C++程序  |  903行  |  25.46 KB

/*
 * Performance events:
 *
 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
 *
 * Data type definitions, declarations, prototypes.
 *
 *    Started by: Thomas Gleixner and Ingo Molnar
 *
 * For licencing details see kernel-base/COPYING
 */
#ifndef _UAPI_LINUX_PERF_EVENT_H
#define _UAPI_LINUX_PERF_EVENT_H

#include <asm/byteorder.h>
#include <linux/ioctl.h>
#include <linux/types.h>

/*
 * User-space ABI bits:
 */

/*
 * attr.type
 */
enum perf_type_id {
  PERF_TYPE_HARDWARE = 0,
  PERF_TYPE_SOFTWARE = 1,
  PERF_TYPE_TRACEPOINT = 2,
  PERF_TYPE_HW_CACHE = 3,
  PERF_TYPE_RAW = 4,
  PERF_TYPE_BREAKPOINT = 5,

  PERF_TYPE_MAX, /* non-ABI */
};

/*
 * Generalized performance event event_id types, used by the
 * attr.event_id parameter of the sys_perf_event_open()
 * syscall:
 */
enum perf_hw_id {
  /*
   * Common hardware events, generalized by the kernel:
   */
  PERF_COUNT_HW_CPU_CYCLES = 0,
  PERF_COUNT_HW_INSTRUCTIONS = 1,
  PERF_COUNT_HW_CACHE_REFERENCES = 2,
  PERF_COUNT_HW_CACHE_MISSES = 3,
  PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
  PERF_COUNT_HW_BRANCH_MISSES = 5,
  PERF_COUNT_HW_BUS_CYCLES = 6,
  PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
  PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
  PERF_COUNT_HW_REF_CPU_CYCLES = 9,

  PERF_COUNT_HW_MAX, /* non-ABI */
};

/*
 * Generalized hardware cache events:
 *
 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
 *       { read, write, prefetch } x
 *       { accesses, misses }
 */
enum perf_hw_cache_id {
  PERF_COUNT_HW_CACHE_L1D = 0,
  PERF_COUNT_HW_CACHE_L1I = 1,
  PERF_COUNT_HW_CACHE_LL = 2,
  PERF_COUNT_HW_CACHE_DTLB = 3,
  PERF_COUNT_HW_CACHE_ITLB = 4,
  PERF_COUNT_HW_CACHE_BPU = 5,
  PERF_COUNT_HW_CACHE_NODE = 6,

  PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
};

enum perf_hw_cache_op_id {
  PERF_COUNT_HW_CACHE_OP_READ = 0,
  PERF_COUNT_HW_CACHE_OP_WRITE = 1,
  PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,

  PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
};

enum perf_hw_cache_op_result_id {
  PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
  PERF_COUNT_HW_CACHE_RESULT_MISS = 1,

  PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
};

/*
 * Special "software" events provided by the kernel, even if the hardware
 * does not support performance events. These events measure various
 * physical and sw events of the kernel (and allow the profiling of them as
 * well):
 */
enum perf_sw_ids {
  PERF_COUNT_SW_CPU_CLOCK = 0,
  PERF_COUNT_SW_TASK_CLOCK = 1,
  PERF_COUNT_SW_PAGE_FAULTS = 2,
  PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
  PERF_COUNT_SW_CPU_MIGRATIONS = 4,
  PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
  PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
  PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
  PERF_COUNT_SW_EMULATION_FAULTS = 8,
  PERF_COUNT_SW_DUMMY = 9,

  PERF_COUNT_SW_MAX, /* non-ABI */
};

