
case ir_binop_equal:
emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
break;
case ir_binop_nequal:
emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
break;
case ir_binop_all_equal:
/* "==" operator producing a scalar boolean. */
if (ir->operands[0]->type->is_vector() ||
ir->operands[1]->type->is_vector()) {
st_src_reg temp = get_temp(native_integers ?
glsl_type::uvec4_type :
glsl_type::vec4_type);
if (native_integers) {
st_dst_reg temp_dst = st_dst_reg(temp);
st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
if (ir->operands[0]->type->is_boolean() &&
ir->operands[1]->as_constant() &&
ir->operands[1]->as_constant()->is_one()) {
emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
} else {
emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
}
/* Emit 1-3 AND operations to combine the SEQ results. */
switch (ir->operands[0]->type->vector_elements) {
case 2:
break;
case 3:
temp_dst.writemask = WRITEMASK_Y;
temp1.swizzle = SWIZZLE_YYYY;
temp2.swizzle = SWIZZLE_ZZZZ;
emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
break;
case 4:
temp_dst.writemask = WRITEMASK_X;
temp1.swizzle = SWIZZLE_XXXX;
temp2.swizzle = SWIZZLE_YYYY;
emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
temp_dst.writemask = WRITEMASK_Y;
temp1.swizzle = SWIZZLE_ZZZZ;
temp2.swizzle = SWIZZLE_WWWW;
emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
}
temp1.swizzle = SWIZZLE_XXXX;
temp2.swizzle = SWIZZLE_YYYY;
emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
} else {
emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
/* After the dot-product, the value will be an integer on the
* range [0,4]. Zero becomes 1.0, and positive values become zero.
*/
emit_dp(ir, result_dst, temp, temp, vector_elements);
/* Negating the result of the dot-product gives values on the range
* [-4, 0]. Zero becomes 1.0, and negative values become zero.
* This is achieved using SGE.
*/
st_src_reg sge_src = result_src;
sge_src.negate = ~sge_src.negate;
emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
}
} else {
emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
}
break;
case ir_binop_any_nequal:
/* "!=" operator producing a scalar boolean. */
if (ir->operands[0]->type->is_vector() ||
ir->operands[1]->type->is_vector()) {
st_src_reg temp = get_temp(native_integers ?
glsl_type::uvec4_type :
glsl_type::vec4_type);
if (ir->operands[0]->type->is_boolean() &&
ir->operands[1]->as_constant() &&
ir->operands[1]->as_constant()->is_zero()) {
emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
} else {
emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
}
if (native_integers) {
st_dst_reg temp_dst = st_dst_reg(temp);
st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
/* Emit 1-3 OR operations to combine the SNE results. */
switch (ir->operands[0]->type->vector_elements) {
case 2:
break;
case 3:
temp_dst.writemask = WRITEMASK_Y;
temp1.swizzle = SWIZZLE_YYYY;
temp2.swizzle = SWIZZLE_ZZZZ;
emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
break;
case 4:
temp_dst.writemask = WRITEMASK_X;
temp1.swizzle = SWIZZLE_XXXX;
temp2.swizzle = SWIZZLE_YYYY;
emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
temp_dst.writemask = WRITEMASK_Y;
temp1.swizzle = SWIZZLE_ZZZZ;
temp2.swizzle = SWIZZLE_WWWW;
emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
}
temp1.swizzle = SWIZZLE_XXXX;
temp2.swizzle = SWIZZLE_YYYY;
emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
} else {
/* After the dot-product, the value will be an integer on the
* range [0,4]. Zero stays zero, and positive values become 1.0.
*/
glsl_to_tgsi_instruction *const dp =
emit_dp(ir, result_dst, temp, temp, vector_elements);
if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
/* The clamping to [0,1] can be done for free in the fragment
* shader with a saturate.
*/
dp->saturate = true;
} else {
/* Negating the result of the dot-product gives values on the range
* [-4, 0]. Zero stays zero, and negative values become 1.0. This
* achieved using SLT.
*/
st_src_reg slt_src = result_src;
slt_src.negate = ~slt_src.negate;
emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
}
}
} else {
emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
}
break;
case ir_binop_logic_xor:
if (native_integers)
emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
else
emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
break;
case ir_binop_logic_or: {
if (native_integers) {
/* If integers are used as booleans, we can use an actual "or"
* instruction.
*/
assert(native_integers);
emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
} else {
/* After the addition, the value will be an integer on the
* range [0,2]. Zero stays zero, and positive values become 1.0.
*/
glsl_to_tgsi_instruction *add =
emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
/* The clamping to [0,1] can be done for free in the fragment
* shader with a saturate if floats are being used as boolean values.
*/
add->saturate = true;
} else {
/* Negating the result of the addition gives values on the range
* [-2, 0]. Zero stays zero, and negative values become 1.0. This
* is achieved using SLT.
*/
st_src_reg slt_src = result_src;
slt_src.negate = ~slt_src.negate;
emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
}
}
break;
}
case ir_binop_logic_and:
/* If native integers are disabled, the bool args are stored as float 0.0
* or 1.0, so "mul" gives us "and". If they're enabled, just use the
* actual AND opcode.
*/
if (native_integers)
emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
else
emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
break;
case ir_binop_dot:
assert(ir->operands[0]->type->is_vector());
assert(ir->operands[0]->type == ir->operands[1]->type);
emit_dp(ir, result_dst, op[0], op[1],
ir->operands[0]->type->vector_elements);
break;
case ir_unop_sqrt:
if (have_sqrt) {
emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
} else {
/* This is the only instruction sequence that makes the game "Risen"
* render correctly. ABS is not required for the game, but since GLSL
* declares negative values as "undefined", allowing us to do whatever
* we want, I choose to use ABS to match DX9 and pre-GLSL RSQ
* behavior.
*/
emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0].get_abs());
emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, result_src);
}
break;
case ir_unop_rsq:
emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
break;
case ir_unop_i2f:
if (native_integers) {
emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
break;
}
/* fallthrough to next case otherwise */
case ir_unop_b2f:
if (native_integers) {
emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
break;
}
/* fallthrough to next case otherwise */
case ir_unop_i2u:
case ir_unop_u2i:
case ir_unop_i642u64:
case ir_unop_u642i64:
/* Converting between signed and unsigned integers is a no-op. */
result_src = op[0];
result_src.type = result_dst.type;
break;
case ir_unop_b2i:
if (native_integers) {
/* Booleans are stored as integers using ~0 for true and 0 for false.
* GLSL requires that int(bool) return 1 for true and 0 for false.
* This conversion is done with AND, but it could be done with NEG.
*/
emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
} else {
/* Booleans and integers are both stored as floats when native
* integers are disabled.
*/
result_src = op[0];
}
break;
case ir_unop_f2i:
if (native_integers)
emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
else
emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
break;
case ir_unop_f2u:
if (native_integers)
emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
else
emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
break;
case ir_unop_bitcast_f2i:
case ir_unop_bitcast_f2u:
/* Make sure we don't propagate the negate modifier to integer opcodes. */
if (op[0].negate || op[0].abs)
emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
else
result_src = op[0];
result_src.type = ir->operation == ir_unop_bitcast_f2i ? GLSL_TYPE_INT :
GLSL_TYPE_UINT;
break;
case ir_unop_bitcast_i2f:
case ir_unop_bitcast_u2f:
result_src = op[0];
result_src.type = GLSL_TYPE_FLOAT;
break;
case ir_unop_f2b:
emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
break;
case ir_unop_d2b:
emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
break;
case ir_unop_i2b:
if (native_integers)
emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
else
emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
break;
case ir_unop_bitcast_u642d:
case ir_unop_bitcast_i642d:
result_src = op[0];
result_src.type = GLSL_TYPE_DOUBLE;
break;
case ir_unop_bitcast_d2i64:
result_src = op[0];
result_src.type = GLSL_TYPE_INT64;
break;
case ir_unop_bitcast_d2u64:
result_src = op[0];
result_src.type = GLSL_TYPE_UINT64;
break;
case ir_unop_trunc:
emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
break;
case ir_unop_ceil:
emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
break;
case ir_unop_floor:
emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
break;
case ir_unop_round_even:
emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
break;
case ir_unop_fract:
emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
break;
case ir_binop_min:
emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
break;
case ir_binop_max:
emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
break;
case ir_binop_pow:
emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
break;
case ir_unop_bit_not:
if (native_integers) {
emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
break;
}
case ir_unop_u2f:
if (native_integers) {
emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
break;
}
case ir_binop_lshift:
case ir_binop_rshift:
if (native_integers) {
unsigned opcode = ir->operation == ir_binop_lshift ? TGSI_OPCODE_SHL
: TGSI_OPCODE_ISHR;
st_src_reg count;
if (glsl_base_type_is_64bit(op[0].type)) {
/* GLSL shift operations have 32-bit shift counts, but TGSI uses
* 64 bits.
*/
count = get_temp(glsl_type::u64vec(ir->operands[1]->type->components()));
emit_asm(ir, TGSI_OPCODE_U2I64, st_dst_reg(count), op[1]);
} else {
count = op[1];
}
emit_asm(ir, opcode, result_dst, op[0], count);
break;
}
case ir_binop_bit_and:
if (native_integers) {
emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
break;
}
case ir_binop_bit_xor:
if (native_integers) {
emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
break;
}
case ir_binop_bit_or:
if (native_integers) {
emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
break;
}
assert(!"GLSL 1.30 features unsupported");
break;
case ir_binop_ubo_load: {
if (ctx->Const.UseSTD430AsDefaultPacking) {
ir_rvalue *block = ir->operands[0];
ir_rvalue *offset = ir->operands[1];
ir_constant *const_block = block->as_constant();
st_src_reg cbuf(PROGRAM_CONSTANT,
(const_block ? const_block->value.u[0] + 1 : 1),
ir->type->base_type);
cbuf.has_index2 = true;
if (!const_block) {
block->accept(this);
cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
*cbuf.reladdr = this->result;
emit_arl(ir, sampler_reladdr, this->result);
}
/* Calculate the surface offset */
offset->accept(this);
st_src_reg off = this->result;
glsl_to_tgsi_instruction *inst =
emit_asm(ir, TGSI_OPCODE_LOAD, result_dst, off);
if (result_dst.type == GLSL_TYPE_BOOL)
emit_asm(ir, TGSI_OPCODE_USNE, result_dst, st_src_reg(result_dst),
st_src_reg_for_int(0));
add_buffer_to_load_and_stores(inst, &cbuf, &this->instructions,
NULL);
} else {
ir_constant *const_uniform_block = ir->operands[0]->as_constant();
ir_constant *const_offset_ir = ir->operands[1]->as_constant();
unsigned const_offset = const_offset_ir ?
const_offset_ir->value.u[0] : 0;
unsigned const_block = const_uniform_block ?
const_uniform_block->value.u[0] + 1 : 1;
st_src_reg index_reg = get_temp(glsl_type::uint_type);
st_src_reg cbuf;
cbuf.type = ir->type->base_type;
cbuf.file = PROGRAM_CONSTANT;
cbuf.index = 0;
cbuf.reladdr = NULL;
cbuf.negate = 0;
cbuf.abs = 0;
cbuf.index2D = const_block;
assert(ir->type->is_vector() || ir->type->is_scalar());
if (const_offset_ir) {
/* Constant index into constant buffer */
cbuf.reladdr = NULL;
cbuf.index = const_offset / 16;
} else {
ir_expression *offset_expr = ir->operands[1]->as_expression();
st_src_reg offset = op[1];
/* The OpenGL spec is written in such a way that accesses with
* non-constant offset are almost always vec4-aligned. The only
* exception to this are members of structs in arrays of structs:
* each struct in an array of structs is at least vec4-aligned,
* but single-element and [ui]vec2 members of the struct may be at
* an offset that is not a multiple of 16 bytes.
*
* Here, we extract that offset, relying on previous passes to
* always generate offset expressions of the form
* (+ expr constant_offset).
*
* Note that the std430 layout, which allows more cases of
* alignment less than vec4 in arrays, is not supported for
* uniform blocks, so we do not have to deal with it here.
*/
if (offset_expr && offset_expr->operation == ir_binop_add) {
const_offset_ir = offset_expr->operands[1]->as_constant();
if (const_offset_ir) {
const_offset = const_offset_ir->value.u[0];
cbuf.index = const_offset / 16;
offset_expr->operands[0]->accept(this);
offset = this->result;
}
}
/* Relative/variable index into constant buffer */
emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), offset,
st_src_reg_for_int(4));
cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
}
if (const_uniform_block) {
/* Constant constant buffer */
cbuf.reladdr2 = NULL;
} else {
/* Relative/variable constant buffer */
cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
}
cbuf.has_index2 = true;
cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
if (glsl_base_type_is_64bit(cbuf.type))
cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
const_offset % 16 / 8,
const_offset % 16 / 8,
const_offset % 16 / 8);
else
cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
const_offset % 16 / 4,
const_offset % 16 / 4,
const_offset % 16 / 4);
if (ir->type->is_boolean()) {
emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf,
st_src_reg_for_int(0));
} else {
emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
}
}
break;
}
case ir_triop_lrp:
/* note: we have to reorder the three args here */
emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
break;
case ir_triop_csel:
if (this->ctx->Const.NativeIntegers)
emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
else {
op[0].negate = ~op[0].negate;
emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
}
break;
case ir_triop_bitfield_extract:
emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
break;
case ir_quadop_bitfield_insert:
emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
break;
case ir_unop_bitfield_reverse:
emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
break;
case ir_unop_bit_count:
emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
break;
case ir_unop_find_msb:
emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
break;
case ir_unop_find_lsb:
emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
break;
case ir_binop_imul_high:
emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
break;
case ir_triop_fma:
/* In theory, MAD is incorrect here. */
if (have_fma)
emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
else
emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
break;
case ir_unop_interpolate_at_centroid:
emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
break;
case ir_binop_interpolate_at_offset: {
/* The y coordinate needs to be flipped for the default fb */
static const gl_state_index transform_y_state[STATE_LENGTH]
= { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
unsigned transform_y_index =
_mesa_add_state_reference(this->prog->Parameters,
transform_y_state);
st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
transform_y_index,
glsl_type::vec4_type);
transform_y.swizzle = SWIZZLE_XXXX;
st_src_reg temp = get_temp(glsl_type::vec2_type);
st_dst_reg temp_dst = st_dst_reg(temp);
emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[1]);
temp_dst.writemask = WRITEMASK_Y;
emit_asm(ir, TGSI_OPCODE_MUL, temp_dst, transform_y, op[1]);
emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], temp);
break;
}
case ir_binop_interpolate_at_sample:
emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
break;
case ir_unop_d2f:
emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
break;
case ir_unop_f2d:
emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
break;
case ir_unop_d2i:
emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
break;
case ir_unop_i2d:
emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
break;
case ir_unop_d2u:
emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
break;
case ir_unop_u2d:
emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
break;
case ir_unop_unpack_double_2x32:
case ir_unop_pack_double_2x32:
case ir_unop_unpack_int_2x32:
case ir_unop_pack_int_2x32:
case ir_unop_unpack_uint_2x32:
case ir_unop_pack_uint_2x32:
case ir_unop_unpack_sampler_2x32:
case ir_unop_pack_sampler_2x32:
case ir_unop_unpack_image_2x32:
case ir_unop_pack_image_2x32:
emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
break;
case ir_binop_ldexp:
if (ir->operands[0]->type->is_double()) {
emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
} else if (ir->operands[0]->type->is_float()) {
emit_asm(ir, TGSI_OPCODE_LDEXP, result_dst, op[0], op[1]);
} else {
assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
}
break;
case ir_unop_pack_half_2x16:
emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
break;
case ir_unop_unpack_half_2x16:
emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
break;
case ir_unop_get_buffer_size: {
ir_constant *const_offset = ir->operands[0]->as_constant();
int buf_base = ctx->st->has_hw_atomics ? 0 : ctx->Const.Program[shader->Stage].MaxAtomicBuffers;
st_src_reg buffer(
PROGRAM_BUFFER,
buf_base + (const_offset ? const_offset->value.u[0] : 0),
GLSL_TYPE_UINT);
if (!const_offset) {
buffer.reladdr = ralloc(mem_ctx, st_src_reg);
*buffer.reladdr = op[0];
emit_arl(ir, sampler_reladdr, op[0]);
}
emit_asm(ir, TGSI_OPCODE_RESQ, result_dst)->resource = buffer;
break;
}
case ir_unop_u2i64:
case ir_unop_u2u64:
case ir_unop_b2i64: {
st_src_reg temp = get_temp(glsl_type::uvec4_type);
st_dst_reg temp_dst = st_dst_reg(temp);
unsigned orig_swz = op[0].swizzle;
/*
* To convert unsigned to 64-bit:
* zero Y channel, copy X channel.
*/
temp_dst.writemask = WRITEMASK_Y;
if (vector_elements > 1)
temp_dst.writemask |= WRITEMASK_W;
emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
temp_dst.writemask = WRITEMASK_X;
if (vector_elements > 1)
temp_dst.writemask |= WRITEMASK_Z;
op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 0), GET_SWZ(orig_swz, 0),
GET_SWZ(orig_swz, 1), GET_SWZ(orig_swz, 1));
if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
else
emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
result_src = temp;
result_src.type = GLSL_TYPE_UINT64;
if (vector_elements > 2) {
/* Subtle: We rely on the fact that get_temp here returns the next
* TGSI temporary register directly after the temp register used for
* the first two components, so that the result gets picked up
* automatically.
*/
st_src_reg temp = get_temp(glsl_type::uvec4_type);
st_dst_reg temp_dst = st_dst_reg(temp);
temp_dst.writemask = WRITEMASK_Y;
if (vector_elements > 3)
temp_dst.writemask |= WRITEMASK_W;
emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
temp_dst.writemask = WRITEMASK_X;
if (vector_elements > 3)
temp_dst.writemask |= WRITEMASK_Z;
op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 2), GET_SWZ(orig_swz, 2),
GET_SWZ(orig_swz, 3), GET_SWZ(orig_swz, 3));
if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
else
emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
}
break;
}
case ir_unop_i642i:
case ir_unop_u642i:
case ir_unop_u642u:
case ir_unop_i642u: {
st_src_reg temp = get_temp(glsl_type::uvec4_type);
st_dst_reg temp_dst = st_dst_reg(temp);
unsigned orig_swz = op[0].swizzle;
unsigned orig_idx = op[0].index;
int el;
temp_dst.writemask = WRITEMASK_X;
for (el = 0; el < vector_elements; el++) {
unsigned swz = GET_SWZ(orig_swz, el);
if (swz & 1)
op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z);
else
op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
if (swz > 2)
op[0].index = orig_idx + 1;
op[0].type = GLSL_TYPE_UINT;
temp_dst.writemask = WRITEMASK_X << el;
emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
}
result_src = temp;
if (ir->operation == ir_unop_u642u || ir->operation == ir_unop_i642u)
result_src.type = GLSL_TYPE_UINT;
else
result_src.type = GLSL_TYPE_INT;
break;
}
case ir_unop_i642b:
emit_asm(ir, TGSI_OPCODE_U64SNE, result_dst, op[0], st_src_reg_for_int64(0));
break;
case ir_unop_i642f:
emit_asm(ir, TGSI_OPCODE_I642F, result_dst, op[0]);
break;
case ir_unop_u642f:
emit_asm(ir, TGSI_OPCODE_U642F, result_dst, op[0]);
break;
case ir_unop_i642d:
emit_asm(ir, TGSI_OPCODE_I642D, result_dst, op[0]);
break;
case ir_unop_u642d:
emit_asm(ir, TGSI_OPCODE_U642D, result_dst, op[0]);
break;
case ir_unop_i2i64:
emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
break;
case ir_unop_f2i64:
emit_asm(ir, TGSI_OPCODE_F2I64, result_dst, op[0]);
break;
case ir_unop_d2i64:
emit_asm(ir, TGSI_OPCODE_D2I64, result_dst, op[0]);
break;
case ir_unop_i2u64:
emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
break;
case ir_unop_f2u64:
emit_asm(ir, TGSI_OPCODE_F2U64, result_dst, op[0]);
break;
case ir_unop_d2u64:
emit_asm(ir, TGSI_OPCODE_D2U64, result_dst, op[0]);
break;
/* these might be needed */
case ir_unop_pack_snorm_2x16:
case ir_unop_pack_unorm_2x16:
case ir_unop_pack_snorm_4x8:
case ir_unop_pack_unorm_4x8:
case ir_unop_unpack_snorm_2x16:
case ir_unop_unpack_unorm_2x16:
case ir_unop_unpack_snorm_4x8:
case ir_unop_unpack_unorm_4x8:
case ir_quadop_vector:
case ir_binop_vector_extract:
case ir_triop_vector_insert:
case ir_binop_carry:
case ir_binop_borrow:
case ir_unop_ssbo_unsized_array_length:
/* This operation is not supported, or should have already been handled.
