/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keithw@vmware.com>
*/
#include <stdbool.h>
#include <stdio.h>
#include "main/glheader.h"
#include "main/bufferobj.h"
#include "main/context.h"
#include "main/enums.h"
#include "main/state.h"
#include "main/vtxfmt.h"
#include "vbo_context.h"
#include "vbo_noop.h"
static void
vbo_exec_debug_verts(struct vbo_exec_context *exec)
{
GLuint count = exec->vtx.vert_count;
GLuint i;
printf("%s: %u vertices %d primitives, %d vertsize\n",
__func__,
count,
exec->vtx.prim_count,
exec->vtx.vertex_size);
for (i = 0 ; i < exec->vtx.prim_count ; i++) {
struct _mesa_prim *prim = &exec->vtx.prim[i];
printf(" prim %d: %s%s %d..%d %s %s\n",
i,
_mesa_lookup_prim_by_nr(prim->mode),
prim->weak ? " (weak)" : "",
prim->start,
prim->start + prim->count,
prim->begin ? "BEGIN" : "(wrap)",
prim->end ? "END" : "(wrap)");
}
}
/**
* Copy zero, one or two vertices from the current vertex buffer into
* the temporary "copy" buffer.
* This is used when a single primitive overflows a vertex buffer and
* we need to continue the primitive in a new vertex buffer.
* The temporary "copy" buffer holds the vertices which need to get
* copied from the old buffer to the new one.
*/
static GLuint
vbo_copy_vertices(struct vbo_exec_context *exec)
{
struct _mesa_prim *last_prim = &exec->vtx.prim[exec->vtx.prim_count - 1];
const GLuint nr = last_prim->count;
GLuint ovf, i;
const GLuint sz = exec->vtx.vertex_size;
fi_type *dst = exec->vtx.copied.buffer;
const fi_type *src = exec->vtx.buffer_map + last_prim->start * sz;
switch (exec->ctx->Driver.CurrentExecPrimitive) {
case GL_POINTS:
return 0;
case GL_LINES:
ovf = nr&1;
for (i = 0 ; i < ovf ; i++)
memcpy(dst+i*sz, src+(nr-ovf+i)*sz, sz * sizeof(GLfloat));
return i;
case GL_TRIANGLES:
ovf = nr%3;
for (i = 0 ; i < ovf ; i++)
memcpy(dst+i*sz, src+(nr-ovf+i)*sz, sz * sizeof(GLfloat));
return i;
case GL_QUADS:
ovf = nr&3;
for (i = 0 ; i < ovf ; i++)
memcpy(dst+i*sz, src+(nr-ovf+i)*sz, sz * sizeof(GLfloat));
return i;
case GL_LINE_STRIP:
if (nr == 0) {
return 0;
}
else {
memcpy(dst, src+(nr-1)*sz, sz * sizeof(GLfloat));
return 1;
}
case GL_LINE_LOOP:
if (last_prim->begin == 0) {
/* We're dealing with the second or later section of a split/wrapped
* GL_LINE_LOOP. Since we're converting line loops to line strips,
* we've already increment the last_prim->start counter by one to
* skip the 0th vertex in the loop. We need to undo that (effectively
* subtract one from last_prim->start) so that we copy the 0th vertex
* to the next vertex buffer.