/*
 * Bits that can be set in attr.sample_type to request information
 * in the overflow packets.
 */
enum perf_event_sample_format {
  PERF_SAMPLE_IP = 1U << 0,
  PERF_SAMPLE_TID = 1U << 1,
  PERF_SAMPLE_TIME = 1U << 2,
  PERF_SAMPLE_ADDR = 1U << 3,
  PERF_SAMPLE_READ = 1U << 4,
  PERF_SAMPLE_CALLCHAIN = 1U << 5,
  PERF_SAMPLE_ID = 1U << 6,
  PERF_SAMPLE_CPU = 1U << 7,
  PERF_SAMPLE_PERIOD = 1U << 8,
  PERF_SAMPLE_STREAM_ID = 1U << 9,
  PERF_SAMPLE_RAW = 1U << 10,
  PERF_SAMPLE_BRANCH_STACK = 1U << 11,
  PERF_SAMPLE_REGS_USER = 1U << 12,
  PERF_SAMPLE_STACK_USER = 1U << 13,
  PERF_SAMPLE_WEIGHT = 1U << 14,
  PERF_SAMPLE_DATA_SRC = 1U << 15,
  PERF_SAMPLE_IDENTIFIER = 1U << 16,
  PERF_SAMPLE_TRANSACTION = 1U << 17,

  PERF_SAMPLE_MAX = 1U << 18, /* non-ABI */
};

/*
 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
 *
 * If the user does not pass priv level information via branch_sample_type,
 * the kernel uses the event's priv level. Branch and event priv levels do
 * not have to match. Branch priv level is checked for permissions.
 *
 * The branch types can be combined, however BRANCH_ANY covers all types
 * of branches and therefore it supersedes all the other types.
 */
enum perf_branch_sample_type {
  PERF_SAMPLE_BRANCH_USER = 1U << 0,   /* user branches */
  PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */
  PERF_SAMPLE_BRANCH_HV = 1U << 2,     /* hypervisor branches */

  PERF_SAMPLE_BRANCH_ANY = 1U << 3,        /* any branch types */
  PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4,   /* any call branch */
  PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */
  PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6,   /* indirect calls */
  PERF_SAMPLE_BRANCH_ABORT_TX = 1U << 7,   /* transaction aborts */
  PERF_SAMPLE_BRANCH_IN_TX = 1U << 8,      /* in transaction */
  PERF_SAMPLE_BRANCH_NO_TX = 1U << 9,      /* not in transaction */
  PERF_SAMPLE_BRANCH_COND = 1U << 10,      /* conditional branches */

  PERF_SAMPLE_BRANCH_MAX = 1U << 11, /* non-ABI */
};

#define PERF_SAMPLE_BRANCH_PLM_ALL \
  (PERF_SAMPLE_BRANCH_USER | PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_HV)

/*
 * Values to determine ABI of the registers dump.
 */
enum perf_sample_regs_abi {
  PERF_SAMPLE_REGS_ABI_NONE = 0,
  PERF_SAMPLE_REGS_ABI_32 = 1,
  PERF_SAMPLE_REGS_ABI_64 = 2,
};

/*
 * Values for the memory transaction event qualifier, mostly for
 * abort events. Multiple bits can be set.
 */
enum {
  PERF_TXN_ELISION = (1 << 0),        /* From elision */
  PERF_TXN_TRANSACTION = (1 << 1),    /* From transaction */
  PERF_TXN_SYNC = (1 << 2),           /* Instruction is related */
  PERF_TXN_ASYNC = (1 << 3),          /* Instruction not related */
  PERF_TXN_RETRY = (1 << 4),          /* Retry possible */
  PERF_TXN_CONFLICT = (1 << 5),       /* Conflict abort */
  PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
  PERF_TXN_CAPACITY_READ = (1 << 7),  /* Capacity read abort */

  PERF_TXN_MAX = (1 << 8), /* non-ABI */

  /* bits 32..63 are reserved for the abort code */

  PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
  PERF_TXN_ABORT_SHIFT = 32,
};