*/
assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
break;
}
this->result = result_src;
}
void
glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
{
st_src_reg src;
int i;
int swizzle[4];
/* Note that this is only swizzles in expressions, not those on the left
* hand side of an assignment, which do write masking. See ir_assignment
* for that.
*/
ir->val->accept(this);
src = this->result;
assert(src.file != PROGRAM_UNDEFINED);
assert(ir->type->vector_elements > 0);
for (i = 0; i < 4; i++) {
if (i < ir->type->vector_elements) {
switch (i) {
case 0:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
break;
case 1:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
break;
case 2:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
break;
case 3:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
break;
}
} else {
/* If the type is smaller than a vec4, replicate the last
* channel out.
*/
swizzle[i] = swizzle[ir->type->vector_elements - 1];
}
}
src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
this->result = src;
}
/* Test if the variable is an array. Note that geometry and
* tessellation shader inputs are outputs are always arrays (except
* for patch inputs), so only the array element type is considered.
*/
static bool
is_inout_array(unsigned stage, ir_variable *var, bool *remove_array)
{
const glsl_type *type = var->type;
*remove_array = false;
if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
(stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
return false;
if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
(stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
stage == MESA_SHADER_TESS_CTRL) &&
!var->data.patch) {
if (!var->type->is_array())
return false; /* a system value probably */
type = var->type->fields.array;
*remove_array = true;
}
return type->is_array() || type->is_matrix();
}
static unsigned
st_translate_interp_loc(ir_variable *var)
{
if (var->data.centroid)
return TGSI_INTERPOLATE_LOC_CENTROID;
else if (var->data.sample)
return TGSI_INTERPOLATE_LOC_SAMPLE;
else
return TGSI_INTERPOLATE_LOC_CENTER;
}
void
glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
{
variable_storage *entry = find_variable_storage(ir->var);
ir_variable *var = ir->var;
bool remove_array;
if (!entry) {
switch (var->data.mode) {
case ir_var_uniform:
entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
var->data.param_index);
_mesa_hash_table_insert(this->variables, var, entry);
break;
case ir_var_shader_in: {
/* The linker assigns locations for varyings and attributes,
* including deprecated builtins (like gl_Color), user-assign
* generic attributes (glBindVertexLocation), and
* user-defined varyings.
*/
assert(var->data.location != -1);
const glsl_type *type_without_array = var->type->without_array();
struct inout_decl *decl = &inputs[num_inputs];
unsigned component = var->data.location_frac;
unsigned num_components;
num_inputs++;
if (type_without_array->is_64bit())
component = component / 2;
if (type_without_array->vector_elements)
num_components = type_without_array->vector_elements;
else
num_components = 4;
decl->mesa_index = var->data.location;
decl->interp = (glsl_interp_mode) var->data.interpolation;
decl->interp_loc = st_translate_interp_loc(var);
decl->base_type = type_without_array->base_type;
decl->usage_mask = u_bit_consecutive(component, num_components);
if (is_inout_array(shader->Stage, var, &remove_array)) {
decl->array_id = num_input_arrays + 1;
num_input_arrays++;
} else {
decl->array_id = 0;
}
if (remove_array)
decl->size = type_size(var->type->fields.array);
else
decl->size = type_size(var->type);
entry = new(mem_ctx) variable_storage(var,
PROGRAM_INPUT,
decl->mesa_index,
decl->array_id);
entry->component = component;
_mesa_hash_table_insert(this->variables, var, entry);
break;
}
case ir_var_shader_out: {
assert(var->data.location != -1);
const glsl_type *type_without_array = var->type->without_array();
struct inout_decl *decl = &outputs[num_outputs];
unsigned component = var->data.location_frac;
unsigned num_components;
num_outputs++;
if (type_without_array->is_64bit())
component = component / 2;
if (type_without_array->vector_elements)
num_components = type_without_array->vector_elements;
else
num_components = 4;
decl->mesa_index = var->data.location + FRAG_RESULT_MAX * var->data.index;
decl->base_type = type_without_array->base_type;
decl->usage_mask = u_bit_consecutive(component, num_components);
if (var->data.stream & (1u << 31)) {
decl->gs_out_streams = var->data.stream & ~(1u << 31);
} else {
assert(var->data.stream < 4);
decl->gs_out_streams = 0;
for (unsigned i = 0; i < num_components; ++i)
decl->gs_out_streams |= var->data.stream << (2 * (component + i));
}
if (is_inout_array(shader->Stage, var, &remove_array)) {
decl->array_id = num_output_arrays + 1;
num_output_arrays++;
} else {
decl->array_id = 0;
}
if (remove_array)
decl->size = type_size(var->type->fields.array);
else
decl->size = type_size(var->type);
if (var->data.fb_fetch_output) {
st_dst_reg dst = st_dst_reg(get_temp(var->type));
st_src_reg src = st_src_reg(PROGRAM_OUTPUT, decl->mesa_index,
var->type, component, decl->array_id);
emit_asm(NULL, TGSI_OPCODE_FBFETCH, dst, src);
entry = new(mem_ctx) variable_storage(var, dst.file, dst.index,
dst.array_id);
} else {
entry = new(mem_ctx) variable_storage(var,
PROGRAM_OUTPUT,
decl->mesa_index,
decl->array_id);
}
entry->component = component;
_mesa_hash_table_insert(this->variables, var, entry);
break;
}
case ir_var_system_value:
entry = new(mem_ctx) variable_storage(var,
PROGRAM_SYSTEM_VALUE,
var->data.location);
break;
case ir_var_auto:
case ir_var_temporary:
st_src_reg src = get_temp(var->type);
entry = new(mem_ctx) variable_storage(var, src.file, src.index,
src.array_id);
_mesa_hash_table_insert(this->variables, var, entry);
break;
}
if (!entry) {
printf("Failed to make storage for %s\n", var->name);
exit(1);
}
}
this->result = st_src_reg(entry->file, entry->index, var->type,
entry->component, entry->array_id);
if (this->shader->Stage == MESA_SHADER_VERTEX &&
var->data.mode == ir_var_shader_in &&
var->type->without_array()->is_double())
this->result.is_double_vertex_input = true;
if (!native_integers)
this->result.type = GLSL_TYPE_FLOAT;
}
static void
shrink_array_declarations(struct inout_decl *decls, unsigned count,
GLbitfield64* usage_mask,
GLbitfield64 double_usage_mask,
GLbitfield* patch_usage_mask)
{
unsigned i;
int j;
/* Fix array declarations by removing unused array elements at both ends
* of the arrays. For example, mat4[3] where only mat[1] is used.
*/
for (i = 0; i < count; i++) {
struct inout_decl *decl = &decls[i];
if (!decl->array_id)
continue;
/* Shrink the beginning. */
for (j = 0; j < (int)decl->size; j++) {
if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
if (*patch_usage_mask &
BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
break;
}
else {
if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
break;
if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
break;
}
decl->mesa_index++;
decl->size--;
j--;
}
/* Shrink the end. */
for (j = decl->size-1; j >= 0; j--) {
if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
if (*patch_usage_mask &
BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
break;
}
else {
if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
break;
if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
break;
}
decl->size--;
}
/* When not all entries of an array are accessed, we mark them as used
* here anyway, to ensure that the input/output mapping logic doesn't get
* confused.
*
* TODO This happens when an array isn't used via indirect access, which
* some game ports do (at least eON-based). There is an optimization
* opportunity here by replacing the array declaration with non-array
* declarations of those slots that are actually used.
*/
for (j = 1; j < (int)decl->size; ++j) {
if (decl->mesa_index >= VARYING_SLOT_PATCH0)
*patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
else
*usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
}
}
}
void
glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
{
ir_constant *index;
st_src_reg src;
bool is_2D = false;
ir_variable *var = ir->variable_referenced();
/* We only need the logic provided by st_glsl_storage_type_size()
* for arrays of structs. Indirect sampler and image indexing is handled
* elsewhere.
*/
int element_size = ir->type->without_array()->is_record() ?
st_glsl_storage_type_size(ir->type, var->data.bindless) :
type_size(ir->type);
index = ir->array_index->constant_expression_value(ralloc_parent(ir));
ir->array->accept(this);
src = this->result;
if (!src.has_index2) {
switch (this->prog->Target) {
case GL_TESS_CONTROL_PROGRAM_NV:
is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
!ir->variable_referenced()->data.patch;
break;
case GL_TESS_EVALUATION_PROGRAM_NV:
is_2D = src.file == PROGRAM_INPUT &&
!ir->variable_referenced()->data.patch;
break;
case GL_GEOMETRY_PROGRAM_NV:
is_2D = src.file == PROGRAM_INPUT;
break;
}
}
if (is_2D)
element_size = 1;
if (index) {
if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
src.file == PROGRAM_INPUT)
element_size = attrib_type_size(ir->type, true);
if (is_2D) {
src.index2D = index->value.i[0];
src.has_index2 = true;
} else
src.index += index->value.i[0] * element_size;
} else {
/* Variable index array dereference. It eats the "vec4" of the
* base of the array and an index that offsets the TGSI register
* index.
*/
ir->array_index->accept(this);
st_src_reg index_reg;
if (element_size == 1) {
index_reg = this->result;
} else {
index_reg = get_temp(native_integers ?
glsl_type::int_type : glsl_type::float_type);
emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
this->result, st_src_reg_for_type(index_reg.type, element_size));
}
/* If there was already a relative address register involved, add the
* new and the old together to get the new offset.
*/
if (!is_2D && src.reladdr != NULL) {
st_src_reg accum_reg = get_temp(native_integers ?
glsl_type::int_type : glsl_type::float_type);
emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
index_reg, *src.reladdr);
index_reg = accum_reg;
}
if (is_2D) {
src.reladdr2 = ralloc(mem_ctx, st_src_reg);
memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
src.index2D = 0;
src.has_index2 = true;
} else {
src.reladdr = ralloc(mem_ctx, st_src_reg);
memcpy(src.reladdr, &index_reg, sizeof(index_reg));
}
}
/* Change the register type to the element type of the array. */
src.type = ir->type->base_type;
this->result = src;
}
void
glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
{
unsigned int i;
const glsl_type *struct_type = ir->record->type;
ir_variable *var = ir->record->variable_referenced();
int offset = 0;
ir->record->accept(this);
assert(ir->field_idx >= 0);
assert(var);
for (i = 0; i < struct_type->length; i++) {
if (i == (unsigned) ir->field_idx)
break;
const glsl_type *member_type = struct_type->fields.structure[i].type;
offset += st_glsl_storage_type_size(member_type, var->data.bindless);
}
/* If the type is smaller than a vec4, replicate the last channel out. */
if (ir->type->is_scalar() || ir->type->is_vector())
this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
else
this->result.swizzle = SWIZZLE_NOOP;
this->result.index += offset;
this->result.type = ir->type->base_type;
}
/**
* We want to be careful in assignment setup to hit the actual storage
* instead of potentially using a temporary like we might with the
* ir_dereference handler.
*/
static st_dst_reg
get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v, int *component)
{
/* The LHS must be a dereference. If the LHS is a variable indexed array
* access of a vector, it must be separated into a series conditional moves
* before reaching this point (see ir_vec_index_to_cond_assign).
*/
assert(ir->as_dereference());
ir_dereference_array *deref_array = ir->as_dereference_array();
if (deref_array) {
assert(!deref_array->array->type->is_vector());
}
/* Use the rvalue deref handler for the most part. We write swizzles using
* the writemask, but we do extract the base component for enhanced layouts
* from the source swizzle.
*/
ir->accept(v);
*component = GET_SWZ(v->result.swizzle, 0);
return st_dst_reg(v->result);
}
/**
* Process the condition of a conditional assignment
*
* Examines the condition of a conditional assignment to generate the optimal
* first operand of a \c CMP instruction. If the condition is a relational
* operator with 0 (e.g., \c ir_binop_less), the value being compared will be
* used as the source for the \c CMP instruction. Otherwise the comparison
* is processed to a boolean result, and the boolean result is used as the
* operand to the CMP instruction.
*/
bool
glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
{
ir_rvalue *src_ir = ir;
bool negate = true;
bool switch_order = false;
ir_expression *const expr = ir->as_expression();
if (native_integers) {
if ((expr != NULL) && (expr->num_operands == 2)) {
enum glsl_base_type type = expr->operands[0]->type->base_type;
if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
type == GLSL_TYPE_BOOL) {
if (expr->operation == ir_binop_equal) {
if (expr->operands[0]->is_zero()) {
src_ir = expr->operands[1];
switch_order = true;
}
else if (expr->operands[1]->is_zero()) {
src_ir = expr->operands[0];
switch_order = true;
}
}
else if (expr->operation == ir_binop_nequal) {
if (expr->operands[0]->is_zero()) {
src_ir = expr->operands[1];
}
else if (expr->operands[1]->is_zero()) {
src_ir = expr->operands[0];
}
}
}
}
src_ir->accept(this);
return switch_order;
}
if ((expr != NULL) && (expr->num_operands == 2)) {
bool zero_on_left = false;
if (expr->operands[0]->is_zero()) {
src_ir = expr->operands[1];
zero_on_left = true;
} else if (expr->operands[1]->is_zero()) {
src_ir = expr->operands[0];
zero_on_left = false;
}
/* a is - 0 + - 0 +
* (a < 0) T F F ( a < 0) T F F
* (0 < a) F F T (-a < 0) F F T
* (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
* (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
*
* Note that exchanging the order of 0 and 'a' in the comparison simply
* means that the value of 'a' should be negated.
*/
if (src_ir != ir) {
switch (expr->operation) {
case ir_binop_less:
switch_order = false;
negate = zero_on_left;
break;
case ir_binop_gequal:
switch_order = true;
negate = zero_on_left;
break;
default:
/* This isn't the right kind of comparison afterall, so make sure
* the whole condition is visited.
*/
src_ir = ir;
break;
}
}
}
src_ir->accept(this);
/* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
* condition we produced is 0.0 or 1.0. By flipping the sign, we can
* choose which value TGSI_OPCODE_CMP produces without an extra instruction
* computing the condition.
*/
if (negate)
this->result.negate = ~this->result.negate;
return switch_order;
}
void
glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
st_dst_reg *l, st_src_reg *r,
st_src_reg *cond, bool cond_swap)
{
if (type->is_record()) {
for (unsigned int i = 0; i < type->length; i++) {
emit_block_mov(ir, type->fields.structure[i].type, l, r,
cond, cond_swap);
}
return;
}
if (type->is_array()) {
for (unsigned int i = 0; i < type->length; i++) {
emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
}
return;
}
if (type->is_matrix()) {
const struct glsl_type *vec_type;
vec_type = glsl_type::get_instance(type->is_double() ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
type->vector_elements, 1);
for (int i = 0; i < type->matrix_columns; i++) {
emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
}
return;
}
assert(type->is_scalar() || type->is_vector());
l->type = type->base_type;
r->type = type->base_type;
if (cond) {
st_src_reg l_src = st_src_reg(*l);
if (l_src.file == PROGRAM_OUTPUT &&
this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
(l_src.index == FRAG_RESULT_DEPTH || l_src.index == FRAG_RESULT_STENCIL)) {
/* This is a special case because the source swizzles will be shifted
* later to account for the difference between GLSL (where they're
* plain floats) and TGSI (where they're Z and Y components). */
l_src.swizzle = SWIZZLE_XXXX;
}
if (native_integers) {
emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
cond_swap ? l_src : *r,
cond_swap ? *r : l_src);
} else {
emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
cond_swap ? l_src : *r,
cond_swap ? *r : l_src);
}
} else {
emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
}
l->index++;
r->index++;
if (type->is_dual_slot()) {
l->index++;
if (r->is_double_vertex_input == false)
r->index++;
}
}
void
glsl_to_tgsi_visitor::visit(ir_assignment *ir)
{
int dst_component;
st_dst_reg l;
st_src_reg r;
/* all generated instructions need to be flaged as precise */
this->precise = is_precise(ir->lhs->variable_referenced());
ir->rhs->accept(this);
r = this->result;
l = get_assignment_lhs(ir->lhs, this, &dst_component);
{
int swizzles[4];
int first_enabled_chan = 0;
int rhs_chan = 0;
ir_variable *variable = ir->lhs->variable_referenced();
if (shader->Stage == MESA_SHADER_FRAGMENT &&
variable->data.mode == ir_var_shader_out &&
(variable->data.location == FRAG_RESULT_DEPTH ||
variable->data.location == FRAG_RESULT_STENCIL)) {
assert(ir->lhs->type->is_scalar());
assert(ir->write_mask == WRITEMASK_X);
if (variable->data.location == FRAG_RESULT_DEPTH)
l.writemask = WRITEMASK_Z;
else {
assert(variable->data.location == FRAG_RESULT_STENCIL);
l.writemask = WRITEMASK_Y;
}
} else if (ir->write_mask == 0) {
assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
unsigned num_elements = ir->lhs->type->without_array()->vector_elements;
if (num_elements) {
l.writemask = u_bit_consecutive(0, num_elements);
} else {
/* The type is a struct or an array of (array of) structs. */
l.writemask = WRITEMASK_XYZW;
}
} else {
l.writemask = ir->write_mask;
}
for (int i = 0; i < 4; i++) {
if (l.writemask & (1 << i)) {
first_enabled_chan = GET_SWZ(r.swizzle, i);
break;
}
}
l.writemask = l.writemask << dst_component;
/* Swizzle a small RHS vector into the channels being written.
*
* glsl ir treats write_mask as dictating how many channels are
* present on the RHS while TGSI treats write_mask as just
* showing which channels of the vec4 RHS get written.
*/
for (int i = 0; i < 4; i++) {
if (l.writemask & (1 << i))
swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
else
swizzles[i] = first_enabled_chan;
}
r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
swizzles[2], swizzles[3]);
}
assert(l.file != PROGRAM_UNDEFINED);
assert(r.file != PROGRAM_UNDEFINED);
if (ir->condition) {
const bool switch_order = this->process_move_condition(ir->condition);
st_src_reg condition = this->result;
emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
} else if (ir->rhs->as_expression() &&
this->instructions.get_tail() &&
ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
!((glsl_to_tgsi_instruction *)this->instructions.get_tail())->is_64bit_expanded &&
type_size(ir->lhs->type) == 1 &&
l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
/* To avoid emitting an extra MOV when assigning an expression to a
* variable, emit the last instruction of the expression again, but
* replace the destination register with the target of the assignment.
* Dead code elimination will remove the original instruction.
*/
glsl_to_tgsi_instruction *inst, *new_inst;
inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
new_inst->saturate = inst->saturate;
new_inst->resource = inst->resource;
inst->dead_mask = inst->dst[0].writemask;
} else {
emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
}
this->precise = 0;
}
void
glsl_to_tgsi_visitor::visit(ir_constant *ir)
{
st_src_reg src;
GLdouble stack_vals[4] = { 0 };
gl_constant_value *values = (gl_constant_value *) stack_vals;
GLenum gl_type = GL_NONE;
unsigned int i;
static int in_array = 0;
gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
/* Unfortunately, 4 floats is all we can get into
* _mesa_add_typed_unnamed_constant. So, make a temp to store an
* aggregate constant and move each constant value into it. If we
* get lucky, copy propagation will eliminate the extra moves.