*/
assert(last_prim->start > 0);
src -= sz;
}
/* fall-through */
case GL_TRIANGLE_FAN:
case GL_POLYGON:
if (nr == 0) {
return 0;
}
else if (nr == 1) {
memcpy(dst, src+0, sz * sizeof(GLfloat));
return 1;
}
else {
memcpy(dst, src+0, sz * sizeof(GLfloat));
memcpy(dst+sz, src+(nr-1)*sz, sz * sizeof(GLfloat));
return 2;
}
case GL_TRIANGLE_STRIP:
/* no parity issue, but need to make sure the tri is not drawn twice */
if (nr & 1) {
last_prim->count--;
}
/* fallthrough */
case GL_QUAD_STRIP:
switch (nr) {
case 0:
ovf = 0;
break;
case 1:
ovf = 1;
break;
default:
ovf = 2 + (nr & 1);
break;
}
for (i = 0 ; i < ovf ; i++)
memcpy(dst+i*sz, src+(nr-ovf+i)*sz, sz * sizeof(GLfloat));
return i;
case PRIM_OUTSIDE_BEGIN_END:
return 0;
default:
assert(0);
return 0;
}
}
/* TODO: populate these as the vertex is defined:
*/
static void
vbo_exec_bind_arrays(struct gl_context *ctx)
{
struct vbo_context *vbo = vbo_context(ctx);
struct vbo_exec_context *exec = &vbo->exec;
struct gl_vertex_array *arrays = exec->vtx.arrays;
const GLubyte *map;
GLuint attr;
GLbitfield varying_inputs = 0x0;
bool swap_pos = false;
/* Install the default (ie Current) attributes first */
for (attr = 0; attr < VERT_ATTRIB_FF_MAX; attr++) {
exec->vtx.inputs[attr] = &vbo->currval[VBO_ATTRIB_POS+attr];
}
/* Overlay other active attributes */
switch (get_program_mode(exec->ctx)) {
case VP_NONE:
for (attr = 0; attr < MAT_ATTRIB_MAX; attr++) {
assert(VERT_ATTRIB_GENERIC(attr) < ARRAY_SIZE(exec->vtx.inputs));
exec->vtx.inputs[VERT_ATTRIB_GENERIC(attr)] =
&vbo->currval[VBO_ATTRIB_MAT_FRONT_AMBIENT+attr];
}
map = vbo->map_vp_none;
break;
case VP_ARB:
for (attr = 0; attr < VERT_ATTRIB_GENERIC_MAX; attr++) {
assert(VERT_ATTRIB_GENERIC(attr) < ARRAY_SIZE(exec->vtx.inputs));
exec->vtx.inputs[VERT_ATTRIB_GENERIC(attr)] =
&vbo->currval[VBO_ATTRIB_GENERIC0+attr];
}
map = vbo->map_vp_arb;
/* check if VERT_ATTRIB_POS is not read but VERT_BIT_GENERIC0 is read.
* In that case we effectively need to route the data from
* glVertexAttrib(0, val) calls to feed into the GENERIC0 input.
* The original state gets essentially restored below.
*/
const GLbitfield64 inputs_read =
ctx->VertexProgram._Current->info.inputs_read;
if ((inputs_read & VERT_BIT_POS) == 0 &&
(inputs_read & VERT_BIT_GENERIC0)) {
swap_pos = true;
exec->vtx.inputs[VERT_ATTRIB_GENERIC0] = exec->vtx.inputs[0];
exec->vtx.attrsz[VERT_ATTRIB_GENERIC0] = exec->vtx.attrsz[0];
exec->vtx.attrtype[VERT_ATTRIB_GENERIC0] = exec->vtx.attrtype[0];
exec->vtx.attrptr[VERT_ATTRIB_GENERIC0] = exec->vtx.attrptr[0];
exec->vtx.attrsz[0] = 0;
}
break;
default:
assert(0);
}
for (attr = 0; attr < VERT_ATTRIB_MAX ; attr++) {
const GLuint src = map[attr];
if (exec->vtx.attrsz[src]) {
GLsizeiptr offset = (GLbyte *)exec->vtx.attrptr[src] -
(GLbyte *)exec->vtx.vertex;
/* override the default array set above */
assert(attr < ARRAY_SIZE(exec->vtx.inputs));
assert(attr < ARRAY_SIZE(exec->vtx.arrays)); /* arrays[] */
exec->vtx.inputs[attr] = &arrays[attr];
if (_mesa_is_bufferobj(exec->vtx.bufferobj)) {
/* a real buffer obj: Ptr is an offset, not a pointer */
assert(exec->vtx.bufferobj->Mappings[MAP_INTERNAL].Pointer);
assert(offset >= 0);
arrays[attr].Ptr = (GLubyte *)
exec->vtx.bufferobj->Mappings[MAP_INTERNAL].Offset + offset;
}
else {
/* Ptr into ordinary app memory */
arrays[attr].Ptr = (GLubyte *)exec->vtx.buffer_map + offset;
}
arrays[attr].Size = exec->vtx.attrsz[src];
arrays[attr].StrideB = exec->vtx.vertex_size * sizeof(GLfloat);
arrays[attr].Type = exec->vtx.attrtype[src];
arrays[attr].Integer =
vbo_attrtype_to_integer_flag(exec->vtx.attrtype[src]);
arrays[attr].Format = GL_RGBA;
arrays[attr]._ElementSize = arrays[attr].Size * sizeof(GLfloat);
_mesa_reference_buffer_object(ctx,
&arrays[attr].BufferObj,
exec->vtx.bufferobj);
varying_inputs |= VERT_BIT(attr);
}
}
/* In case we swapped the position and generic0 attribute.