/*
 * The format of the data returned by read() on a perf event fd,
 * as specified by attr.read_format:
 *
 * struct read_format {
 *	{ u64		value;
 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 *	  { u64		id;           } && PERF_FORMAT_ID
 *	} && !PERF_FORMAT_GROUP
 *
 *	{ u64		nr;
 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 *	  { u64		value;
 *	    { u64	id;           } && PERF_FORMAT_ID
 *	  }		cntr[nr];
 *	} && PERF_FORMAT_GROUP
 * };
 */
enum perf_event_read_format {
  PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
  PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
  PERF_FORMAT_ID = 1U << 2,
  PERF_FORMAT_GROUP = 1U << 3,

  PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
};

#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
                               /* add: sample_stack_user */

/*
 * Hardware event_id to monitor via a performance monitoring event:
 */
struct perf_event_attr {
  /*
   * Major type: hardware/software/tracepoint/etc.
   */
  __u32 type;

  /*
   * Size of the attr structure, for fwd/bwd compat.
   */
  __u32 size;

  /*
   * Type specific configuration information.
   */
  __u64 config;

  union {
    __u64 sample_period;
    __u64 sample_freq;
  };

  __u64 sample_type;
  __u64 read_format;

  __u64 disabled : 1,     /* off by default        */
      inherit : 1,        /* children inherit it   */
      pinned : 1,         /* must always be on PMU */
      exclusive : 1,      /* only group on PMU     */
      exclude_user : 1,   /* don't count user      */
      exclude_kernel : 1, /* ditto kernel          */
      exclude_hv : 1,     /* ditto hypervisor      */
      exclude_idle : 1,   /* don't count when idle */
      mmap : 1,           /* include mmap data     */
      comm : 1,           /* include comm data     */
      freq : 1,           /* use freq, not period  */
      inherit_stat : 1,   /* per task counts       */
      enable_on_exec : 1, /* next exec enables     */
      task : 1,           /* trace fork/exit       */
      watermark : 1,      /* wakeup_watermark      */
      /*
       * precise_ip:
       *
       *  0 - SAMPLE_IP can have arbitrary skid
       *  1 - SAMPLE_IP must have constant skid
       *  2 - SAMPLE_IP requested to have 0 skid
       *  3 - SAMPLE_IP must have 0 skid
       *
       *  See also PERF_RECORD_MISC_EXACT_IP
       */
      precise_ip : 2,    /* skid constraint       */
      mmap_data : 1,     /* non-exec mmap data    */
      sample_id_all : 1, /* sample_type all events */

      exclude_host : 1,  /* don't count in host   */
      exclude_guest : 1, /* don't count in guest  */

      exclude_callchain_kernel : 1, /* exclude kernel callchains */
      exclude_callchain_user : 1,   /* exclude user callchains */
      mmap2 : 1,                    /* include mmap with inode data     */
      comm_exec : 1, /* flag comm events that are due to an exec */
      __reserved_1 : 39;

  union {
    __u32 wakeup_events;    /* wakeup every n events */
    __u32 wakeup_watermark; /* bytes before wakeup   */
  };

  __u32 bp_type;
  union {
    __u64 bp_addr;
    __u64 config1; /* extension of config */
  };
  union {
    __u64 bp_len;
    __u64 config2; /* extension of config1 */
  };
  __u64 branch_sample_type; /* enum perf_branch_sample_type */

  /*
   * Defines set of user regs to dump on samples.
   * See asm/perf_regs.h for details.
   */
  __u64 sample_regs_user;

  /*
   * Defines size of the user stack to dump on samples.
   */
  __u32 sample_stack_user;

  /* Align to u64. */
  __u32 __reserved_2;
};

#define perf_flags(attr) (*(&(attr)->read_format + 1))

/*
 * Ioctls that can be done on a perf event fd:
 */
#define PERF_EVENT_IOC_ENABLE _IO('$', 0)
#define PERF_EVENT_IOC_DISABLE _IO('$', 1)
#define PERF_EVENT_IOC_REFRESH _IO('$', 2)
#define PERF_EVENT_IOC_RESET _IO('$', 3)
#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
#define PERF_EVENT_IOC_SET_OUTPUT _IO('$', 5)
#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)

enum perf_event_ioc_flags {
  PERF_IOC_FLAG_GROUP = 1U << 0,
};