*/
if (ir->type->is_record()) {
st_src_reg temp_base = get_temp(ir->type);
st_dst_reg temp = st_dst_reg(temp_base);
for (i = 0; i < ir->type->length; i++) {
ir_constant *const field_value = ir->get_record_field(i);
int size = type_size(field_value->type);
assert(size > 0);
field_value->accept(this);
src = this->result;
for (unsigned j = 0; j < (unsigned int)size; j++) {
emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
src.index++;
temp.index++;
}
}
this->result = temp_base;
return;
}
if (ir->type->is_array()) {
st_src_reg temp_base = get_temp(ir->type);
st_dst_reg temp = st_dst_reg(temp_base);
int size = type_size(ir->type->fields.array);
assert(size > 0);
in_array++;
for (i = 0; i < ir->type->length; i++) {
ir->const_elements[i]->accept(this);
src = this->result;
for (int j = 0; j < size; j++) {
emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
src.index++;
temp.index++;
}
}
this->result = temp_base;
in_array--;
return;
}
if (ir->type->is_matrix()) {
st_src_reg mat = get_temp(ir->type);
st_dst_reg mat_column = st_dst_reg(mat);
for (i = 0; i < ir->type->matrix_columns; i++) {
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
src = st_src_reg(file, -1, ir->type->base_type);
src.index = add_constant(file,
values,
ir->type->vector_elements,
GL_FLOAT,
&src.swizzle);
emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
break;
case GLSL_TYPE_DOUBLE:
values = (gl_constant_value *) &ir->value.d[i * ir->type->vector_elements];
src = st_src_reg(file, -1, ir->type->base_type);
src.index = add_constant(file,
values,
ir->type->vector_elements,
GL_DOUBLE,
&src.swizzle);
if (ir->type->vector_elements >= 2) {
mat_column.writemask = WRITEMASK_XY;
src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
} else {
mat_column.writemask = WRITEMASK_X;
src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
}
src.index++;
if (ir->type->vector_elements > 2) {
if (ir->type->vector_elements == 4) {
mat_column.writemask = WRITEMASK_ZW;
src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
} else {
mat_column.writemask = WRITEMASK_Z;
src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y);
emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
mat_column.writemask = WRITEMASK_XYZW;
src.swizzle = SWIZZLE_XYZW;
}
mat_column.index++;
}
break;
default:
unreachable("Illegal matrix constant type.\n");
break;
}
mat_column.index++;
}
this->result = mat;
return;
}
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
gl_type = GL_FLOAT;
for (i = 0; i < ir->type->vector_elements; i++) {
values[i].f = ir->value.f[i];
}
break;
case GLSL_TYPE_DOUBLE:
gl_type = GL_DOUBLE;
for (i = 0; i < ir->type->vector_elements; i++) {
memcpy(&values[i * 2], &ir->value.d[i], sizeof(double));
}
break;
case GLSL_TYPE_INT64:
gl_type = GL_INT64_ARB;
for (i = 0; i < ir->type->vector_elements; i++) {
memcpy(&values[i * 2], &ir->value.d[i], sizeof(int64_t));
}
break;
case GLSL_TYPE_UINT64:
gl_type = GL_UNSIGNED_INT64_ARB;
for (i = 0; i < ir->type->vector_elements; i++) {
memcpy(&values[i * 2], &ir->value.d[i], sizeof(uint64_t));
}
break;
case GLSL_TYPE_UINT:
gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
for (i = 0; i < ir->type->vector_elements; i++) {
if (native_integers)
values[i].u = ir->value.u[i];
else
values[i].f = ir->value.u[i];
}
break;
case GLSL_TYPE_INT:
gl_type = native_integers ? GL_INT : GL_FLOAT;
for (i = 0; i < ir->type->vector_elements; i++) {
if (native_integers)
values[i].i = ir->value.i[i];
else
values[i].f = ir->value.i[i];
}
break;
case GLSL_TYPE_BOOL:
gl_type = native_integers ? GL_BOOL : GL_FLOAT;
for (i = 0; i < ir->type->vector_elements; i++) {
values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
}
break;
default:
assert(!"Non-float/uint/int/bool constant");
}
this->result = st_src_reg(file, -1, ir->type);
this->result.index = add_constant(file,
values,
ir->type->vector_elements,
gl_type,
&this->result.swizzle);
}
void
glsl_to_tgsi_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
{
exec_node *param = ir->actual_parameters.get_head();
ir_dereference *deref = static_cast<ir_dereference *>(param);
ir_variable *location = deref->variable_referenced();
bool has_hw_atomics = st_context(ctx)->has_hw_atomics;
/* Calculate the surface offset */
st_src_reg offset;
unsigned array_size = 0, base = 0;
uint16_t index = 0;
st_src_reg resource;
get_deref_offsets(deref, &array_size, &base, &index, &offset, false);
if (has_hw_atomics) {
variable_storage *entry = find_variable_storage(location);
st_src_reg buffer(PROGRAM_HW_ATOMIC, 0, GLSL_TYPE_ATOMIC_UINT, location->data.binding);
if (!entry) {
entry = new(mem_ctx) variable_storage(location, PROGRAM_HW_ATOMIC,
num_atomics);
_mesa_hash_table_insert(this->variables, location, entry);
atomic_info[num_atomics].location = location->data.location;
atomic_info[num_atomics].binding = location->data.binding;
atomic_info[num_atomics].size = location->type->arrays_of_arrays_size();
if (atomic_info[num_atomics].size == 0)
atomic_info[num_atomics].size = 1;
atomic_info[num_atomics].array_id = 0;
num_atomics++;
}
if (offset.file != PROGRAM_UNDEFINED) {
if (atomic_info[entry->index].array_id == 0) {
num_atomic_arrays++;
atomic_info[entry->index].array_id = num_atomic_arrays;
}
buffer.array_id = atomic_info[entry->index].array_id;
}
buffer.index = index;
buffer.index += location->data.offset / ATOMIC_COUNTER_SIZE;
buffer.has_index2 = true;
if (offset.file != PROGRAM_UNDEFINED) {
buffer.reladdr = ralloc(mem_ctx, st_src_reg);
*buffer.reladdr = offset;
emit_arl(ir, sampler_reladdr, offset);
}
offset = st_src_reg_for_int(0);
resource = buffer;
} else {
st_src_reg buffer(PROGRAM_BUFFER, location->data.binding,
GLSL_TYPE_ATOMIC_UINT);
if (offset.file != PROGRAM_UNDEFINED) {
emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(offset),
offset, st_src_reg_for_int(ATOMIC_COUNTER_SIZE));
emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(offset),
offset, st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE));
} else {
offset = st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE);
}
resource = buffer;
}
ir->return_deref->accept(this);
st_dst_reg dst(this->result);
dst.writemask = WRITEMASK_X;
glsl_to_tgsi_instruction *inst;
if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_read) {
inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, offset);
} else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_increment) {
inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
st_src_reg_for_int(1));
} else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_predecrement) {
inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
st_src_reg_for_int(-1));
emit_asm(ir, TGSI_OPCODE_ADD, dst, this->result, st_src_reg_for_int(-1));
} else {
param = param->get_next();
ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
val->accept(this);
st_src_reg data = this->result, data2 = undef_src;
unsigned opcode;
switch (ir->callee->intrinsic_id) {
case ir_intrinsic_atomic_counter_add:
opcode = TGSI_OPCODE_ATOMUADD;
break;
case ir_intrinsic_atomic_counter_min:
opcode = TGSI_OPCODE_ATOMIMIN;
break;
case ir_intrinsic_atomic_counter_max:
opcode = TGSI_OPCODE_ATOMIMAX;
break;
case ir_intrinsic_atomic_counter_and:
opcode = TGSI_OPCODE_ATOMAND;
break;
case ir_intrinsic_atomic_counter_or:
opcode = TGSI_OPCODE_ATOMOR;
break;
case ir_intrinsic_atomic_counter_xor:
opcode = TGSI_OPCODE_ATOMXOR;
break;
case ir_intrinsic_atomic_counter_exchange:
opcode = TGSI_OPCODE_ATOMXCHG;
break;
case ir_intrinsic_atomic_counter_comp_swap: {
opcode = TGSI_OPCODE_ATOMCAS;
param = param->get_next();
val = ((ir_instruction *)param)->as_rvalue();
val->accept(this);
data2 = this->result;
break;
}
default:
assert(!"Unexpected intrinsic");
return;
}
inst = emit_asm(ir, opcode, dst, offset, data, data2);
}
inst->resource = resource;
}
void
glsl_to_tgsi_visitor::visit_ssbo_intrinsic(ir_call *ir)
{
exec_node *param = ir->actual_parameters.get_head();
ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
ir_constant *const_block = block->as_constant();
int buf_base = st_context(ctx)->has_hw_atomics ? 0 : ctx->Const.Program[shader->Stage].MaxAtomicBuffers;
st_src_reg buffer(
PROGRAM_BUFFER,
buf_base + (const_block ? const_block->value.u[0] : 0),
GLSL_TYPE_UINT);
if (!const_block) {
block->accept(this);
buffer.reladdr = ralloc(mem_ctx, st_src_reg);
*buffer.reladdr = this->result;
emit_arl(ir, sampler_reladdr, this->result);
}
/* Calculate the surface offset */
offset->accept(this);
st_src_reg off = this->result;
st_dst_reg dst = undef_dst;
if (ir->return_deref) {
ir->return_deref->accept(this);
dst = st_dst_reg(this->result);
dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
}
glsl_to_tgsi_instruction *inst;
if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_load) {
inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
if (dst.type == GLSL_TYPE_BOOL)
emit_asm(ir, TGSI_OPCODE_USNE, dst, st_src_reg(dst), st_src_reg_for_int(0));
} else if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_store) {
param = param->get_next();
ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
val->accept(this);
param = param->get_next();
ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
assert(write_mask);
dst.writemask = write_mask->value.u[0];
dst.type = this->result.type;
inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
} else {
param = param->get_next();
ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
val->accept(this);
st_src_reg data = this->result, data2 = undef_src;
unsigned opcode;
switch (ir->callee->intrinsic_id) {
case ir_intrinsic_ssbo_atomic_add:
opcode = TGSI_OPCODE_ATOMUADD;
break;
case ir_intrinsic_ssbo_atomic_min:
opcode = TGSI_OPCODE_ATOMIMIN;
break;
case ir_intrinsic_ssbo_atomic_max:
opcode = TGSI_OPCODE_ATOMIMAX;
break;
case ir_intrinsic_ssbo_atomic_and:
opcode = TGSI_OPCODE_ATOMAND;
break;
case ir_intrinsic_ssbo_atomic_or:
opcode = TGSI_OPCODE_ATOMOR;
break;
case ir_intrinsic_ssbo_atomic_xor:
opcode = TGSI_OPCODE_ATOMXOR;
break;
case ir_intrinsic_ssbo_atomic_exchange:
opcode = TGSI_OPCODE_ATOMXCHG;
break;
case ir_intrinsic_ssbo_atomic_comp_swap:
opcode = TGSI_OPCODE_ATOMCAS;
param = param->get_next();
val = ((ir_instruction *)param)->as_rvalue();
val->accept(this);
data2 = this->result;
break;
default:
assert(!"Unexpected intrinsic");
return;
}
inst = emit_asm(ir, opcode, dst, off, data, data2);
}
param = param->get_next();
ir_constant *access = NULL;
if (!param->is_tail_sentinel()) {
access = ((ir_instruction *)param)->as_constant();
assert(access);
}
add_buffer_to_load_and_stores(inst, &buffer, &this->instructions, access);
}
void
glsl_to_tgsi_visitor::visit_membar_intrinsic(ir_call *ir)
{
switch (ir->callee->intrinsic_id) {
case ir_intrinsic_memory_barrier:
emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
TGSI_MEMBAR_ATOMIC_BUFFER |
TGSI_MEMBAR_SHADER_IMAGE |
TGSI_MEMBAR_SHARED));
break;
case ir_intrinsic_memory_barrier_atomic_counter:
emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
st_src_reg_for_int(TGSI_MEMBAR_ATOMIC_BUFFER));
break;
case ir_intrinsic_memory_barrier_buffer:
emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER));
break;
case ir_intrinsic_memory_barrier_image:
emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
st_src_reg_for_int(TGSI_MEMBAR_SHADER_IMAGE));
break;
case ir_intrinsic_memory_barrier_shared:
emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
st_src_reg_for_int(TGSI_MEMBAR_SHARED));
break;
case ir_intrinsic_group_memory_barrier:
emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
TGSI_MEMBAR_ATOMIC_BUFFER |
TGSI_MEMBAR_SHADER_IMAGE |
TGSI_MEMBAR_SHARED |
TGSI_MEMBAR_THREAD_GROUP));
break;
default:
assert(!"Unexpected memory barrier intrinsic");
}
}
void
glsl_to_tgsi_visitor::visit_shared_intrinsic(ir_call *ir)
{
exec_node *param = ir->actual_parameters.get_head();
ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
st_src_reg buffer(PROGRAM_MEMORY, 0, GLSL_TYPE_UINT);
/* Calculate the surface offset */
offset->accept(this);
st_src_reg off = this->result;
st_dst_reg dst = undef_dst;
if (ir->return_deref) {
ir->return_deref->accept(this);
dst = st_dst_reg(this->result);
dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
}
glsl_to_tgsi_instruction *inst;
if (ir->callee->intrinsic_id == ir_intrinsic_shared_load) {
inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
inst->resource = buffer;
} else if (ir->callee->intrinsic_id == ir_intrinsic_shared_store) {
param = param->get_next();
ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
val->accept(this);
param = param->get_next();
ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
assert(write_mask);
dst.writemask = write_mask->value.u[0];
dst.type = this->result.type;
inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
inst->resource = buffer;
} else {
param = param->get_next();
ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
val->accept(this);
st_src_reg data = this->result, data2 = undef_src;
unsigned opcode;
switch (ir->callee->intrinsic_id) {
case ir_intrinsic_shared_atomic_add:
opcode = TGSI_OPCODE_ATOMUADD;
break;
case ir_intrinsic_shared_atomic_min:
opcode = TGSI_OPCODE_ATOMIMIN;
break;
case ir_intrinsic_shared_atomic_max:
opcode = TGSI_OPCODE_ATOMIMAX;
break;
case ir_intrinsic_shared_atomic_and:
opcode = TGSI_OPCODE_ATOMAND;
break;
case ir_intrinsic_shared_atomic_or:
opcode = TGSI_OPCODE_ATOMOR;
break;
case ir_intrinsic_shared_atomic_xor:
opcode = TGSI_OPCODE_ATOMXOR;
break;
case ir_intrinsic_shared_atomic_exchange:
opcode = TGSI_OPCODE_ATOMXCHG;
break;
case ir_intrinsic_shared_atomic_comp_swap:
opcode = TGSI_OPCODE_ATOMCAS;
param = param->get_next();
val = ((ir_instruction *)param)->as_rvalue();
val->accept(this);
data2 = this->result;
break;
default:
assert(!"Unexpected intrinsic");
return;
}
inst = emit_asm(ir, opcode, dst, off, data, data2);
inst->resource = buffer;
}
}
static void
get_image_qualifiers(ir_dereference *ir, const glsl_type **type,
bool *memory_coherent, bool *memory_volatile,
bool *memory_restrict, unsigned *image_format)
{
switch (ir->ir_type) {
case ir_type_dereference_record: {
ir_dereference_record *deref_record = ir->as_dereference_record();
const glsl_type *struct_type = deref_record->record->type;
int fild_idx = deref_record->field_idx;
*type = struct_type->fields.structure[fild_idx].type->without_array();
*memory_coherent =
struct_type->fields.structure[fild_idx].memory_coherent;
*memory_volatile =
struct_type->fields.structure[fild_idx].memory_volatile;
*memory_restrict =
struct_type->fields.structure[fild_idx].memory_restrict;
*image_format =
struct_type->fields.structure[fild_idx].image_format;
break;
}
case ir_type_dereference_array: {
ir_dereference_array *deref_arr = ir->as_dereference_array();
get_image_qualifiers((ir_dereference *)deref_arr->array, type,
memory_coherent, memory_volatile, memory_restrict,
image_format);
break;
}
case ir_type_dereference_variable: {
ir_variable *var = ir->variable_referenced();
*type = var->type->without_array();
*memory_coherent = var->data.memory_coherent;
*memory_volatile = var->data.memory_volatile;
*memory_restrict = var->data.memory_restrict;
*image_format = var->data.image_format;
break;
}
default:
break;
}
}
void
glsl_to_tgsi_visitor::visit_image_intrinsic(ir_call *ir)
{
exec_node *param = ir->actual_parameters.get_head();
ir_dereference *img = (ir_dereference *)param;
const ir_variable *imgvar = img->variable_referenced();
unsigned sampler_array_size = 1, sampler_base = 0;
bool memory_coherent = false, memory_volatile = false, memory_restrict = false;
unsigned image_format = 0;
const glsl_type *type = NULL;
get_image_qualifiers(img, &type, &memory_coherent, &memory_volatile,
&memory_restrict, &image_format);
st_src_reg reladdr;
st_src_reg image(PROGRAM_IMAGE, 0, GLSL_TYPE_UINT);
uint16_t index = 0;
get_deref_offsets(img, &sampler_array_size, &sampler_base,
&index, &reladdr, !imgvar->contains_bindless());
image.index = index;
if (reladdr.file != PROGRAM_UNDEFINED) {
image.reladdr = ralloc(mem_ctx, st_src_reg);
*image.reladdr = reladdr;
emit_arl(ir, sampler_reladdr, reladdr);
}
st_dst_reg dst = undef_dst;
if (ir->return_deref) {
ir->return_deref->accept(this);
dst = st_dst_reg(this->result);
dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
}
glsl_to_tgsi_instruction *inst;
st_src_reg bindless;
if (imgvar->contains_bindless()) {
img->accept(this);
bindless = this->result;
}
if (ir->callee->intrinsic_id == ir_intrinsic_image_size) {
dst.writemask = WRITEMASK_XYZ;
inst = emit_asm(ir, TGSI_OPCODE_RESQ, dst);
} else if (ir->callee->intrinsic_id == ir_intrinsic_image_samples) {
st_src_reg res = get_temp(glsl_type::ivec4_type);
st_dst_reg dstres = st_dst_reg(res);
dstres.writemask = WRITEMASK_W;
inst = emit_asm(ir, TGSI_OPCODE_RESQ, dstres);
res.swizzle = SWIZZLE_WWWW;
emit_asm(ir, TGSI_OPCODE_MOV, dst, res);
} else {
st_src_reg arg1 = undef_src, arg2 = undef_src;
st_src_reg coord;
st_dst_reg coord_dst;
coord = get_temp(glsl_type::ivec4_type);
coord_dst = st_dst_reg(coord);
coord_dst.writemask = (1 << type->coordinate_components()) - 1;
param = param->get_next();
((ir_dereference *)param)->accept(this);
emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
coord.swizzle = SWIZZLE_XXXX;
switch (type->coordinate_components()) {
case 4: assert(!"unexpected coord count");
/* fallthrough */
case 3: coord.swizzle |= SWIZZLE_Z << 6;
/* fallthrough */
case 2: coord.swizzle |= SWIZZLE_Y << 3;
}
if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
param = param->get_next();
((ir_dereference *)param)->accept(this);
st_src_reg sample = this->result;
sample.swizzle = SWIZZLE_XXXX;
coord_dst.writemask = WRITEMASK_W;
emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample);
coord.swizzle |= SWIZZLE_W << 9;
}
param = param->get_next();
if (!param->is_tail_sentinel()) {
((ir_dereference *)param)->accept(this);
arg1 = this->result;
param = param->get_next();
}
if (!param->is_tail_sentinel()) {
((ir_dereference *)param)->accept(this);
arg2 = this->result;
param = param->get_next();
}
assert(param->is_tail_sentinel());
unsigned opcode;
switch (ir->callee->intrinsic_id) {
case ir_intrinsic_image_load:
opcode = TGSI_OPCODE_LOAD;
break;
case ir_intrinsic_image_store:
opcode = TGSI_OPCODE_STORE;
break;
case ir_intrinsic_image_atomic_add:
opcode = TGSI_OPCODE_ATOMUADD;
break;
case ir_intrinsic_image_atomic_min:
opcode = TGSI_OPCODE_ATOMIMIN;
break;
case ir_intrinsic_image_atomic_max:
opcode = TGSI_OPCODE_ATOMIMAX;
break;
case ir_intrinsic_image_atomic_and:
opcode = TGSI_OPCODE_ATOMAND;
break;
case ir_intrinsic_image_atomic_or:
opcode = TGSI_OPCODE_ATOMOR;
break;
case ir_intrinsic_image_atomic_xor:
opcode = TGSI_OPCODE_ATOMXOR;
break;
case ir_intrinsic_image_atomic_exchange:
opcode = TGSI_OPCODE_ATOMXCHG;
break;
case ir_intrinsic_image_atomic_comp_swap:
opcode = TGSI_OPCODE_ATOMCAS;
break;
default:
assert(!"Unexpected intrinsic");
return;
}
inst = emit_asm(ir, opcode, dst, coord, arg1, arg2);
if (opcode == TGSI_OPCODE_STORE)
inst->dst[0].writemask = WRITEMASK_XYZW;
}
if (imgvar->contains_bindless()) {