* Restore the original setting of the vtx.* variables.
* They are still needed with the original order and settings in case
* of a split primitive.
*/
if (swap_pos) {
exec->vtx.attrsz[0] = exec->vtx.attrsz[VERT_ATTRIB_GENERIC0];
exec->vtx.attrsz[VERT_ATTRIB_GENERIC0] = 0;
}
_mesa_set_varying_vp_inputs(ctx, varying_inputs);
ctx->NewDriverState |= ctx->DriverFlags.NewArray;
}
/**
* Unmap the VBO. This is called before drawing.
*/
static void
vbo_exec_vtx_unmap(struct vbo_exec_context *exec)
{
if (_mesa_is_bufferobj(exec->vtx.bufferobj)) {
struct gl_context *ctx = exec->ctx;
if (ctx->Driver.FlushMappedBufferRange) {
GLintptr offset = exec->vtx.buffer_used -
exec->vtx.bufferobj->Mappings[MAP_INTERNAL].Offset;
GLsizeiptr length = (exec->vtx.buffer_ptr - exec->vtx.buffer_map) *
sizeof(float);
if (length)
ctx->Driver.FlushMappedBufferRange(ctx, offset, length,
exec->vtx.bufferobj,
MAP_INTERNAL);
}
exec->vtx.buffer_used += (exec->vtx.buffer_ptr -
exec->vtx.buffer_map) * sizeof(float);
assert(exec->vtx.buffer_used <= VBO_VERT_BUFFER_SIZE);
assert(exec->vtx.buffer_ptr != NULL);
ctx->Driver.UnmapBuffer(ctx, exec->vtx.bufferobj, MAP_INTERNAL);
exec->vtx.buffer_map = NULL;
exec->vtx.buffer_ptr = NULL;
exec->vtx.max_vert = 0;
}
}
/**
* Map the vertex buffer to begin storing glVertex, glColor, etc data.