/*
 * Structure of the page that can be mapped via mmap
 */
struct perf_event_mmap_page {
  __u32 version;        /* version number of this structure */
  __u32 compat_version; /* lowest version this is compat with */

  /*
   * Bits needed to read the hw events in user-space.
   *
   *   u32 seq, time_mult, time_shift, idx, width;
   *   u64 count, enabled, running;
   *   u64 cyc, time_offset;
   *   s64 pmc = 0;
   *
   *   do {
   *     seq = pc->lock;
   *     barrier()
   *
   *     enabled = pc->time_enabled;
   *     running = pc->time_running;
   *
   *     if (pc->cap_usr_time && enabled != running) {
   *       cyc = rdtsc();
   *       time_offset = pc->time_offset;
   *       time_mult   = pc->time_mult;
   *       time_shift  = pc->time_shift;
   *     }
   *
   *     idx = pc->index;
   *     count = pc->offset;
   *     if (pc->cap_usr_rdpmc && idx) {
   *       width = pc->pmc_width;
   *       pmc = rdpmc(idx - 1);
   *     }
   *
   *     barrier();
   *   } while (pc->lock != seq);
   *
   * NOTE: for obvious reason this only works on self-monitoring
   *       processes.
   */
  __u32 lock;         /* seqlock for synchronization */
  __u32 index;        /* hardware event identifier */
  __s64 offset;       /* add to hardware event value */
  __u64 time_enabled; /* time event active */
  __u64 time_running; /* time event on cpu */
  union {
    __u64 capabilities;
    struct {
      __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
          cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */

          cap_user_rdpmc : 1,     // The RDPMC instruction can be used to read
                                  // counts
          cap_user_time : 1,      /* The time_* fields are used */
          cap_user_time_zero : 1, /* The time_zero field is used */
          cap_____res : 59;
    };
  };

  /*
   * If cap_usr_rdpmc this field provides the bit-width of the value
   * read using the rdpmc() or equivalent instruction. This can be used
   * to sign extend the result like:
   *
   *   pmc <<= 64 - width;
   *   pmc >>= 64 - width; // signed shift right
   *   count += pmc;
   */
  __u16 pmc_width;

  /*
   * If cap_usr_time the below fields can be used to compute the time
   * delta since time_enabled (in ns) using rdtsc or similar.
   *
   *   u64 quot, rem;
   *   u64 delta;
   *
   *   quot = (cyc >> time_shift);
   *   rem = cyc & ((1 << time_shift) - 1);
   *   delta = time_offset + quot * time_mult +
   *              ((rem * time_mult) >> time_shift);
   *
   * Where time_offset,time_mult,time_shift and cyc are read in the
   * seqcount loop described above. This delta can then be added to
   * enabled and possible running (if idx), improving the scaling:
   *
   *   enabled += delta;
   *   if (idx)
   *     running += delta;
   *
   *   quot = count / running;
   *   rem  = count % running;
   *   count = quot * enabled + (rem * enabled) / running;
   */
  __u16 time_shift;
  __u32 time_mult;
  __u64 time_offset;
  /*
   * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
   * from sample timestamps.
   *
   *   time = timestamp - time_zero;
   *   quot = time / time_mult;
   *   rem  = time % time_mult;
   *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
   *
   * And vice versa:
   *
   *   quot = cyc >> time_shift;
   *   rem  = cyc & ((1 << time_shift) - 1);
   *   timestamp = time_zero + quot * time_mult +
   *               ((rem * time_mult) >> time_shift);
   */
  __u64 time_zero;
  __u32 size; /* Header size up to __reserved[] fields. */