inst->resource = bindless;
inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
SWIZZLE_X, SWIZZLE_Y);
} else {
inst->resource = image;
inst->sampler_array_size = sampler_array_size;
inst->sampler_base = sampler_base;
}
inst->tex_target = type->sampler_index();
inst->image_format = st_mesa_format_to_pipe_format(st_context(ctx),
_mesa_get_shader_image_format(image_format));
if (memory_coherent)
inst->buffer_access |= TGSI_MEMORY_COHERENT;
if (memory_restrict)
inst->buffer_access |= TGSI_MEMORY_RESTRICT;
if (memory_volatile)
inst->buffer_access |= TGSI_MEMORY_VOLATILE;
}
void
glsl_to_tgsi_visitor::visit_generic_intrinsic(ir_call *ir, unsigned op)
{
ir->return_deref->accept(this);
st_dst_reg dst = st_dst_reg(this->result);
dst.writemask = u_bit_consecutive(0, ir->return_deref->var->type->vector_elements);
st_src_reg src[4] = { undef_src, undef_src, undef_src, undef_src };
unsigned num_src = 0;
foreach_in_list(ir_rvalue, param, &ir->actual_parameters) {
assert(num_src < ARRAY_SIZE(src));
this->result.file = PROGRAM_UNDEFINED;
param->accept(this);
assert(this->result.file != PROGRAM_UNDEFINED);
src[num_src] = this->result;
num_src++;
}
emit_asm(ir, op, dst, src[0], src[1], src[2], src[3]);
}
void
glsl_to_tgsi_visitor::visit(ir_call *ir)
{
ir_function_signature *sig = ir->callee;
/* Filter out intrinsics */
switch (sig->intrinsic_id) {
case ir_intrinsic_atomic_counter_read:
case ir_intrinsic_atomic_counter_increment:
case ir_intrinsic_atomic_counter_predecrement:
case ir_intrinsic_atomic_counter_add:
case ir_intrinsic_atomic_counter_min:
case ir_intrinsic_atomic_counter_max:
case ir_intrinsic_atomic_counter_and:
case ir_intrinsic_atomic_counter_or:
case ir_intrinsic_atomic_counter_xor:
case ir_intrinsic_atomic_counter_exchange:
case ir_intrinsic_atomic_counter_comp_swap:
visit_atomic_counter_intrinsic(ir);
return;
case ir_intrinsic_ssbo_load:
case ir_intrinsic_ssbo_store:
case ir_intrinsic_ssbo_atomic_add:
case ir_intrinsic_ssbo_atomic_min:
case ir_intrinsic_ssbo_atomic_max:
case ir_intrinsic_ssbo_atomic_and:
case ir_intrinsic_ssbo_atomic_or:
case ir_intrinsic_ssbo_atomic_xor:
case ir_intrinsic_ssbo_atomic_exchange:
case ir_intrinsic_ssbo_atomic_comp_swap:
visit_ssbo_intrinsic(ir);
return;
case ir_intrinsic_memory_barrier:
case ir_intrinsic_memory_barrier_atomic_counter:
case ir_intrinsic_memory_barrier_buffer:
case ir_intrinsic_memory_barrier_image:
case ir_intrinsic_memory_barrier_shared:
case ir_intrinsic_group_memory_barrier:
visit_membar_intrinsic(ir);
return;
case ir_intrinsic_shared_load:
case ir_intrinsic_shared_store:
case ir_intrinsic_shared_atomic_add:
case ir_intrinsic_shared_atomic_min:
case ir_intrinsic_shared_atomic_max:
case ir_intrinsic_shared_atomic_and:
case ir_intrinsic_shared_atomic_or:
case ir_intrinsic_shared_atomic_xor:
case ir_intrinsic_shared_atomic_exchange:
case ir_intrinsic_shared_atomic_comp_swap:
visit_shared_intrinsic(ir);
return;
case ir_intrinsic_image_load:
case ir_intrinsic_image_store:
case ir_intrinsic_image_atomic_add:
case ir_intrinsic_image_atomic_min:
case ir_intrinsic_image_atomic_max:
case ir_intrinsic_image_atomic_and:
case ir_intrinsic_image_atomic_or:
case ir_intrinsic_image_atomic_xor:
case ir_intrinsic_image_atomic_exchange:
case ir_intrinsic_image_atomic_comp_swap:
case ir_intrinsic_image_size:
case ir_intrinsic_image_samples:
visit_image_intrinsic(ir);
return;
case ir_intrinsic_shader_clock:
visit_generic_intrinsic(ir, TGSI_OPCODE_CLOCK);
return;
case ir_intrinsic_vote_all:
visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ALL);
return;
case ir_intrinsic_vote_any:
visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ANY);
return;
case ir_intrinsic_vote_eq:
visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_EQ);
return;
case ir_intrinsic_ballot:
visit_generic_intrinsic(ir, TGSI_OPCODE_BALLOT);
return;
case ir_intrinsic_read_first_invocation:
visit_generic_intrinsic(ir, TGSI_OPCODE_READ_FIRST);
return;
case ir_intrinsic_read_invocation:
visit_generic_intrinsic(ir, TGSI_OPCODE_READ_INVOC);
return;
case ir_intrinsic_invalid:
case ir_intrinsic_generic_load:
case ir_intrinsic_generic_store:
case ir_intrinsic_generic_atomic_add:
case ir_intrinsic_generic_atomic_and:
case ir_intrinsic_generic_atomic_or:
case ir_intrinsic_generic_atomic_xor:
case ir_intrinsic_generic_atomic_min:
case ir_intrinsic_generic_atomic_max:
case ir_intrinsic_generic_atomic_exchange:
case ir_intrinsic_generic_atomic_comp_swap:
unreachable("Invalid intrinsic");
}
}
void
glsl_to_tgsi_visitor::calc_deref_offsets(ir_dereference *tail,
unsigned *array_elements,
uint16_t *index,
st_src_reg *indirect,
unsigned *location)
{
switch (tail->ir_type) {
case ir_type_dereference_record: {
ir_dereference_record *deref_record = tail->as_dereference_record();
const glsl_type *struct_type = deref_record->record->type;
int field_index = deref_record->field_idx;
calc_deref_offsets(deref_record->record->as_dereference(), array_elements, index, indirect, location);
assert(field_index >= 0);
*location += struct_type->record_location_offset(field_index);
break;
}
case ir_type_dereference_array: {
ir_dereference_array *deref_arr = tail->as_dereference_array();
void *mem_ctx = ralloc_parent(deref_arr);
ir_constant *array_index =
deref_arr->array_index->constant_expression_value(mem_ctx);
if (!array_index) {
st_src_reg temp_reg;
st_dst_reg temp_dst;
temp_reg = get_temp(glsl_type::uint_type);
temp_dst = st_dst_reg(temp_reg);
temp_dst.writemask = 1;
deref_arr->array_index->accept(this);
if (*array_elements != 1)
emit_asm(NULL, TGSI_OPCODE_MUL, temp_dst, this->result, st_src_reg_for_int(*array_elements));
else
emit_asm(NULL, TGSI_OPCODE_MOV, temp_dst, this->result);
if (indirect->file == PROGRAM_UNDEFINED)
*indirect = temp_reg;
else {
temp_dst = st_dst_reg(*indirect);
temp_dst.writemask = 1;
emit_asm(NULL, TGSI_OPCODE_ADD, temp_dst, *indirect, temp_reg);
}
} else
*index += array_index->value.u[0] * *array_elements;
*array_elements *= deref_arr->array->type->length;
calc_deref_offsets(deref_arr->array->as_dereference(), array_elements, index, indirect, location);
break;
}
default:
break;
}
}
void
glsl_to_tgsi_visitor::get_deref_offsets(ir_dereference *ir,
unsigned *array_size,
unsigned *base,
uint16_t *index,
st_src_reg *reladdr,
bool opaque)
{
GLuint shader = _mesa_program_enum_to_shader_stage(this->prog->Target);
unsigned location = 0;
ir_variable *var = ir->variable_referenced();
memset(reladdr, 0, sizeof(*reladdr));
reladdr->file = PROGRAM_UNDEFINED;
*base = 0;
*array_size = 1;
assert(var);
location = var->data.location;
calc_deref_offsets(ir, array_size, index, reladdr, &location);
/*
* If we end up with no indirect then adjust the base to the index,
* and set the array size to 1.
*/
if (reladdr->file == PROGRAM_UNDEFINED) {
*base = *index;
*array_size = 1;
}
if (opaque) {
assert(location != 0xffffffff);
*base += this->shader_program->data->UniformStorage[location].opaque[shader].index;
*index += this->shader_program->data->UniformStorage[location].opaque[shader].index;
}
}
st_src_reg
glsl_to_tgsi_visitor::canonicalize_gather_offset(st_src_reg offset)
{
if (offset.reladdr || offset.reladdr2) {
st_src_reg tmp = get_temp(glsl_type::ivec2_type);
st_dst_reg tmp_dst = st_dst_reg(tmp);
tmp_dst.writemask = WRITEMASK_XY;
emit_asm(NULL, TGSI_OPCODE_MOV, tmp_dst, offset);
return tmp;
}
return offset;
}
void
glsl_to_tgsi_visitor::visit(ir_texture *ir)
{
st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
st_src_reg levels_src, reladdr;
st_dst_reg result_dst, coord_dst, cube_sc_dst;
glsl_to_tgsi_instruction *inst = NULL;
unsigned opcode = TGSI_OPCODE_NOP;
const glsl_type *sampler_type = ir->sampler->type;
unsigned sampler_array_size = 1, sampler_base = 0;
bool is_cube_array = false, is_cube_shadow = false;
ir_variable *var = ir->sampler->variable_referenced();
unsigned i;
/* if we are a cube array sampler or a cube shadow */
if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
is_cube_array = sampler_type->sampler_array;
is_cube_shadow = sampler_type->sampler_shadow;
}
if (ir->coordinate) {
ir->coordinate->accept(this);
/* Put our coords in a temp. We'll need to modify them for shadow,
* projection, or LOD, so the only case we'd use it as-is is if
* we're doing plain old texturing. The optimization passes on
* glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
*/
coord = get_temp(glsl_type::vec4_type);
coord_dst = st_dst_reg(coord);
coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
}
if (ir->projector) {
ir->projector->accept(this);
projector = this->result;
}
/* Storage for our result. Ideally for an assignment we'd be using
* the actual storage for the result here, instead.
*/
result_src = get_temp(ir->type);
result_dst = st_dst_reg(result_src);
result_dst.writemask = (1 << ir->type->vector_elements) - 1;
switch (ir->op) {
case ir_tex:
opcode = (is_cube_array && ir->shadow_comparator) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
if (ir->offset) {
ir->offset->accept(this);
offset[0] = this->result;
}
break;
case ir_txb:
if (is_cube_array || is_cube_shadow) {
opcode = TGSI_OPCODE_TXB2;
}
else {
opcode = TGSI_OPCODE_TXB;
}
ir->lod_info.bias->accept(this);
lod_info = this->result;
if (ir->offset) {
ir->offset->accept(this);
offset[0] = this->result;
}
break;
case ir_txl:
if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
opcode = TGSI_OPCODE_TEX_LZ;
} else {
opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
ir->lod_info.lod->accept(this);
lod_info = this->result;
}
if (ir->offset) {
ir->offset->accept(this);
offset[0] = this->result;
}
break;
case ir_txd:
opcode = TGSI_OPCODE_TXD;
ir->lod_info.grad.dPdx->accept(this);
dx = this->result;
ir->lod_info.grad.dPdy->accept(this);
dy = this->result;
if (ir->offset) {
ir->offset->accept(this);
offset[0] = this->result;
}
break;
case ir_txs:
opcode = TGSI_OPCODE_TXQ;
ir->lod_info.lod->accept(this);
lod_info = this->result;
break;
case ir_query_levels:
opcode = TGSI_OPCODE_TXQ;
lod_info = undef_src;
levels_src = get_temp(ir->type);
break;
case ir_txf:
if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
opcode = TGSI_OPCODE_TXF_LZ;
} else {
opcode = TGSI_OPCODE_TXF;
ir->lod_info.lod->accept(this);
lod_info = this->result;
}
if (ir->offset) {
ir->offset->accept(this);
offset[0] = this->result;
}
break;
case ir_txf_ms:
opcode = TGSI_OPCODE_TXF;
ir->lod_info.sample_index->accept(this);
sample_index = this->result;
break;
case ir_tg4:
opcode = TGSI_OPCODE_TG4;
ir->lod_info.component->accept(this);
component = this->result;
if (ir->offset) {
ir->offset->accept(this);
if (ir->offset->type->is_array()) {
const glsl_type *elt_type = ir->offset->type->fields.array;
for (i = 0; i < ir->offset->type->length; i++) {
offset[i] = this->result;
offset[i].index += i * type_size(elt_type);
offset[i].type = elt_type->base_type;
offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
offset[i] = canonicalize_gather_offset(offset[i]);
}
} else {
offset[0] = canonicalize_gather_offset(this->result);
}
}
break;
case ir_lod:
opcode = TGSI_OPCODE_LODQ;
break;
case ir_texture_samples:
opcode = TGSI_OPCODE_TXQS;
break;
case ir_samples_identical:
unreachable("Unexpected ir_samples_identical opcode");
}
if (ir->projector) {
if (opcode == TGSI_OPCODE_TEX) {
/* Slot the projector in as the last component of the coord. */
coord_dst.writemask = WRITEMASK_W;
emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
coord_dst.writemask = WRITEMASK_XYZW;
opcode = TGSI_OPCODE_TXP;
} else {
st_src_reg coord_w = coord;
coord_w.swizzle = SWIZZLE_WWWW;
/* For the other TEX opcodes there's no projective version
* since the last slot is taken up by LOD info. Do the
* projective divide now.
*/
coord_dst.writemask = WRITEMASK_W;
emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
/* In the case where we have to project the coordinates "by hand,"
* the shadow comparator value must also be projected.
*/
st_src_reg tmp_src = coord;
if (ir->shadow_comparator) {
/* Slot the shadow value in as the second to last component of the
* coord.
*/
ir->shadow_comparator->accept(this);
tmp_src = get_temp(glsl_type::vec4_type);
st_dst_reg tmp_dst = st_dst_reg(tmp_src);
/* Projective division not allowed for array samplers. */
assert(!sampler_type->sampler_array);
tmp_dst.writemask = WRITEMASK_Z;
emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
tmp_dst.writemask = WRITEMASK_XY;
emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
}
coord_dst.writemask = WRITEMASK_XYZ;
emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
coord_dst.writemask = WRITEMASK_XYZW;
coord.swizzle = SWIZZLE_XYZW;
}
}
/* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
* comparator was put in the correct place (and projected) by the code,
* above, that handles by-hand projection.
*/
if (ir->shadow_comparator && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
/* Slot the shadow value in as the second to last component of the
* coord.
*/
ir->shadow_comparator->accept(this);
if (is_cube_array) {
cube_sc = get_temp(glsl_type::float_type);
cube_sc_dst = st_dst_reg(cube_sc);
cube_sc_dst.writemask = WRITEMASK_X;
emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
cube_sc_dst.writemask = WRITEMASK_X;
}
else {
if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
sampler_type->sampler_array) ||
sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
coord_dst.writemask = WRITEMASK_W;
} else {
coord_dst.writemask = WRITEMASK_Z;
}
emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
coord_dst.writemask = WRITEMASK_XYZW;
}
}
if (ir->op == ir_txf_ms) {
coord_dst.writemask = WRITEMASK_W;
emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
coord_dst.writemask = WRITEMASK_XYZW;
} else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
opcode == TGSI_OPCODE_TXF) {
/* TGSI stores LOD or LOD bias in the last channel of the coords. */
coord_dst.writemask = WRITEMASK_W;
emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
coord_dst.writemask = WRITEMASK_XYZW;
}
st_src_reg sampler(PROGRAM_SAMPLER, 0, GLSL_TYPE_UINT);
uint16_t index = 0;
get_deref_offsets(ir->sampler, &sampler_array_size, &sampler_base,
&index, &reladdr, !var->contains_bindless());
sampler.index = index;
if (reladdr.file != PROGRAM_UNDEFINED) {
sampler.reladdr = ralloc(mem_ctx, st_src_reg);
*sampler.reladdr = reladdr;
emit_arl(ir, sampler_reladdr, reladdr);
}
st_src_reg bindless;
if (var->contains_bindless()) {
ir->sampler->accept(this);
bindless = this->result;
}
if (opcode == TGSI_OPCODE_TXD)
inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
else if (opcode == TGSI_OPCODE_TXQ) {
if (ir->op == ir_query_levels) {
/* the level is stored in W */
inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
result_dst.writemask = WRITEMASK_X;
levels_src.swizzle = SWIZZLE_WWWW;
emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
} else
inst = emit_asm(ir, opcode, result_dst, lod_info);
} else if (opcode == TGSI_OPCODE_TXQS) {
inst = emit_asm(ir, opcode, result_dst);
} else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
} else if (opcode == TGSI_OPCODE_TEX2) {
inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
} else if (opcode == TGSI_OPCODE_TG4) {
if (is_cube_array && ir->shadow_comparator) {
inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
} else {
inst = emit_asm(ir, opcode, result_dst, coord, component);
}
} else
inst = emit_asm(ir, opcode, result_dst, coord);
if (ir->shadow_comparator)
inst->tex_shadow = GL_TRUE;
if (var->contains_bindless()) {
inst->resource = bindless;
inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
SWIZZLE_X, SWIZZLE_Y);
} else {
inst->resource = sampler;
inst->sampler_array_size = sampler_array_size;
inst->sampler_base = sampler_base;
}
if (ir->offset) {
if (!inst->tex_offsets)
inst->tex_offsets = rzalloc_array(inst, st_src_reg, MAX_GLSL_TEXTURE_OFFSET);
for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
inst->tex_offsets[i] = offset[i];
inst->tex_offset_num_offset = i;
}
inst->tex_target = sampler_type->sampler_index();
inst->tex_type = ir->type->base_type;
this->result = result_src;
}
void
glsl_to_tgsi_visitor::visit(ir_return *ir)
{
assert(!ir->get_value());
emit_asm(ir, TGSI_OPCODE_RET);
}
void
glsl_to_tgsi_visitor::visit(ir_discard *ir)
{
if (ir->condition) {
ir->condition->accept(this);
st_src_reg condition = this->result;
/* Convert the bool condition to a float so we can negate. */
if (native_integers) {
st_src_reg temp = get_temp(ir->condition->type);
emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
condition, st_src_reg_for_float(1.0));
condition = temp;
}
condition.negate = ~condition.negate;
emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
} else {
/* unconditional kil */
emit_asm(ir, TGSI_OPCODE_KILL);
}
}
void
glsl_to_tgsi_visitor::visit(ir_if *ir)
{
unsigned if_opcode;
glsl_to_tgsi_instruction *if_inst;
ir->condition->accept(this);
assert(this->result.file != PROGRAM_UNDEFINED);
if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
this->instructions.push_tail(if_inst);
visit_exec_list(&ir->then_instructions, this);
if (!ir->else_instructions.is_empty()) {
emit_asm(ir->condition, TGSI_OPCODE_ELSE);
visit_exec_list(&ir->else_instructions, this);
}
if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
}
void
glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
{
assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
ir->stream->accept(this);
emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
}
void
glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
{
assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
ir->stream->accept(this);
emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
}
void
glsl_to_tgsi_visitor::visit(ir_barrier *ir)
{
assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
this->prog->Target == GL_COMPUTE_PROGRAM_NV);
emit_asm(ir, TGSI_OPCODE_BARRIER);
}
glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
{
STATIC_ASSERT(sizeof(samplers_used) * 8 >= PIPE_MAX_SAMPLERS);
result.file = PROGRAM_UNDEFINED;
next_temp = 1;
array_sizes = NULL;
max_num_arrays = 0;
next_array = 0;
num_inputs = 0;
num_outputs = 0;
num_input_arrays = 0;
num_output_arrays = 0;
num_atomics = 0;
num_atomic_arrays = 0;
num_immediates = 0;
num_address_regs = 0;
samplers_used = 0;
images_used = 0;
indirect_addr_consts = false;
wpos_transform_const = -1;
native_integers = false;
mem_ctx = ralloc_context(NULL);
ctx = NULL;
prog = NULL;
precise = 0;
shader_program = NULL;
shader = NULL;
options = NULL;
have_sqrt = false;
have_fma = false;
use_shared_memory = false;
has_tex_txf_lz = false;
variables = NULL;
}
static void var_destroy(struct hash_entry *entry)
{
variable_storage *storage = (variable_storage *)entry->data;
delete storage;
}
glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
{
_mesa_hash_table_destroy(variables, var_destroy);
free(array_sizes);
ralloc_free(mem_ctx);
}
extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
{
delete v;
}
/**
* Count resources used by the given gpu program (number of texture
* samplers, etc).