*/
void
vbo_exec_vtx_map(struct vbo_exec_context *exec)
{
struct gl_context *ctx = exec->ctx;
const GLenum accessRange = GL_MAP_WRITE_BIT | /* for MapBufferRange */
GL_MAP_INVALIDATE_RANGE_BIT |
GL_MAP_UNSYNCHRONIZED_BIT |
GL_MAP_FLUSH_EXPLICIT_BIT |
MESA_MAP_NOWAIT_BIT;
const GLenum usage = GL_STREAM_DRAW_ARB;
if (!_mesa_is_bufferobj(exec->vtx.bufferobj))
return;
assert(!exec->vtx.buffer_map);
assert(!exec->vtx.buffer_ptr);
if (VBO_VERT_BUFFER_SIZE > exec->vtx.buffer_used + 1024) {
/* The VBO exists and there's room for more */
if (exec->vtx.bufferobj->Size > 0) {
exec->vtx.buffer_map = (fi_type *)
ctx->Driver.MapBufferRange(ctx,
exec->vtx.buffer_used,
VBO_VERT_BUFFER_SIZE
- exec->vtx.buffer_used,
accessRange,
exec->vtx.bufferobj,
MAP_INTERNAL);
exec->vtx.buffer_ptr = exec->vtx.buffer_map;
}
else {
exec->vtx.buffer_ptr = exec->vtx.buffer_map = NULL;
}
}
if (!exec->vtx.buffer_map) {
/* Need to allocate a new VBO */
exec->vtx.buffer_used = 0;
if (ctx->Driver.BufferData(ctx, GL_ARRAY_BUFFER_ARB,
VBO_VERT_BUFFER_SIZE,
NULL, usage,
GL_MAP_WRITE_BIT |
GL_DYNAMIC_STORAGE_BIT |
GL_CLIENT_STORAGE_BIT,
exec->vtx.bufferobj)) {
/* buffer allocation worked, now map the buffer */
exec->vtx.buffer_map =
(fi_type *)ctx->Driver.MapBufferRange(ctx,
0, VBO_VERT_BUFFER_SIZE,
accessRange,
exec->vtx.bufferobj,
MAP_INTERNAL);
}
else {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "VBO allocation");
exec->vtx.buffer_map = NULL;
}
}
exec->vtx.buffer_ptr = exec->vtx.buffer_map;
if (!exec->vtx.buffer_map) {
/* out of memory */
_mesa_install_exec_vtxfmt(ctx, &exec->vtxfmt_noop);
}
else {
if (_mesa_using_noop_vtxfmt(ctx->Exec)) {
/* The no-op functions are installed so switch back to regular
* functions. We do this test just to avoid frequent and needless
* calls to _mesa_install_exec_vtxfmt().
*/
_mesa_install_exec_vtxfmt(ctx, &exec->vtxfmt);
}
}
if (0)
printf("map %d..\n", exec->vtx.buffer_used);
}
/**
* Execute the buffer and save copied verts.
* \param keep_unmapped if true, leave the VBO unmapped when we're done.
*/
void
vbo_exec_vtx_flush(struct vbo_exec_context *exec, GLboolean keepUnmapped)
{
if (0)
vbo_exec_debug_verts(exec);
if (exec->vtx.prim_count &&
exec->vtx.vert_count) {
exec->vtx.copied.nr = vbo_copy_vertices(exec);
if (exec->vtx.copied.nr != exec->vtx.vert_count) {
struct gl_context *ctx = exec->ctx;
/* Before the update_state() as this may raise _NEW_VARYING_VP_INPUTS
* from _mesa_set_varying_vp_inputs().
*/
vbo_exec_bind_arrays(ctx);
if (ctx->NewState)
_mesa_update_state(ctx);
vbo_exec_vtx_unmap(exec);
if (0)
printf("%s %d %d\n", __func__, exec->vtx.prim_count,
exec->vtx.vert_count);
vbo_context(ctx)->draw_prims(ctx,
exec->vtx.prim,
exec->vtx.prim_count,
NULL,
GL_TRUE,
0,
exec->vtx.vert_count - 1,
NULL, 0, NULL);
/* Get new storage -- unless asked not to. */
if (!keepUnmapped)
vbo_exec_vtx_map(exec);
}
}
/* May have to unmap explicitly if we didn't draw:
*/
if (keepUnmapped && exec->vtx.buffer_map) {
vbo_exec_vtx_unmap(exec);
}
if (keepUnmapped || exec->vtx.vertex_size == 0)
exec->vtx.max_vert = 0;
else
exec->vtx.max_vert = vbo_compute_max_verts(exec);
exec->vtx.buffer_ptr = exec->vtx.buffer_map;
exec->vtx.prim_count = 0;
exec->vtx.vert_count = 0;
}