  /*
   * Hole for extension of the self monitor capabilities
   */

  __u8 __reserved[118 * 8 + 4]; /* align to 1k. */

  /*
   * Control data for the mmap() data buffer.
   *
   * User-space reading the @data_head value should issue an smp_rmb(),
   * after reading this value.
   *
   * When the mapping is PROT_WRITE the @data_tail value should be
   * written by userspace to reflect the last read data, after issueing
   * an smp_mb() to separate the data read from the ->data_tail store.
   * In this case the kernel will not over-write unread data.
   *
   * See perf_output_put_handle() for the data ordering.
   */
  __u64 data_head; /* head in the data section */
  __u64 data_tail; /* user-space written tail */
};

#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
#define PERF_RECORD_MISC_KERNEL (1 << 0)
#define PERF_RECORD_MISC_USER (2 << 0)
#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
#define PERF_RECORD_MISC_GUEST_USER (5 << 0)

/*
 * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
 * different events so can reuse the same bit position.
 */
#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
/*
 * Indicates that the content of PERF_SAMPLE_IP points to
 * the actual instruction that triggered the event. See also
 * perf_event_attr::precise_ip.
 */
#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
/*
 * Reserve the last bit to indicate some extended misc field
 */
#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)

struct perf_event_header {
  __u32 type;
  __u16 misc;
  __u16 size;
};

enum perf_event_type {
  /*
   * If perf_event_attr.sample_id_all is set then all event types will
   * have the sample_type selected fields related to where/when
   * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
   * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
   * just after the perf_event_header and the fields already present for
   * the existing fields, i.e. at the end of the payload. That way a newer
   * perf.data file will be supported by older perf tools, with these new
   * optional fields being ignored.
   *
   * struct sample_id {
   * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
   * 	{ u64			time;     } && PERF_SAMPLE_TIME
   * 	{ u64			id;       } && PERF_SAMPLE_ID
   * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
   * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
   *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
   * } && perf_event_attr::sample_id_all
   *
   * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
   * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
   * relative to header.size.
   */

  /*
   * The MMAP events record the PROT_EXEC mappings so that we can
   * correlate userspace IPs to code. They have the following structure:
   *
   * struct {
   *	struct perf_event_header	header;
   *
   *	u32				pid, tid;
   *	u64				addr;
   *	u64				len;
   *	u64				pgoff;
   *	char				filename[];
   * 	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_MMAP = 1,

  /*
   * struct {
   *	struct perf_event_header	header;
   *	u64				id;
   *	u64				lost;
   * 	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_LOST = 2,

  /*
   * struct {
   *	struct perf_event_header	header;
   *
   *	u32				pid, tid;
   *	char				comm[];
   * 	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_COMM = 3,

  /*
   * struct {
   *	struct perf_event_header	header;
   *	u32				pid, ppid;
   *	u32				tid, ptid;
   *	u64				time;
   * 	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_EXIT = 4,

  /*
   * struct {
   *	struct perf_event_header	header;
   *	u64				time;
   *	u64				id;
   *	u64				stream_id;
   * 	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_THROTTLE = 5,
  PERF_RECORD_UNTHROTTLE = 6,

  /*
   * struct {
   *	struct perf_event_header	header;
   *	u32				pid, ppid;
   *	u32				tid, ptid;
   *	u64				time;
   * 	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_FORK = 7,

  /*
   * struct {
   *	struct perf_event_header	header;
   *	u32				pid, tid;
   *
   *	struct read_format		values;
   * 	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_READ = 8,