*/
static void
count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
{
v->samplers_used = 0;
v->images_used = 0;
prog->info.textures_used_by_txf = 0;
foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
if (inst->info->is_tex) {
for (int i = 0; i < inst->sampler_array_size; i++) {
unsigned idx = inst->sampler_base + i;
v->samplers_used |= 1u << idx;
debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
v->sampler_types[idx] = inst->tex_type;
v->sampler_targets[idx] =
st_translate_texture_target(inst->tex_target, inst->tex_shadow);
if (inst->op == TGSI_OPCODE_TXF || inst->op == TGSI_OPCODE_TXF_LZ) {
prog->info.textures_used_by_txf |= 1u << idx;
}
}
}
if (inst->tex_target == TEXTURE_EXTERNAL_INDEX)
prog->ExternalSamplersUsed |= 1 << inst->resource.index;
if (inst->resource.file != PROGRAM_UNDEFINED && (
is_resource_instruction(inst->op) ||
inst->op == TGSI_OPCODE_STORE)) {
if (inst->resource.file == PROGRAM_MEMORY) {
v->use_shared_memory = true;
} else if (inst->resource.file == PROGRAM_IMAGE) {
for (int i = 0; i < inst->sampler_array_size; i++) {
unsigned idx = inst->sampler_base + i;
v->images_used |= 1 << idx;
v->image_targets[idx] =
st_translate_texture_target(inst->tex_target, false);
v->image_formats[idx] = inst->image_format;
}
}
}
}
prog->SamplersUsed = v->samplers_used;
if (v->shader_program != NULL)
_mesa_update_shader_textures_used(v->shader_program, prog);
}
/**
* Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
* are read from the given src in this instruction
*/
static int
get_src_arg_mask(st_dst_reg dst, st_src_reg src)
{
int read_mask = 0, comp;
/* Now, given the src swizzle and the written channels, find which
* components are actually read
*/
for (comp = 0; comp < 4; ++comp) {
const unsigned coord = GET_SWZ(src.swizzle, comp);
assert(coord < 4);
if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
read_mask |= 1 << coord;
}
return read_mask;
}
/**
* This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
* instruction is the first instruction to write to register T0. There are
* several lowering passes done in GLSL IR (e.g. branches and
* relative addressing) that create a large number of conditional assignments
* that ir_to_mesa converts to CMP instructions like the one mentioned above.
*
* Here is why this conversion is safe:
* CMP T0, T1 T2 T0 can be expanded to:
* if (T1 < 0.0)
* MOV T0, T2;
* else
* MOV T0, T0;
*
* If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
* as the original program. If (T1 < 0.0) evaluates to false, executing
* MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
* Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
* because any instruction that was going to read from T0 after this was going
* to read a garbage value anyway.
*/
void
glsl_to_tgsi_visitor::simplify_cmp(void)
{
int tempWritesSize = 0;
unsigned *tempWrites = NULL;
unsigned outputWrites[VARYING_SLOT_TESS_MAX];
memset(outputWrites, 0, sizeof(outputWrites));
foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
unsigned prevWriteMask = 0;
/* Give up if we encounter relative addressing or flow control. */
if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
inst->info->is_branch ||
inst->op == TGSI_OPCODE_CONT ||
inst->op == TGSI_OPCODE_END ||
inst->op == TGSI_OPCODE_RET) {
break;
}
if (inst->dst[0].file == PROGRAM_OUTPUT) {
assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
prevWriteMask = outputWrites[inst->dst[0].index];
outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
} else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
if (inst->dst[0].index >= tempWritesSize) {
const int inc = 4096;
tempWrites = (unsigned*)
realloc(tempWrites,
(tempWritesSize + inc) * sizeof(unsigned));
if (!tempWrites)
return;
memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
tempWritesSize += inc;
}
prevWriteMask = tempWrites[inst->dst[0].index];
tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
} else
continue;
/* For a CMP to be considered a conditional write, the destination
* register and source register two must be the same. */
if (inst->op == TGSI_OPCODE_CMP
&& !(inst->dst[0].writemask & prevWriteMask)
&& inst->src[2].file == inst->dst[0].file
&& inst->src[2].index == inst->dst[0].index
&& inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
inst->op = TGSI_OPCODE_MOV;
inst->info = tgsi_get_opcode_info(inst->op);
inst->src[0] = inst->src[1];
}
}
free(tempWrites);
}
static void
rename_temp_handle_src(struct rename_reg_pair *renames, st_src_reg *src)
{
if (src && src->file == PROGRAM_TEMPORARY) {
int old_idx = src->index;
if (renames[old_idx].valid)
src->index = renames[old_idx].new_reg;
}
}
/* Replaces all references to a temporary register index with another index. */
void
glsl_to_tgsi_visitor::rename_temp_registers(struct rename_reg_pair *renames)
{
foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
unsigned j;
for (j = 0; j < num_inst_src_regs(inst); j++) {
rename_temp_handle_src(renames, &inst->src[j]);
rename_temp_handle_src(renames, inst->src[j].reladdr);
rename_temp_handle_src(renames, inst->src[j].reladdr2);
}
for (j = 0; j < inst->tex_offset_num_offset; j++) {
rename_temp_handle_src(renames, &inst->tex_offsets[j]);
rename_temp_handle_src(renames, inst->tex_offsets[j].reladdr);
rename_temp_handle_src(renames, inst->tex_offsets[j].reladdr2);
}
rename_temp_handle_src(renames, &inst->resource);
rename_temp_handle_src(renames, inst->resource.reladdr);
rename_temp_handle_src(renames, inst->resource.reladdr2);
for (j = 0; j < num_inst_dst_regs(inst); j++) {
if (inst->dst[j].file == PROGRAM_TEMPORARY) {
int old_idx = inst->dst[j].index;
if (renames[old_idx].valid)
inst->dst[j].index = renames[old_idx].new_reg;
}
rename_temp_handle_src(renames, inst->dst[j].reladdr);
rename_temp_handle_src(renames, inst->dst[j].reladdr2);
}
}
}
void
glsl_to_tgsi_visitor::get_first_temp_write(int *first_writes)
{
int depth = 0; /* loop depth */
int loop_start = -1; /* index of the first active BGNLOOP (if any) */
unsigned i = 0, j;
foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
for (j = 0; j < num_inst_dst_regs(inst); j++) {
if (inst->dst[j].file == PROGRAM_TEMPORARY) {
if (first_writes[inst->dst[j].index] == -1)
first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
}
}
if (inst->op == TGSI_OPCODE_BGNLOOP) {
if(depth++ == 0)
loop_start = i;
} else if (inst->op == TGSI_OPCODE_ENDLOOP) {
if (--depth == 0)
loop_start = -1;
}
assert(depth >= 0);
i++;
}
}
void
glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
{
int depth = 0; /* loop depth */
int loop_start = -1; /* index of the first active BGNLOOP (if any) */
unsigned i = 0, j;
foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
for (j = 0; j < num_inst_src_regs(inst); j++) {
if (inst->src[j].file == PROGRAM_TEMPORARY) {
if (first_reads[inst->src[j].index] == -1)
first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
}
}
for (j = 0; j < inst->tex_offset_num_offset; j++) {
if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
if (first_reads[inst->tex_offsets[j].index] == -1)
first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
}
}
if (inst->op == TGSI_OPCODE_BGNLOOP) {
if(depth++ == 0)
loop_start = i;
} else if (inst->op == TGSI_OPCODE_ENDLOOP) {
if (--depth == 0)
loop_start = -1;
}
assert(depth >= 0);
i++;
}
}
void
glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
{
int depth = 0; /* loop depth */
int loop_start = -1; /* index of the first active BGNLOOP (if any) */
unsigned i = 0, j;
int k;
foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
for (j = 0; j < num_inst_src_regs(inst); j++) {
if (inst->src[j].file == PROGRAM_TEMPORARY)
last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
}
for (j = 0; j < num_inst_dst_regs(inst); j++) {
if (inst->dst[j].file == PROGRAM_TEMPORARY) {
if (first_writes[inst->dst[j].index] == -1)
first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
last_reads[inst->dst[j].index] = (depth == 0) ? i : -2;
}
}
for (j = 0; j < inst->tex_offset_num_offset; j++) {
if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
}
if (inst->op == TGSI_OPCODE_BGNLOOP) {
if(depth++ == 0)
loop_start = i;
} else if (inst->op == TGSI_OPCODE_ENDLOOP) {
if (--depth == 0) {
loop_start = -1;
for (k = 0; k < this->next_temp; k++) {
if (last_reads[k] == -2) {
last_reads[k] = i;
}
}
}
}
assert(depth >= 0);
i++;
}
}
void
glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
{
int depth = 0; /* loop depth */
int i = 0, k;
unsigned j;
foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
for (j = 0; j < num_inst_dst_regs(inst); j++) {
if (inst->dst[j].file == PROGRAM_TEMPORARY)
last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
}
if (inst->op == TGSI_OPCODE_BGNLOOP)
depth++;
else if (inst->op == TGSI_OPCODE_ENDLOOP)
if (--depth == 0) {
for (k = 0; k < this->next_temp; k++) {
if (last_writes[k] == -2) {
last_writes[k] = i;
}
}
}
assert(depth >= 0);
i++;
}
}
/*
* On a basic block basis, tracks available PROGRAM_TEMPORARY register
* channels for copy propagation and updates following instructions to
* use the original versions.
*
* The glsl_to_tgsi_visitor lazily produces code assuming that this pass
* will occur. As an example, a TXP production before this pass:
*
* 0: MOV TEMP[1], INPUT[4].xyyy;
* 1: MOV TEMP[1].w, INPUT[4].wwww;
* 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
*
* and after:
*
* 0: MOV TEMP[1], INPUT[4].xyyy;
* 1: MOV TEMP[1].w, INPUT[4].wwww;
* 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
*
* which allows for dead code elimination on TEMP[1]'s writes.
*/
void
glsl_to_tgsi_visitor::copy_propagate(void)
{
glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
glsl_to_tgsi_instruction *,
this->next_temp * 4);
int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
int level = 0;
foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
assert(inst->dst[0].file != PROGRAM_TEMPORARY
|| inst->dst[0].index < this->next_temp);
/* First, do any copy propagation possible into the src regs. */
for (int r = 0; r < 3; r++) {
glsl_to_tgsi_instruction *first = NULL;
bool good = true;
int acp_base = inst->src[r].index * 4;
if (inst->src[r].file != PROGRAM_TEMPORARY ||
inst->src[r].reladdr ||
inst->src[r].reladdr2)
continue;
/* See if we can find entries in the ACP consisting of MOVs
* from the same src register for all the swizzled channels
* of this src register reference.
*/
for (int i = 0; i < 4; i++) {
int src_chan = GET_SWZ(inst->src[r].swizzle, i);
glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
if (!copy_chan) {
good = false;
break;
}
assert(acp_level[acp_base + src_chan] <= level);
if (!first) {
first = copy_chan;
} else {
if (first->src[0].file != copy_chan->src[0].file ||
first->src[0].index != copy_chan->src[0].index ||
first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
first->src[0].index2D != copy_chan->src[0].index2D) {
good = false;
break;
}
}
}
if (good) {
/* We've now validated that we can copy-propagate to
* replace this src register reference. Do it.
*/
inst->src[r].file = first->src[0].file;
inst->src[r].index = first->src[0].index;
inst->src[r].index2D = first->src[0].index2D;
inst->src[r].has_index2 = first->src[0].has_index2;
inst->src[r].double_reg2 = first->src[0].double_reg2;
inst->src[r].array_id = first->src[0].array_id;
int swizzle = 0;
for (int i = 0; i < 4; i++) {
int src_chan = GET_SWZ(inst->src[r].swizzle, i);
glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
}
inst->src[r].swizzle = swizzle;
}
}
switch (inst->op) {
case TGSI_OPCODE_BGNLOOP:
case TGSI_OPCODE_ENDLOOP:
/* End of a basic block, clear the ACP entirely. */
memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
break;
case TGSI_OPCODE_IF:
case TGSI_OPCODE_UIF:
++level;
break;
case TGSI_OPCODE_ENDIF:
case TGSI_OPCODE_ELSE:
/* Clear all channels written inside the block from the ACP, but
* leaving those that were not touched.
*/
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
if (!acp[4 * r + c])
continue;
if (acp_level[4 * r + c] >= level)
acp[4 * r + c] = NULL;
}
}
if (inst->op == TGSI_OPCODE_ENDIF)
--level;
break;
default:
/* Continuing the block, clear any written channels from
* the ACP.
*/
for (int d = 0; d < 2; d++) {
if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
/* Any temporary might be written, so no copy propagation
* across this instruction.
*/
memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
} else if (inst->dst[d].file == PROGRAM_OUTPUT &&
inst->dst[d].reladdr) {
/* Any output might be written, so no copy propagation
* from outputs across this instruction.
*/
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
if (!acp[4 * r + c])
continue;
if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
acp[4 * r + c] = NULL;
}
}
} else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
inst->dst[d].file == PROGRAM_OUTPUT) {
/* Clear where it's used as dst. */
if (inst->dst[d].file == PROGRAM_TEMPORARY) {
for (int c = 0; c < 4; c++) {
if (inst->dst[d].writemask & (1 << c))
acp[4 * inst->dst[d].index + c] = NULL;
}
}
/* Clear where it's used as src. */
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
if (!acp[4 * r + c])
continue;
int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
acp[4 * r + c]->src[0].index == inst->dst[d].index &&
inst->dst[d].writemask & (1 << src_chan)) {
acp[4 * r + c] = NULL;
}
}
}
}
}
break;
}
/* If this is a copy, add it to the ACP. */
if (inst->op == TGSI_OPCODE_MOV &&
inst->dst[0].file == PROGRAM_TEMPORARY &&
!(inst->dst[0].file == inst->src[0].file &&
inst->dst[0].index == inst->src[0].index) &&
!inst->dst[0].reladdr &&
!inst->dst[0].reladdr2 &&
!inst->saturate &&
inst->src[0].file != PROGRAM_ARRAY &&
(inst->src[0].file != PROGRAM_OUTPUT ||
this->shader->Stage != MESA_SHADER_TESS_CTRL) &&
!inst->src[0].reladdr &&
!inst->src[0].reladdr2 &&
!inst->src[0].negate &&
!inst->src[0].abs) {
for (int i = 0; i < 4; i++) {
if (inst->dst[0].writemask & (1 << i)) {
acp[4 * inst->dst[0].index + i] = inst;
acp_level[4 * inst->dst[0].index + i] = level;
}
}
}
}
ralloc_free(acp_level);
ralloc_free(acp);
}
static void
dead_code_handle_reladdr(glsl_to_tgsi_instruction **writes, st_src_reg *reladdr)
{
if (reladdr && reladdr->file == PROGRAM_TEMPORARY) {
/* Clear where it's used as src. */
int swz = GET_SWZ(reladdr->swizzle, 0);
writes[4 * reladdr->index + swz] = NULL;
}
}
/*
* On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
* code elimination.
*
* The glsl_to_tgsi_visitor lazily produces code assuming that this pass
* will occur. As an example, a TXP production after copy propagation but
* before this pass:
*
* 0: MOV TEMP[1], INPUT[4].xyyy;
* 1: MOV TEMP[1].w, INPUT[4].wwww;
* 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
*
* and after this pass:
*
* 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
*/
int
glsl_to_tgsi_visitor::eliminate_dead_code(void)
{
glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
glsl_to_tgsi_instruction *,
this->next_temp * 4);
int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
int level = 0;
int removed = 0;
foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
assert(inst->dst[0].file != PROGRAM_TEMPORARY
|| inst->dst[0].index < this->next_temp);
switch (inst->op) {
case TGSI_OPCODE_BGNLOOP:
case TGSI_OPCODE_ENDLOOP:
case TGSI_OPCODE_CONT:
case TGSI_OPCODE_BRK:
/* End of a basic block, clear the write array entirely.
*
* This keeps us from killing dead code when the writes are
* on either side of a loop, even when the register isn't touched
* inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
* dead code of this type, so it shouldn't make a difference as long as
* the dead code elimination pass in the GLSL compiler does its job.
*/
memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
break;
case TGSI_OPCODE_ENDIF:
case TGSI_OPCODE_ELSE:
/* Promote the recorded level of all channels written inside the
* preceding if or else block to the level above the if/else block.
*/
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
if (!writes[4 * r + c])
continue;
if (write_level[4 * r + c] == level)
write_level[4 * r + c] = level-1;
}
}
if(inst->op == TGSI_OPCODE_ENDIF)
--level;
break;
case TGSI_OPCODE_IF:
case TGSI_OPCODE_UIF:
++level;
/* fallthrough to default case to mark the condition as read */
default:
/* Continuing the block, clear any channels from the write array that
* are read by this instruction.
*/
for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
/* Any temporary might be read, so no dead code elimination
* across this instruction.
*/
memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
} else if (inst->src[i].file == PROGRAM_TEMPORARY) {
/* Clear where it's used as src. */
int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
for (int c = 0; c < 4; c++) {
if (src_chans & (1 << c))
writes[4 * inst->src[i].index + c] = NULL;
}
}
dead_code_handle_reladdr(writes, inst->src[i].reladdr);
dead_code_handle_reladdr(writes, inst->src[i].reladdr2);
}
for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
/* Any temporary might be read, so no dead code elimination
* across this instruction.
*/
memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
} else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
/* Clear where it's used as src. */
int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
for (int c = 0; c < 4; c++) {
if (src_chans & (1 << c))
writes[4 * inst->tex_offsets[i].index + c] = NULL;
}
}
dead_code_handle_reladdr(writes, inst->tex_offsets[i].reladdr);
dead_code_handle_reladdr(writes, inst->tex_offsets[i].reladdr2);
}
if (inst->resource.file == PROGRAM_TEMPORARY) {
int src_chans;
src_chans = 1 << GET_SWZ(inst->resource.swizzle, 0);
src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 1);
src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 2);
src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 3);
for (int c = 0; c < 4; c++) {
if (src_chans & (1 << c))
writes[4 * inst->resource.index + c] = NULL;
}
}
dead_code_handle_reladdr(writes, inst->resource.reladdr);
dead_code_handle_reladdr(writes, inst->resource.reladdr2);
for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
dead_code_handle_reladdr(writes, inst->dst[i].reladdr);
dead_code_handle_reladdr(writes, inst->dst[i].reladdr2);
}
break;
}
/* If this instruction writes to a temporary, add it to the write array.
* If there is already an instruction in the write array for one or more
* of the channels, flag that channel write as dead.
*/
for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
if (inst->dst[i].file == PROGRAM_TEMPORARY &&
!inst->dst[i].reladdr) {
for (int c = 0; c < 4; c++) {
if (inst->dst[i].writemask & (1 << c)) {
if (writes[4 * inst->dst[i].index + c]) {
if (write_level[4 * inst->dst[i].index + c] < level)
continue;
else
writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
}
writes[4 * inst->dst[i].index + c] = inst;
write_level[4 * inst->dst[i].index + c] = level;
}
}
}
}
}
/* Anything still in the write array at this point is dead code. */
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
glsl_to_tgsi_instruction *inst = writes[4 * r + c];
if (inst)
inst->dead_mask |= (1 << c);
}
}
/* Now actually remove the instructions that are completely dead and update
* the writemask of other instructions with dead channels.
*/
foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
if (!inst->dead_mask || !inst->dst[0].writemask)
continue;
/* No amount of dead masks should remove memory stores */
if (inst->info->is_store)
continue;
if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
inst->remove();
delete inst;
removed++;
} else {
if (glsl_base_type_is_64bit(inst->dst[0].type)) {
if (inst->dead_mask == WRITEMASK_XY ||
inst->dead_mask == WRITEMASK_ZW)
inst->dst[0].writemask &= ~(inst->dead_mask);
} else
inst->dst[0].writemask &= ~(inst->dead_mask);
}
}
ralloc_free(write_level);
ralloc_free(writes);
return removed;
}
/* merge DFRACEXP instructions into one. */
void
glsl_to_tgsi_visitor::merge_two_dsts(void)
{
/* We never delete inst, but we may delete its successor. */
foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
glsl_to_tgsi_instruction *inst2;
unsigned defined;
if (num_inst_dst_regs(inst) != 2)
continue;
if (inst->dst[0].file != PROGRAM_UNDEFINED &&
inst->dst[1].file != PROGRAM_UNDEFINED)
continue;
assert(inst->dst[0].file != PROGRAM_UNDEFINED ||
inst->dst[1].file != PROGRAM_UNDEFINED);
if (inst->dst[0].file == PROGRAM_UNDEFINED)
defined = 1;
else
defined = 0;
inst2 = (glsl_to_tgsi_instruction *) inst->next;
while (!inst2->is_tail_sentinel()) {
if (inst->op == inst2->op &&
inst2->dst[defined].file == PROGRAM_UNDEFINED &&
inst->src[0].file == inst2->src[0].file &&
inst->src[0].index == inst2->src[0].index &&
inst->src[0].type == inst2->src[0].type &&
inst->src[0].swizzle == inst2->src[0].swizzle)
break;
inst2 = (glsl_to_tgsi_instruction *) inst2->next;
}
if (inst2->is_tail_sentinel()) {
/* Undefined destinations are not allowed, substitute with an unused
* temporary register.
*/
st_src_reg tmp = get_temp(glsl_type::vec4_type);
inst->dst[defined ^ 1] = st_dst_reg(tmp);
inst->dst[defined ^ 1].writemask = 0;
continue;
}
inst->dst[defined ^ 1] = inst2->dst[defined ^ 1];
inst2->remove();
delete inst2;
}
}
/* Merges temporary registers together where possible to reduce the number of
* registers needed to run a program.
*
* Produces optimal code only after copy propagation and dead code elimination
* have been run. */
void
glsl_to_tgsi_visitor::merge_registers(void)
{
assert(need_uarl);
struct lifetime *lifetimes =
rzalloc_array(mem_ctx, struct lifetime, this->next_temp);
if (get_temp_registers_required_lifetimes(mem_ctx, &this->instructions,
this->next_temp, lifetimes)) {
struct rename_reg_pair *renames =
rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
get_temp_registers_remapping(mem_ctx, this->next_temp, lifetimes, renames);
rename_temp_registers(renames);
ralloc_free(renames);
}
ralloc_free(lifetimes);
}
/* Reassign indices to temporary registers by reusing unused indices created
* by optimization passes. */
void
glsl_to_tgsi_visitor::renumber_registers(void)
{
int i = 0;
int new_index = 0;
int *first_writes = ralloc_array(mem_ctx, int, this->next_temp);
struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
for (i = 0; i < this->next_temp; i++) {
first_writes[i] = -1;
}
get_first_temp_write(first_writes);
for (i = 0; i < this->next_temp; i++) {
if (first_writes[i] < 0) continue;
if (i != new_index) {
renames[i].new_reg = new_index;
renames[i].valid = true;
}
new_index++;
}
rename_temp_registers(renames);
this->next_temp = new_index;
ralloc_free(renames);
ralloc_free(first_writes);
}
/* ------------------------- TGSI conversion stuff -------------------------- */
/**
* Intermediate state used during shader translation.
*/
struct st_translate {
struct ureg_program *ureg;
unsigned temps_size;
struct ureg_dst *temps;
struct ureg_dst *arrays;
unsigned num_temp_arrays;
struct ureg_src *constants;
int num_constants;
struct ureg_src *immediates;
int num_immediates;
struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
struct ureg_dst address[3];
struct ureg_src samplers[PIPE_MAX_SAMPLERS];
struct ureg_src buffers[PIPE_MAX_SHADER_BUFFERS];
struct ureg_src images[PIPE_MAX_SHADER_IMAGES];
struct ureg_src systemValues[SYSTEM_VALUE_MAX];
struct ureg_src hw_atomics[PIPE_MAX_HW_ATOMIC_BUFFERS];
struct ureg_src shared_memory;
unsigned *array_sizes;
struct inout_decl *input_decls;
unsigned num_input_decls;
struct inout_decl *output_decls;
unsigned num_output_decls;
const ubyte *inputMapping;
const ubyte *outputMapping;
unsigned procType; /**< PIPE_SHADER_VERTEX/FRAGMENT */
bool need_uarl;
};
/** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
unsigned
_mesa_sysval_to_semantic(unsigned sysval)
{
switch (sysval) {
/* Vertex shader */
case SYSTEM_VALUE_VERTEX_ID:
return TGSI_SEMANTIC_VERTEXID;
case SYSTEM_VALUE_INSTANCE_ID:
return TGSI_SEMANTIC_INSTANCEID;
case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
return TGSI_SEMANTIC_VERTEXID_NOBASE;
case SYSTEM_VALUE_BASE_VERTEX:
return TGSI_SEMANTIC_BASEVERTEX;
case SYSTEM_VALUE_BASE_INSTANCE:
return TGSI_SEMANTIC_BASEINSTANCE;
case SYSTEM_VALUE_DRAW_ID:
return TGSI_SEMANTIC_DRAWID;
/* Geometry shader */
case SYSTEM_VALUE_INVOCATION_ID:
return TGSI_SEMANTIC_INVOCATIONID;
/* Fragment shader */
case SYSTEM_VALUE_FRAG_COORD:
return TGSI_SEMANTIC_POSITION;
case SYSTEM_VALUE_FRONT_FACE:
return TGSI_SEMANTIC_FACE;
case SYSTEM_VALUE_SAMPLE_ID:
return TGSI_SEMANTIC_SAMPLEID;
case SYSTEM_VALUE_SAMPLE_POS:
return TGSI_SEMANTIC_SAMPLEPOS;
case SYSTEM_VALUE_SAMPLE_MASK_IN:
return TGSI_SEMANTIC_SAMPLEMASK;
case SYSTEM_VALUE_HELPER_INVOCATION:
return TGSI_SEMANTIC_HELPER_INVOCATION;
/* Tessellation shader */
case SYSTEM_VALUE_TESS_COORD:
return TGSI_SEMANTIC_TESSCOORD;
case SYSTEM_VALUE_VERTICES_IN:
return TGSI_SEMANTIC_VERTICESIN;
case SYSTEM_VALUE_PRIMITIVE_ID:
return TGSI_SEMANTIC_PRIMID;
case SYSTEM_VALUE_TESS_LEVEL_OUTER:
return TGSI_SEMANTIC_TESSOUTER;
case SYSTEM_VALUE_TESS_LEVEL_INNER:
return TGSI_SEMANTIC_TESSINNER;
/* Compute shader */
case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
return TGSI_SEMANTIC_THREAD_ID;
case SYSTEM_VALUE_WORK_GROUP_ID:
return TGSI_SEMANTIC_BLOCK_ID;
case SYSTEM_VALUE_NUM_WORK_GROUPS:
return TGSI_SEMANTIC_GRID_SIZE;
case SYSTEM_VALUE_LOCAL_GROUP_SIZE:
return TGSI_SEMANTIC_BLOCK_SIZE;
/* ARB_shader_ballot */
case SYSTEM_VALUE_SUBGROUP_SIZE:
return TGSI_SEMANTIC_SUBGROUP_SIZE;
case SYSTEM_VALUE_SUBGROUP_INVOCATION:
return TGSI_SEMANTIC_SUBGROUP_INVOCATION;
case SYSTEM_VALUE_SUBGROUP_EQ_MASK:
return TGSI_SEMANTIC_SUBGROUP_EQ_MASK;
case SYSTEM_VALUE_SUBGROUP_GE_MASK:
return TGSI_SEMANTIC_SUBGROUP_GE_MASK;
case SYSTEM_VALUE_SUBGROUP_GT_MASK:
return TGSI_SEMANTIC_SUBGROUP_GT_MASK;
case SYSTEM_VALUE_SUBGROUP_LE_MASK:
return TGSI_SEMANTIC_SUBGROUP_LE_MASK;
case SYSTEM_VALUE_SUBGROUP_LT_MASK:
return TGSI_SEMANTIC_SUBGROUP_LT_MASK;
/* Unhandled */
case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
case SYSTEM_VALUE_GLOBAL_INVOCATION_ID:
case SYSTEM_VALUE_VERTEX_CNT:
default:
assert(!"Unexpected SYSTEM_VALUE_ enum");
return TGSI_SEMANTIC_COUNT;
}
}
/**
* Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
*/
static struct ureg_src
emit_immediate(struct st_translate *t,
gl_constant_value values[4],
int type, int size)
{
struct ureg_program *ureg = t->ureg;
switch(type)
{
case GL_FLOAT:
return ureg_DECL_immediate(ureg, &values[0].f, size);
case GL_DOUBLE:
return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
case GL_INT64_ARB:
return ureg_DECL_immediate_int64(ureg, (int64_t *)&values[0].f, size);
case GL_UNSIGNED_INT64_ARB:
return ureg_DECL_immediate_uint64(ureg, (uint64_t *)&values[0].f, size);
case GL_INT:
return ureg_DECL_immediate_int(ureg, &values[0].i, size);
case GL_UNSIGNED_INT:
case GL_BOOL:
return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
default:
assert(!"should not get here - type must be float, int, uint, or bool");
return ureg_src_undef();
}
}
/**
* Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
*/
static struct ureg_dst
dst_register(struct st_translate *t, gl_register_file file, unsigned index,
unsigned array_id)
{
unsigned array;
switch(file) {
case PROGRAM_UNDEFINED:
return ureg_dst_undef();
case PROGRAM_TEMPORARY:
/* Allocate space for temporaries on demand. */
if (index >= t->temps_size) {
const int inc = align(index - t->temps_size + 1, 4096);
t->temps = (struct ureg_dst*)
realloc(t->temps,
(t->temps_size + inc) * sizeof(struct ureg_dst));
if (!t->temps)
return ureg_dst_undef();
memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
t->temps_size += inc;
}
if (ureg_dst_is_undef(t->temps[index]))
t->temps[index] = ureg_DECL_local_temporary(t->ureg);
return t->temps[index];
case PROGRAM_ARRAY:
assert(array_id && array_id <= t->num_temp_arrays);
array = array_id - 1;
if (ureg_dst_is_undef(t->arrays[array]))
t->arrays[array] = ureg_DECL_array_temporary(
t->ureg, t->array_sizes[array], TRUE);
return ureg_dst_array_offset(t->arrays[array], index);
case PROGRAM_OUTPUT:
if (!array_id) {
if (t->procType == PIPE_SHADER_FRAGMENT)
assert(index < 2 * FRAG_RESULT_MAX);
else if (t->procType == PIPE_SHADER_TESS_CTRL ||
t->procType == PIPE_SHADER_TESS_EVAL)
assert(index < VARYING_SLOT_TESS_MAX);
else
assert(index < VARYING_SLOT_MAX);
assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
return t->outputs[t->outputMapping[index]];
}
else {
struct inout_decl *decl = find_inout_array(t->output_decls, t->num_output_decls, array_id);
unsigned mesa_index = decl->mesa_index;
int slot = t->outputMapping[mesa_index];
assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
struct ureg_dst dst = t->outputs[slot];
dst.ArrayID = array_id;
return ureg_dst_array_offset(dst, index - mesa_index);
}
case PROGRAM_ADDRESS:
return t->address[index];
default:
assert(!"unknown dst register file");
return ureg_dst_undef();
}
}
static struct ureg_src
translate_src(struct st_translate *t, const st_src_reg *src_reg);
static struct ureg_src
translate_addr(struct st_translate *t, const st_src_reg *reladdr,
unsigned addr_index)
{
if (t->need_uarl || !reladdr->is_legal_tgsi_address_operand())
return ureg_src(t->address[addr_index]);
return translate_src(t, reladdr);
}
/**
* Create a TGSI ureg_dst register from an st_dst_reg.
*/
static struct ureg_dst
translate_dst(struct st_translate *t,
const st_dst_reg *dst_reg,
bool saturate)
{
struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
dst_reg->array_id);
if (dst.File == TGSI_FILE_NULL)
return dst;
dst = ureg_writemask(dst, dst_reg->writemask);
if (saturate)
dst = ureg_saturate(dst);
if (dst_reg->reladdr != NULL) {
assert(dst_reg->file != PROGRAM_TEMPORARY);
dst = ureg_dst_indirect(dst, translate_addr(t, dst_reg->reladdr, 0));
}
if (dst_reg->has_index2) {
if (dst_reg->reladdr2)
dst = ureg_dst_dimension_indirect(dst,
translate_addr(t, dst_reg->reladdr2, 1),
dst_reg->index2D);
else
dst = ureg_dst_dimension(dst, dst_reg->index2D);
}
return dst;
}
/**
* Create a TGSI ureg_src register from an st_src_reg.
*/
static struct ureg_src
translate_src(struct st_translate *t, const st_src_reg *src_reg)
{
struct ureg_src src;
int index = src_reg->index;
int double_reg2 = src_reg->double_reg2 ? 1 : 0;
switch(src_reg->file) {
case PROGRAM_UNDEFINED:
src = ureg_imm4f(t->ureg, 0, 0, 0, 0);
break;
case PROGRAM_TEMPORARY:
case PROGRAM_ARRAY:
src = ureg_src(dst_register(t, src_reg->file, src_reg->index, src_reg->array_id));
break;
case PROGRAM_OUTPUT: {
struct ureg_dst dst = dst_register(t, src_reg->file, src_reg->index, src_reg->array_id);
assert(dst.WriteMask != 0);
unsigned shift = ffs(dst.WriteMask) - 1;
src = ureg_swizzle(ureg_src(dst),
shift,
MIN2(shift + 1, 3),
MIN2(shift + 2, 3),
MIN2(shift + 3, 3));
break;
}
case PROGRAM_UNIFORM:
assert(src_reg->index >= 0);
src = src_reg->index < t->num_constants ?
t->constants[src_reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
break;
case PROGRAM_STATE_VAR:
case PROGRAM_CONSTANT: /* ie, immediate */
if (src_reg->has_index2)
src = ureg_src_register(TGSI_FILE_CONSTANT, src_reg->index);
else
src = src_reg->index >= 0 && src_reg->index < t->num_constants ?
t->constants[src_reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
break;
case PROGRAM_IMMEDIATE:
assert(src_reg->index >= 0 && src_reg->index < t->num_immediates);
src = t->immediates[src_reg->index];
break;
case PROGRAM_INPUT:
/* GLSL inputs are 64-bit containers, so we have to
* map back to the original index and add the offset after
* mapping. */
index -= double_reg2;
if (!src_reg->array_id) {
assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
src = t->inputs[t->inputMapping[index] + double_reg2];
}
else {
struct inout_decl *decl = find_inout_array(t->input_decls, t->num_input_decls,
src_reg->array_id);
unsigned mesa_index = decl->mesa_index;
int slot = t->inputMapping[mesa_index];
assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
src = t->inputs[slot];
src.ArrayID = src_reg->array_id;
src = ureg_src_array_offset(src, index + double_reg2 - mesa_index);
}
break;
case PROGRAM_ADDRESS:
src = ureg_src(t->address[src_reg->index]);
break;
case PROGRAM_SYSTEM_VALUE:
assert(src_reg->index < (int) ARRAY_SIZE(t->systemValues));
src = t->systemValues[src_reg->index];
break;
case PROGRAM_HW_ATOMIC:
src = ureg_src_array_register(TGSI_FILE_HW_ATOMIC, src_reg->index,
src_reg->array_id);
break;
default:
assert(!"unknown src register file");
return ureg_src_undef();
}
if (src_reg->has_index2) {
/* 2D indexes occur with geometry shader inputs (attrib, vertex)
* and UBO constant buffers (buffer, position).
*/
if (src_reg->reladdr2)
src = ureg_src_dimension_indirect(src,
translate_addr(t, src_reg->reladdr2, 1),
src_reg->index2D);
else
src = ureg_src_dimension(src, src_reg->index2D);
}
src = ureg_swizzle(src,
GET_SWZ(src_reg->swizzle, 0) & 0x3,
GET_SWZ(src_reg->swizzle, 1) & 0x3,
GET_SWZ(src_reg->swizzle, 2) & 0x3,
GET_SWZ(src_reg->swizzle, 3) & 0x3);
if (src_reg->abs)
src = ureg_abs(src);
if ((src_reg->negate & 0xf) == NEGATE_XYZW)
src = ureg_negate(src);
if (src_reg->reladdr != NULL) {
assert(src_reg->file != PROGRAM_TEMPORARY);
src = ureg_src_indirect(src, translate_addr(t, src_reg->reladdr, 0));
}
return src;
}
static struct tgsi_texture_offset
translate_tex_offset(struct st_translate *t,
const st_src_reg *in_offset)
{
struct tgsi_texture_offset offset;
struct ureg_src src = translate_src(t, in_offset);
offset.File = src.File;
offset.Index = src.Index;
offset.SwizzleX = src.SwizzleX;
offset.SwizzleY = src.SwizzleY;
offset.SwizzleZ = src.SwizzleZ;
offset.Padding = 0;
assert(!src.Indirect);
assert(!src.DimIndirect);
assert(!src.Dimension);
assert(!src.Absolute); /* those shouldn't be used with integers anyway */
assert(!src.Negate);
return offset;
}
static void
compile_tgsi_instruction(struct st_translate *t,
const glsl_to_tgsi_instruction *inst)
{
struct ureg_program *ureg = t->ureg;
int i;
struct ureg_dst dst[2];
struct ureg_src src[4];
struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
int num_dst;
int num_src;
unsigned tex_target = 0;
num_dst = num_inst_dst_regs(inst);
num_src = num_inst_src_regs(inst);
for (i = 0; i < num_dst; i++)
dst[i] = translate_dst(t,
&inst->dst[i],
inst->saturate);
for (i = 0; i < num_src; i++)
src[i] = translate_src(t, &inst->src[i]);
switch(inst->op) {
case TGSI_OPCODE_BGNLOOP:
case TGSI_OPCODE_ELSE:
case TGSI_OPCODE_ENDLOOP:
case TGSI_OPCODE_IF:
case TGSI_OPCODE_UIF:
assert(num_dst == 0);
ureg_insn(ureg, inst->op, NULL, 0, src, num_src, inst->precise);
return;
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TEX_LZ:
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXD:
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXP:
case TGSI_OPCODE_TXQ:
case TGSI_OPCODE_TXQS:
case TGSI_OPCODE_TXF:
case TGSI_OPCODE_TXF_LZ:
case TGSI_OPCODE_TEX2:
case TGSI_OPCODE_TXB2:
case TGSI_OPCODE_TXL2:
case TGSI_OPCODE_TG4:
case TGSI_OPCODE_LODQ:
if (inst->resource.file == PROGRAM_SAMPLER) {
src[num_src] = t->samplers[inst->resource.index];
} else {
/* Bindless samplers. */
src[num_src] = translate_src(t, &inst->resource);
}
assert(src[num_src].File != TGSI_FILE_NULL);
if (inst->resource.reladdr)
src[num_src] =
ureg_src_indirect(src[num_src],
translate_addr(t, inst->resource.reladdr, 2));
num_src++;
for (i = 0; i < (int)inst->tex_offset_num_offset; i++) {
texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
}
tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
ureg_tex_insn(ureg,
inst->op,
dst, num_dst,
tex_target,
st_translate_texture_type(inst->tex_type),
texoffsets, inst->tex_offset_num_offset,
src, num_src);
return;
case TGSI_OPCODE_RESQ:
case TGSI_OPCODE_LOAD:
case TGSI_OPCODE_ATOMUADD:
case TGSI_OPCODE_ATOMXCHG:
case TGSI_OPCODE_ATOMCAS:
case TGSI_OPCODE_ATOMAND:
case TGSI_OPCODE_ATOMOR:
case TGSI_OPCODE_ATOMXOR:
case TGSI_OPCODE_ATOMUMIN:
case TGSI_OPCODE_ATOMUMAX:
case TGSI_OPCODE_ATOMIMIN:
case TGSI_OPCODE_ATOMIMAX:
for (i = num_src - 1; i >= 0; i--)
src[i + 1] = src[i];
num_src++;
if (inst->resource.file == PROGRAM_MEMORY) {
src[0] = t->shared_memory;
} else if (inst->resource.file == PROGRAM_BUFFER) {
src[0] = t->buffers[inst->resource.index];
} else if (inst->resource.file == PROGRAM_HW_ATOMIC) {
src[0] = translate_src(t, &inst->resource);
} else if (inst->resource.file == PROGRAM_CONSTANT) {
assert(inst->resource.has_index2);
src[0] = ureg_src_register(TGSI_FILE_CONSTBUF, inst->resource.index);
} else {
assert(inst->resource.file != PROGRAM_UNDEFINED);
if (inst->resource.file == PROGRAM_IMAGE) {
src[0] = t->images[inst->resource.index];
} else {
/* Bindless images. */
src[0] = translate_src(t, &inst->resource);
}
tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
}
if (inst->resource.reladdr)
src[0] = ureg_src_indirect(src[0],
translate_addr(t, inst->resource.reladdr, 2));
assert(src[0].File != TGSI_FILE_NULL);
ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
inst->buffer_access,
tex_target, inst->image_format);
break;
case TGSI_OPCODE_STORE:
if (inst->resource.file == PROGRAM_MEMORY) {
dst[0] = ureg_dst(t->shared_memory);
} else if (inst->resource.file == PROGRAM_BUFFER) {
dst[0] = ureg_dst(t->buffers[inst->resource.index]);
} else {
if (inst->resource.file == PROGRAM_IMAGE) {
dst[0] = ureg_dst(t->images[inst->resource.index]);
} else {
/* Bindless images. */
dst[0] = ureg_dst(translate_src(t, &inst->resource));
}
tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
}
dst[0] = ureg_writemask(dst[0], inst->dst[0].writemask);
if (inst->resource.reladdr)
dst[0] = ureg_dst_indirect(dst[0],
translate_addr(t, inst->resource.reladdr, 2));
assert(dst[0].File != TGSI_FILE_NULL);
ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
inst->buffer_access,
tex_target, inst->image_format);
break;
default:
ureg_insn(ureg,
inst->op,
dst, num_dst,
src, num_src, inst->precise);
break;
}
}
/**
* Emit the TGSI instructions for inverting and adjusting WPOS.
* This code is unavoidable because it also depends on whether
* a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
*/
static void
emit_wpos_adjustment(struct gl_context *ctx,
struct st_translate *t,
int wpos_transform_const,
boolean invert,
GLfloat adjX, GLfloat adjY[2])
{
struct ureg_program *ureg = t->ureg;
assert(wpos_transform_const >= 0);
/* Fragment program uses fragment position input.
* Need to replace instances of INPUT[WPOS] with temp T
* where T = INPUT[WPOS] is inverted by Y.
*/
struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
struct ureg_src *wpos =
ctx->Const.GLSLFragCoordIsSysVal ?
&t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
&t->inputs[t->inputMapping[VARYING_SLOT_POS]];
struct ureg_src wpos_input = *wpos;
/* First, apply the coordinate shift: */
if (adjX || adjY[0] || adjY[1]) {
if (adjY[0] != adjY[1]) {
/* Adjust the y coordinate by adjY[1] or adjY[0] respectively
* depending on whether inversion is actually going to be applied
* or not, which is determined by testing against the inversion
* state variable used below, which will be either +1 or -1.
*/
struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
ureg_CMP(ureg, adj_temp,
ureg_scalar(wpostrans, invert ? 2 : 0),
ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
} else {
ureg_ADD(ureg, wpos_temp, wpos_input,
ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
}
wpos_input = ureg_src(wpos_temp);
} else {
/* MOV wpos_temp, input[wpos]
*/
ureg_MOV( ureg, wpos_temp, wpos_input );
}
/* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
* inversion/identity, or the other way around if we're drawing to an FBO.
*/
if (invert) {
/* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
*/
ureg_MAD( ureg,
ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
wpos_input,
ureg_scalar(wpostrans, 0),
ureg_scalar(wpostrans, 1));
} else {
/* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
*/
ureg_MAD( ureg,
ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
wpos_input,
ureg_scalar(wpostrans, 2),
ureg_scalar(wpostrans, 3));
}
/* Use wpos_temp as position input from here on:
*/
*wpos = ureg_src(wpos_temp);
}
/**
* Emit fragment position/ooordinate code.
*/
static void
emit_wpos(struct st_context *st,
struct st_translate *t,
const struct gl_program *program,
struct ureg_program *ureg,
int wpos_transform_const)
{
struct pipe_screen *pscreen = st->pipe->screen;
GLfloat adjX = 0.0f;
GLfloat adjY[2] = { 0.0f, 0.0f };
boolean invert = FALSE;
/* Query the pixel center conventions supported by the pipe driver and set
* adjX, adjY to help out if it cannot handle the requested one internally.
*
* The bias of the y-coordinate depends on whether y-inversion takes place
* (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
* drawing to an FBO (causes additional inversion), and whether the pipe
* driver origin and the requested origin differ (the latter condition is
* stored in the 'invert' variable).
*
* For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
*
* center shift only:
* i -> h: +0.5
* h -> i: -0.5
*
* inversion only:
* l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
* l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
* u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
* u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
*
* inversion and center shift:
* l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
* l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
* u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
* u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
*/
if (program->OriginUpperLeft) {
/* Fragment shader wants origin in upper-left */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
/* the driver supports upper-left origin */
}
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
/* the driver supports lower-left origin, need to invert Y */
ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
invert = TRUE;
}
else
assert(0);
}
else {
/* Fragment shader wants origin in lower-left */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
/* the driver supports lower-left origin */
ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
/* the driver supports upper-left origin, need to invert Y */
invert = TRUE;
else
assert(0);
}
if (program->PixelCenterInteger) {
/* Fragment shader wants pixel center integer */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
/* the driver supports pixel center integer */
adjY[1] = 1.0f;
ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
}
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
/* the driver supports pixel center half integer, need to bias X,Y */
adjX = -0.5f;
adjY[0] = -0.5f;
adjY[1] = 0.5f;
}
else
assert(0);
}
else {
/* Fragment shader wants pixel center half integer */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
/* the driver supports pixel center half integer */
}
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
/* the driver supports pixel center integer, need to bias X,Y */
adjX = adjY[0] = adjY[1] = 0.5f;
ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
}
else
assert(0);
}
/* we invert after adjustment so that we avoid the MOV to temporary,
* and reuse the adjustment ADD instead */
emit_wpos_adjustment(st->ctx, t, wpos_transform_const, invert, adjX, adjY);
}
/**
* OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
* TGSI uses +1 for front, -1 for back.
* This function converts the TGSI value to the GL value. Simply clamping/
* saturating the value to [0,1] does the job.
*/
static void
emit_face_var(struct gl_context *ctx, struct st_translate *t)
{
struct ureg_program *ureg = t->ureg;
struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
if (ctx->Const.NativeIntegers) {
ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
}
else {
/* MOV_SAT face_temp, input[face] */
ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
}
/* Use face_temp as face input from here on: */
t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
}
static void
emit_compute_block_size(const struct gl_program *prog,
struct ureg_program *ureg) {
ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH,
prog->info.cs.local_size[0]);
ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT,
prog->info.cs.local_size[1]);
ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH,
prog->info.cs.local_size[2]);
}
struct sort_inout_decls {
bool operator()(const struct inout_decl &a, const struct inout_decl &b) const {
return mapping[a.mesa_index] < mapping[b.mesa_index];
}
const ubyte *mapping;
};
/* Sort the given array of decls by the corresponding slot (TGSI file index).
*
* This is for the benefit of older drivers which are broken when the
* declarations aren't sorted in this way.
*/
static void
sort_inout_decls_by_slot(struct inout_decl *decls,
unsigned count,
const ubyte mapping[])
{
sort_inout_decls sorter;
sorter.mapping = mapping;
std::sort(decls, decls + count, sorter);
}
static unsigned
st_translate_interp(enum glsl_interp_mode glsl_qual, GLuint varying)
{
switch (glsl_qual) {
case INTERP_MODE_NONE:
if (varying == VARYING_SLOT_COL0 || varying == VARYING_SLOT_COL1)
return TGSI_INTERPOLATE_COLOR;
return TGSI_INTERPOLATE_PERSPECTIVE;
case INTERP_MODE_SMOOTH:
return TGSI_INTERPOLATE_PERSPECTIVE;
case INTERP_MODE_FLAT:
return TGSI_INTERPOLATE_CONSTANT;
case INTERP_MODE_NOPERSPECTIVE:
return TGSI_INTERPOLATE_LINEAR;
default:
assert(0 && "unexpected interp mode in st_translate_interp()");
return TGSI_INTERPOLATE_PERSPECTIVE;
}
}
/**
* Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
* \param program the program to translate
* \param numInputs number of input registers used
* \param inputMapping maps Mesa fragment program inputs to TGSI generic
* input indexes
* \param inputSemanticName the TGSI_SEMANTIC flag for each input
* \param inputSemanticIndex the semantic index (ex: which texcoord) for
* each input
* \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
* \param numOutputs number of output registers used
* \param outputMapping maps Mesa fragment program outputs to TGSI
* generic outputs
* \param outputSemanticName the TGSI_SEMANTIC flag for each output
* \param outputSemanticIndex the semantic index (ex: which texcoord) for
* each output
*
* \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
*/
extern "C" enum pipe_error
st_translate_program(
struct gl_context *ctx,
uint procType,
struct ureg_program *ureg,
glsl_to_tgsi_visitor *program,
const struct gl_program *proginfo,
GLuint numInputs,
const ubyte inputMapping[],
const ubyte inputSlotToAttr[],
const ubyte inputSemanticName[],
const ubyte inputSemanticIndex[],
const ubyte interpMode[],
GLuint numOutputs,
const ubyte outputMapping[],
const ubyte outputSemanticName[],
const ubyte outputSemanticIndex[])
{
struct pipe_screen *screen = st_context(ctx)->pipe->screen;
struct st_translate *t;
unsigned i;
struct gl_program_constants *frag_const =
&ctx->Const.Program[MESA_SHADER_FRAGMENT];
enum pipe_error ret = PIPE_OK;
assert(numInputs <= ARRAY_SIZE(t->inputs));
assert(numOutputs <= ARRAY_SIZE(t->outputs));
ASSERT_BITFIELD_SIZE(st_src_reg, type, GLSL_TYPE_ERROR);
ASSERT_BITFIELD_SIZE(st_dst_reg, type, GLSL_TYPE_ERROR);
ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, tex_type, GLSL_TYPE_ERROR);
ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, image_format, PIPE_FORMAT_COUNT);
ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, tex_target,
(gl_texture_index) (NUM_TEXTURE_TARGETS - 1));
ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, image_format,
(enum pipe_format) (PIPE_FORMAT_COUNT - 1));
ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, op, TGSI_OPCODE_LAST - 1);
t = CALLOC_STRUCT(st_translate);
if (!t) {
ret = PIPE_ERROR_OUT_OF_MEMORY;
goto out;
}
t->procType = procType;
t->need_uarl = !screen->get_param(screen, PIPE_CAP_TGSI_ANY_REG_AS_ADDRESS);
t->inputMapping = inputMapping;
t->outputMapping = outputMapping;
t->ureg = ureg;
t->num_temp_arrays = program->next_array;
if (t->num_temp_arrays)
t->arrays = (struct ureg_dst*)
calloc(t->num_temp_arrays, sizeof(t->arrays[0]));
/*
* Declare input attributes.
*/
switch (procType) {
case PIPE_SHADER_FRAGMENT:
case PIPE_SHADER_GEOMETRY:
case PIPE_SHADER_TESS_EVAL:
case PIPE_SHADER_TESS_CTRL:
sort_inout_decls_by_slot(program->inputs, program->num_inputs, inputMapping);
for (i = 0; i < program->num_inputs; ++i) {
struct inout_decl *decl = &program->inputs[i];
unsigned slot = inputMapping[decl->mesa_index];
struct ureg_src src;
ubyte tgsi_usage_mask = decl->usage_mask;
if (glsl_base_type_is_64bit(decl->base_type)) {
if (tgsi_usage_mask == 1)
tgsi_usage_mask = TGSI_WRITEMASK_XY;
else if (tgsi_usage_mask == 2)
tgsi_usage_mask = TGSI_WRITEMASK_ZW;
else
tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
}
unsigned interp_mode = 0;
unsigned interp_location = 0;
if (procType == PIPE_SHADER_FRAGMENT) {
assert(interpMode);
interp_mode = interpMode[slot] != TGSI_INTERPOLATE_COUNT ?
interpMode[slot] :
st_translate_interp(decl->interp, inputSlotToAttr[slot]);
interp_location = decl->interp_loc;
}
src = ureg_DECL_fs_input_cyl_centroid_layout(ureg,
inputSemanticName[slot], inputSemanticIndex[slot],
interp_mode, 0, interp_location, slot, tgsi_usage_mask,
decl->array_id, decl->size);
for (unsigned j = 0; j < decl->size; ++j) {
if (t->inputs[slot + j].File != TGSI_FILE_INPUT) {
/* The ArrayID is set up in dst_register */
t->inputs[slot + j] = src;
t->inputs[slot + j].ArrayID = 0;
t->inputs[slot + j].Index += j;
}
}
}
break;
case PIPE_SHADER_VERTEX:
for (i = 0; i < numInputs; i++) {
t->inputs[i] = ureg_DECL_vs_input(ureg, i);
}
break;
case PIPE_SHADER_COMPUTE:
break;
default:
assert(0);
}
/*
* Declare output attributes.
*/
switch (procType) {
case PIPE_SHADER_FRAGMENT:
case PIPE_SHADER_COMPUTE:
break;
case PIPE_SHADER_GEOMETRY:
case PIPE_SHADER_TESS_EVAL:
case PIPE_SHADER_TESS_CTRL:
case PIPE_SHADER_VERTEX:
sort_inout_decls_by_slot(program->outputs, program->num_outputs, outputMapping);
for (i = 0; i < program->num_outputs; ++i) {
struct inout_decl *decl = &program->outputs[i];
unsigned slot = outputMapping[decl->mesa_index];
struct ureg_dst dst;
ubyte tgsi_usage_mask = decl->usage_mask;
if (glsl_base_type_is_64bit(decl->base_type)) {
if (tgsi_usage_mask == 1)
tgsi_usage_mask = TGSI_WRITEMASK_XY;
else if (tgsi_usage_mask == 2)
tgsi_usage_mask = TGSI_WRITEMASK_ZW;
else
tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
}
dst = ureg_DECL_output_layout(ureg,
outputSemanticName[slot], outputSemanticIndex[slot],
decl->gs_out_streams,
slot, tgsi_usage_mask, decl->array_id, decl->size);
for (unsigned j = 0; j < decl->size; ++j) {
if (t->outputs[slot + j].File != TGSI_FILE_OUTPUT) {
/* The ArrayID is set up in dst_register */
t->outputs[slot + j] = dst;
t->outputs[slot + j].ArrayID = 0;
t->outputs[slot + j].Index += j;
}
}
}
break;
default:
assert(0);
}
if (procType == PIPE_SHADER_FRAGMENT) {
if (program->shader->Program->info.fs.early_fragment_tests ||
program->shader->Program->info.fs.post_depth_coverage) {
ureg_property(ureg, TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL, 1);
if (program->shader->Program->info.fs.post_depth_coverage)
ureg_property(ureg, TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE, 1);
}
if (proginfo->info.inputs_read & VARYING_BIT_POS) {
/* Must do this after setting up t->inputs. */
emit_wpos(st_context(ctx), t, proginfo, ureg,
program->wpos_transform_const);
}
if (proginfo->info.inputs_read & VARYING_BIT_FACE)
emit_face_var(ctx, t);
for (i = 0; i < numOutputs; i++) {
switch (outputSemanticName[i]) {
case TGSI_SEMANTIC_POSITION:
t->outputs[i] = ureg_DECL_output(ureg,
TGSI_SEMANTIC_POSITION, /* Z/Depth */
outputSemanticIndex[i]);
t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
break;
case TGSI_SEMANTIC_STENCIL:
t->outputs[i] = ureg_DECL_output(ureg,
TGSI_SEMANTIC_STENCIL, /* Stencil */
outputSemanticIndex[i]);
t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
break;
case TGSI_SEMANTIC_COLOR:
t->outputs[i] = ureg_DECL_output(ureg,
TGSI_SEMANTIC_COLOR,
outputSemanticIndex[i]);
break;
case TGSI_SEMANTIC_SAMPLEMASK:
t->outputs[i] = ureg_DECL_output(ureg,
TGSI_SEMANTIC_SAMPLEMASK,
outputSemanticIndex[i]);
/* TODO: If we ever support more than 32 samples, this will have
* to become an array.
*/
t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
break;
default:
assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
ret = PIPE_ERROR_BAD_INPUT;
goto out;
}
}
}
else if (procType == PIPE_SHADER_VERTEX) {
for (i = 0; i < numOutputs; i++) {
if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
/* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
ureg_MOV(ureg,
ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
}
}
}
if (procType == PIPE_SHADER_COMPUTE) {
emit_compute_block_size(proginfo, ureg);
}
/* Declare address register.
*/
if (program->num_address_regs > 0) {
assert(program->num_address_regs <= 3);
for (int i = 0; i < program->num_address_regs; i++)
t->address[i] = ureg_DECL_address(ureg);
}
/* Declare misc input registers
*/
{
GLbitfield sysInputs = proginfo->info.system_values_read;
for (i = 0; sysInputs; i++) {
if (sysInputs & (1 << i)) {
unsigned semName = _mesa_sysval_to_semantic(i);
t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
if (semName == TGSI_SEMANTIC_INSTANCEID ||
semName == TGSI_SEMANTIC_VERTEXID) {
/* From Gallium perspective, these system values are always
* integer, and require native integer support. However, if
* native integer is supported on the vertex stage but not the
* pixel stage (e.g, i915g + draw), Mesa will generate IR that
* assumes these system values are floats. To resolve the
* inconsistency, we insert a U2F.
*/
struct st_context *st = st_context(ctx);
struct pipe_screen *pscreen = st->pipe->screen;
assert(procType == PIPE_SHADER_VERTEX);
assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
(void) pscreen;
if (!ctx->Const.NativeIntegers) {
struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
}
}
if (procType == PIPE_SHADER_FRAGMENT &&
semName == TGSI_SEMANTIC_POSITION)
emit_wpos(st_context(ctx), t, proginfo, ureg,
program->wpos_transform_const);
sysInputs &= ~(1 << i);
}
}
}
t->array_sizes = program->array_sizes;
t->input_decls = program->inputs;
t->num_input_decls = program->num_inputs;
t->output_decls = program->outputs;
t->num_output_decls = program->num_outputs;
/* Emit constants and uniforms. TGSI uses a single index space for these,
* so we put all the translated regs in t->constants.
*/
if (proginfo->Parameters) {
t->constants = (struct ureg_src *)
calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
if (t->constants == NULL) {
ret = PIPE_ERROR_OUT_OF_MEMORY;
goto out;
}
t->num_constants = proginfo->Parameters->NumParameters;
for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
switch (proginfo->Parameters->Parameters[i].Type) {
case PROGRAM_STATE_VAR:
case PROGRAM_UNIFORM:
t->constants[i] = ureg_DECL_constant(ureg, i);
break;
/* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
* addressing of the const buffer.
* FIXME: Be smarter and recognize param arrays:
* indirect addressing is only valid within the referenced
* array.
*/
case PROGRAM_CONSTANT:
if (program->indirect_addr_consts)
t->constants[i] = ureg_DECL_constant(ureg, i);
else
t->constants[i] = emit_immediate(t,
proginfo->Parameters->ParameterValues[i],
proginfo->Parameters->Parameters[i].DataType,
4);
break;
default:
break;
}
}
}
for (i = 0; i < proginfo->info.num_ubos; i++) {
unsigned size = proginfo->sh.UniformBlocks[i]->UniformBufferSize;
unsigned num_const_vecs = (size + 15) / 16;
unsigned first, last;
assert(num_const_vecs > 0);
first = 0;
last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
ureg_DECL_constant2D(t->ureg, first, last, i + 1);
}
/* Emit immediate values.
*/
t->immediates = (struct ureg_src *)
calloc(program->num_immediates, sizeof(struct ureg_src));
if (t->immediates == NULL) {
ret = PIPE_ERROR_OUT_OF_MEMORY;
goto out;
}
t->num_immediates = program->num_immediates;
i = 0;
foreach_in_list(immediate_storage, imm, &program->immediates) {
assert(i < program->num_immediates);
t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
}
assert(i == program->num_immediates);
/* texture samplers */
for (i = 0; i < frag_const->MaxTextureImageUnits; i++) {
if (program->samplers_used & (1u << i)) {
enum tgsi_return_type type =
st_translate_texture_type(program->sampler_types[i]);
t->samplers[i] = ureg_DECL_sampler(ureg, i);
ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
type, type, type, type );
}
}
/* Declare atomic and shader storage buffers. */
{
struct gl_program *prog = program->prog;
if (!st_context(ctx)->has_hw_atomics) {
for (i = 0; i < prog->info.num_abos; i++) {
unsigned index = prog->sh.AtomicBuffers[i]->Binding;
assert(index < frag_const->MaxAtomicBuffers);
t->buffers[index] = ureg_DECL_buffer(ureg, index, true);
}
} else {
for (i = 0; i < program->num_atomics; i++) {
struct hwatomic_decl *ainfo = &program->atomic_info[i];
gl_uniform_storage *uni_storage = &prog->sh.data->UniformStorage[ainfo->location];
int base = uni_storage->offset / ATOMIC_COUNTER_SIZE;
ureg_DECL_hw_atomic(ureg, base, base + ainfo->size - 1, ainfo->binding,
ainfo->array_id);
}
}
assert(prog->info.num_ssbos <= frag_const->MaxShaderStorageBlocks);
for (i = 0; i < prog->info.num_ssbos; i++) {
unsigned index = i;
if (!st_context(ctx)->has_hw_atomics)
index += frag_const->MaxAtomicBuffers;
t->buffers[index] = ureg_DECL_buffer(ureg, index, false);
}
}
if (program->use_shared_memory)
t->shared_memory = ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
for (i = 0; i < program->shader->Program->info.num_images; i++) {
if (program->images_used & (1 << i)) {
t->images[i] = ureg_DECL_image(ureg, i,
program->image_targets[i],
program->image_formats[i],
true, false);
}
}
/* Emit each instruction in turn:
*/
foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions)
compile_tgsi_instruction(t, inst);
/* Set the next shader stage hint for VS and TES. */
switch (procType) {
case PIPE_SHADER_VERTEX:
case PIPE_SHADER_TESS_EVAL:
if (program->shader_program->SeparateShader)
break;
for (i = program->shader->Stage+1; i <= MESA_SHADER_FRAGMENT; i++) {
if (program->shader_program->_LinkedShaders[i]) {
ureg_set_next_shader_processor(
ureg, pipe_shader_type_from_mesa((gl_shader_stage)i));
break;
}
}
break;
}
out:
if (t) {
free(t->arrays);
free(t->temps);
free(t->constants);
t->num_constants = 0;
free(t->immediates);
t->num_immediates = 0;
FREE(t);
}
return ret;
}
/* ----------------------------- End TGSI code ------------------------------ */
/**
* Convert a shader's GLSL IR into a Mesa gl_program, although without
* generating Mesa IR.
*/
static struct gl_program *
get_mesa_program_tgsi(struct gl_context *ctx,
struct gl_shader_program *shader_program,
struct gl_linked_shader *shader)
{
glsl_to_tgsi_visitor* v;
struct gl_program *prog;
struct gl_shader_compiler_options *options =
&ctx->Const.ShaderCompilerOptions[shader->Stage];
struct pipe_screen *pscreen = ctx->st->pipe->screen;
enum pipe_shader_type ptarget = pipe_shader_type_from_mesa(shader->Stage);
unsigned skip_merge_registers;
validate_ir_tree(shader->ir);
prog = shader->Program;
prog->Parameters = _mesa_new_parameter_list();
v = new glsl_to_tgsi_visitor();
v->ctx = ctx;
v->prog = prog;
v->shader_program = shader_program;
v->shader = shader;
v->options = options;
v->native_integers = ctx->Const.NativeIntegers;
v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
v->has_tex_txf_lz = pscreen->get_param(pscreen,
PIPE_CAP_TGSI_TEX_TXF_LZ);
v->need_uarl = !pscreen->get_param(pscreen, PIPE_CAP_TGSI_ANY_REG_AS_ADDRESS);
v->variables = _mesa_hash_table_create(v->mem_ctx, _mesa_hash_pointer,
_mesa_key_pointer_equal);
skip_merge_registers =
pscreen->get_shader_param(pscreen, ptarget,
PIPE_SHADER_CAP_TGSI_SKIP_MERGE_REGISTERS);
_mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
prog->Parameters);
/* Remove reads from output registers. */
if (!pscreen->get_param(pscreen, PIPE_CAP_TGSI_CAN_READ_OUTPUTS))
lower_output_reads(shader->Stage, shader->ir);
/* Emit intermediate IR for main(). */
visit_exec_list(shader->ir, v);
#if 0
/* Print out some information (for debugging purposes) used by the
* optimization passes. */
{
int i;
int *first_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
int *first_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
int *last_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
int *last_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
for (i = 0; i < v->next_temp; i++) {
first_writes[i] = -1;
first_reads[i] = -1;
last_writes[i] = -1;
last_reads[i] = -1;
}
v->get_first_temp_read(first_reads);
v->get_last_temp_read_first_temp_write(last_reads, first_writes);
v->get_last_temp_write(last_writes);
for (i = 0; i < v->next_temp; i++)
printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
first_writes[i],
last_reads[i],
last_writes[i]);
ralloc_free(first_writes);
ralloc_free(first_reads);
ralloc_free(last_writes);
ralloc_free(last_reads);
}
#endif
/* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
v->simplify_cmp();
v->copy_propagate();
while (v->eliminate_dead_code());
v->merge_two_dsts();
if (!skip_merge_registers)
v->merge_registers();
v->renumber_registers();
/* Write the END instruction. */
v->emit_asm(NULL, TGSI_OPCODE_END);
if (ctx->_Shader->Flags & GLSL_DUMP) {
_mesa_log("\n");
_mesa_log("GLSL IR for linked %s program %d:\n",
_mesa_shader_stage_to_string(shader->Stage),
shader_program->Name);
_mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
_mesa_log("\n\n");
}
do_set_program_inouts(shader->ir, prog, shader->Stage);
_mesa_copy_linked_program_data(shader_program, shader);
shrink_array_declarations(v->inputs, v->num_inputs,
&prog->info.inputs_read,
prog->info.double_inputs_read,
&prog->info.patch_inputs_read);
shrink_array_declarations(v->outputs, v->num_outputs,
&prog->info.outputs_written, 0ULL,
&prog->info.patch_outputs_written);
count_resources(v, prog);
/* The GLSL IR won't be needed anymore. */
ralloc_free(shader->ir);
shader->ir = NULL;
/* This must be done before the uniform storage is associated. */
if (shader->Stage == MESA_SHADER_FRAGMENT &&
(prog->info.inputs_read & VARYING_BIT_POS ||
prog->info.system_values_read & (1 << SYSTEM_VALUE_FRAG_COORD))) {
static const gl_state_index wposTransformState[STATE_LENGTH] = {
STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
};
v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
wposTransformState);
}
/* Avoid reallocation of the program parameter list, because the uniform
* storage is only associated with the original parameter list.
* This should be enough for Bitmap and DrawPixels constants.
*/
_mesa_reserve_parameter_storage(prog->Parameters, 8);
/* This has to be done last. Any operation the can cause
* prog->ParameterValues to get reallocated (e.g., anything that adds a
* program constant) has to happen before creating this linkage.
*/
_mesa_associate_uniform_storage(ctx, shader_program, prog, true);
if (!shader_program->data->LinkStatus) {
free_glsl_to_tgsi_visitor(v);
_mesa_reference_program(ctx, &shader->Program, NULL);
return NULL;
}
struct st_vertex_program *stvp;
struct st_fragment_program *stfp;
struct st_common_program *stp;
struct st_compute_program *stcp;
switch (shader->Stage) {
case MESA_SHADER_VERTEX:
stvp = (struct st_vertex_program *)prog;
stvp->glsl_to_tgsi = v;
break;
case MESA_SHADER_FRAGMENT:
stfp = (struct st_fragment_program *)prog;
stfp->glsl_to_tgsi = v;
break;
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
case MESA_SHADER_GEOMETRY:
stp = st_common_program(prog);
stp->glsl_to_tgsi = v;
break;
case MESA_SHADER_COMPUTE:
stcp = (struct st_compute_program *)prog;
stcp->glsl_to_tgsi = v;
break;
default:
assert(!"should not be reached");
return NULL;
}
return prog;
}
/* See if there are unsupported control flow statements. */
class ir_control_flow_info_visitor : public ir_hierarchical_visitor {
private:
const struct gl_shader_compiler_options *options;
public:
ir_control_flow_info_visitor(const struct gl_shader_compiler_options *options)
: options(options),
unsupported(false)
{
}
virtual ir_visitor_status visit_enter(ir_function *ir)
{
/* Other functions are skipped (same as glsl_to_tgsi). */
if (strcmp(ir->name, "main") == 0)
return visit_continue;
return visit_continue_with_parent;
}
virtual ir_visitor_status visit_enter(ir_call *ir)
{
if (!ir->callee->is_intrinsic()) {
unsupported = true; /* it's a function call */
return visit_stop;
}
return visit_continue;
}
virtual ir_visitor_status visit_enter(ir_return *ir)
{
if (options->EmitNoMainReturn) {
unsupported = true;
return visit_stop;
}
return visit_continue;
}
bool unsupported;
};
static bool
has_unsupported_control_flow(exec_list *ir,
const struct gl_shader_compiler_options *options)
{
ir_control_flow_info_visitor visitor(options);
visit_list_elements(&visitor, ir);
return visitor.unsupported;
}
extern "C" {
/**
* Link a shader.
* Called via ctx->Driver.LinkShader()
* This actually involves converting GLSL IR into an intermediate TGSI-like IR
* with code lowering and other optimizations.
*/
GLboolean
st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
{
/* Return early if we are loading the shader from on-disk cache */
if (st_load_tgsi_from_disk_cache(ctx, prog)) {
return GL_TRUE;
}
struct pipe_screen *pscreen = ctx->st->pipe->screen;
assert(prog->data->LinkStatus);
bool use_nir = false;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
struct gl_linked_shader *shader = prog->_LinkedShaders[i];
exec_list *ir = shader->ir;
gl_shader_stage stage = shader->Stage;
const struct gl_shader_compiler_options *options =
&ctx->Const.ShaderCompilerOptions[stage];
enum pipe_shader_type ptarget = pipe_shader_type_from_mesa(stage);
bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
bool have_ldexp = pscreen->get_shader_param(pscreen, ptarget,
PIPE_SHADER_CAP_TGSI_LDEXP_SUPPORTED);
unsigned if_threshold = pscreen->get_shader_param(pscreen, ptarget,
PIPE_SHADER_CAP_LOWER_IF_THRESHOLD);
enum pipe_shader_ir preferred_ir = (enum pipe_shader_ir)
pscreen->get_shader_param(pscreen, ptarget,
PIPE_SHADER_CAP_PREFERRED_IR);
if (preferred_ir == PIPE_SHADER_IR_NIR)
use_nir = true;
/* If there are forms of indirect addressing that the driver
* cannot handle, perform the lowering pass.
*/
if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
lower_variable_index_to_cond_assign(stage, ir,
options->EmitNoIndirectInput,
options->EmitNoIndirectOutput,
options->EmitNoIndirectTemp,
options->EmitNoIndirectUniform);
}
if (!pscreen->get_param(pscreen, PIPE_CAP_INT64_DIVMOD))
lower_64bit_integer_instructions(ir, DIV64 | MOD64);
if (ctx->Extensions.ARB_shading_language_packing) {
unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
LOWER_UNPACK_SNORM_2x16 |
LOWER_PACK_UNORM_2x16 |
LOWER_UNPACK_UNORM_2x16 |
LOWER_PACK_SNORM_4x8 |
LOWER_UNPACK_SNORM_4x8 |
LOWER_UNPACK_UNORM_4x8 |
LOWER_PACK_UNORM_4x8;
if (ctx->Extensions.ARB_gpu_shader5)
lower_inst |= LOWER_PACK_USE_BFI |
LOWER_PACK_USE_BFE;
if (!ctx->st->has_half_float_packing)
lower_inst |= LOWER_PACK_HALF_2x16 |
LOWER_UNPACK_HALF_2x16;
lower_packing_builtins(ir, lower_inst);
}
if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
lower_offset_arrays(ir);
do_mat_op_to_vec(ir);
if (stage == MESA_SHADER_FRAGMENT)
lower_blend_equation_advanced(shader);
lower_instructions(ir,
MOD_TO_FLOOR |
FDIV_TO_MUL_RCP |
EXP_TO_EXP2 |
LOG_TO_LOG2 |
(have_ldexp ? 0 : LDEXP_TO_ARITH) |
(have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
CARRY_TO_ARITH |
BORROW_TO_ARITH |
(have_dround ? 0 : DOPS_TO_DFRAC) |
(options->EmitNoPow ? POW_TO_EXP2 : 0) |
(!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
(options->EmitNoSat ? SAT_TO_CLAMP : 0) |
(ctx->Const.ForceGLSLAbsSqrt ? SQRT_TO_ABS_SQRT : 0) |
/* Assume that if ARB_gpu_shader5 is not supported
* then all of the extended integer functions need
* lowering. It may be necessary to add some caps
* for individual instructions.
*/
(!ctx->Extensions.ARB_gpu_shader5
? BIT_COUNT_TO_MATH |
EXTRACT_TO_SHIFTS |
INSERT_TO_SHIFTS |
REVERSE_TO_SHIFTS |
FIND_LSB_TO_FLOAT_CAST |
FIND_MSB_TO_FLOAT_CAST |
IMUL_HIGH_TO_MUL
: 0));
do_vec_index_to_cond_assign(ir);
lower_vector_insert(ir, true);
lower_quadop_vector(ir, false);
lower_noise(ir);
if (options->MaxIfDepth == 0) {
lower_discard(ir);
}
if (ctx->Const.GLSLOptimizeConservatively) {
/* Do it once and repeat only if there's unsupported control flow. */
do {
do_common_optimization(ir, true, true, options,
ctx->Const.NativeIntegers);
lower_if_to_cond_assign((gl_shader_stage)i, ir,
options->MaxIfDepth, if_threshold);
} while (has_unsupported_control_flow(ir, options));
} else {
/* Repeat it until it stops making changes. */
bool progress;
do {
progress = do_common_optimization(ir, true, true, options,
ctx->Const.NativeIntegers);
progress |= lower_if_to_cond_assign((gl_shader_stage)i, ir,
options->MaxIfDepth, if_threshold);
} while (progress);
}
/* Do this again to lower ir_binop_vector_extract introduced
* by optimization passes.
*/
do_vec_index_to_cond_assign(ir);
validate_ir_tree(ir);
}
build_program_resource_list(ctx, prog);
if (use_nir)
return st_link_nir(ctx, prog);
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *shader = prog->_LinkedShaders[i];
if (shader == NULL)
continue;
struct gl_program *linked_prog =
get_mesa_program_tgsi(ctx, prog, shader);
st_set_prog_affected_state_flags(linked_prog);
if (linked_prog) {
if (!ctx->Driver.ProgramStringNotify(ctx,
_mesa_shader_stage_to_program(i),
linked_prog)) {
_mesa_reference_program(ctx, &shader->Program, NULL);
return GL_FALSE;
}
}
}
return GL_TRUE;
}
void
st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
const ubyte outputMapping[],
struct pipe_stream_output_info *so)
{
if (!glsl_to_tgsi->shader_program->last_vert_prog)
return;
struct gl_transform_feedback_info *info =
glsl_to_tgsi->shader_program->last_vert_prog->sh.LinkedTransformFeedback;
st_translate_stream_output_info2(info, outputMapping, so);
}
void
st_translate_stream_output_info2(struct gl_transform_feedback_info *info,
const ubyte outputMapping[],
struct pipe_stream_output_info *so)
{
unsigned i;
for (i = 0; i < info->NumOutputs; i++) {
so->output[i].register_index =
outputMapping[info->Outputs[i].OutputRegister];
so->output[i].start_component = info->Outputs[i].ComponentOffset;
so->output[i].num_components = info->Outputs[i].NumComponents;
so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
so->output[i].dst_offset = info->Outputs[i].DstOffset;
so->output[i].stream = info->Outputs[i].StreamId;
}
for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
so->stride[i] = info->Buffers[i].Stride;
}
so->num_outputs = info->NumOutputs;
}
} /* extern "C" */