  /*
   * struct {
   *	struct perf_event_header	header;
   *
   *	#
   *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
   *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
   *	# is fixed relative to header.
   *	#
   *
   *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
   *	{ u64			ip;	  } && PERF_SAMPLE_IP
   *	{ u32			pid, tid; } && PERF_SAMPLE_TID
   *	{ u64			time;     } && PERF_SAMPLE_TIME
   *	{ u64			addr;     } && PERF_SAMPLE_ADDR
   *	{ u64			id;	  } && PERF_SAMPLE_ID
   *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
   *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
   *	{ u64			period;   } && PERF_SAMPLE_PERIOD
   *
   *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
   *
   *	{ u64			nr,
   *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
   *
   *	#
   *	# The RAW record below is opaque data wrt the ABI
   *	#
   *	# That is, the ABI doesn't make any promises wrt to
   *	# the stability of its content, it may vary depending
   *	# on event, hardware, kernel version and phase of
   *	# the moon.
   *	#
   *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
   *	#
   *
   *	{ u32			size;
   *	  char                  data[size];}&& PERF_SAMPLE_RAW
   *
   *	{ u64                   nr;
   *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
   *
   * 	{ u64			abi; # enum perf_sample_regs_abi
   * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
   *
   * 	{ u64			size;
   * 	  char			data[size];
   * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
   *
   *	{ u64			weight;   } && PERF_SAMPLE_WEIGHT
   *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
   *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
   * };
   */
  PERF_RECORD_SAMPLE = 9,

  /*
   * The MMAP2 records are an augmented version of MMAP, they add
   * maj, min, ino numbers to be used to uniquely identify each mapping
   *
   * struct {
   *	struct perf_event_header	header;
   *
   *	u32				pid, tid;
   *	u64				addr;
   *	u64				len;
   *	u64				pgoff;
   *	u32				maj;
   *	u32				min;
   *	u64				ino;
   *	u64				ino_generation;
   *	u32				prot, flags;
   *	char				filename[];
   * 	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_MMAP2 = 10,

  /*
   * Records that new data landed in the AUX buffer part.
   *
   * struct {
   * 	struct perf_event_header	header;
   *
   * 	u64				aux_offset;
   * 	u64				aux_size;
   *	u64				flags;
   * 	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_AUX = 11,

  /*
   * Indicates that instruction trace has started
   *
   * struct {
   *	struct perf_event_header	header;
   *	u32				pid;
   *	u32				tid;
   * };
   */
  PERF_RECORD_ITRACE_START = 12,

  /*
   * Records the dropped/lost sample number.
   *
   * struct {
   *	struct perf_event_header	header;
   *
   *	u64				lost;
   *	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_LOST_SAMPLES = 13,

  /*
   * Records a context switch in or out (flagged by
   * PERF_RECORD_MISC_SWITCH_OUT). See also
   * PERF_RECORD_SWITCH_CPU_WIDE.
   *
   * struct {
   *	struct perf_event_header	header;
   *	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_SWITCH = 14,

  /*
   * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
   * next_prev_tid that are the next (switching out) or previous
   * (switching in) pid/tid.
   *
   * struct {
   *	struct perf_event_header	header;
   *	u32				next_prev_pid;
   *	u32				next_prev_tid;
   *	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_SWITCH_CPU_WIDE = 15,

  /*
   * struct {
   *	struct perf_event_header	header;
   *	u32				pid;
   *	u32				tid;
   *	u64				nr_namespaces;
   *	{ u64				dev, inode; } [nr_namespaces];
   *	struct sample_id		sample_id;
   * };
   */
  PERF_RECORD_NAMESPACES = 16,

  PERF_RECORD_MAX, /* non-ABI */
};

#define PERF_MAX_STACK_DEPTH 127

enum perf_callchain_context {
  PERF_CONTEXT_HV = (__u64)-32,
  PERF_CONTEXT_KERNEL = (__u64)-128,
  PERF_CONTEXT_USER = (__u64)-512,

  PERF_CONTEXT_GUEST = (__u64)-2048,
  PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
  PERF_CONTEXT_GUEST_USER = (__u64)-2560,

  PERF_CONTEXT_MAX = (__u64)-4095,
};

/**
 * PERF_RECORD_AUX::flags bits
 */
#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
#define PERF_AUX_FLAG_PARTIAL 0x04   /* record contains gaps */

#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
#define PERF_FLAG_FD_OUTPUT (1UL << 1)
#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */

union perf_mem_data_src {
  __u64 val;
  struct {
    __u64 mem_op : 5,  /* type of opcode */
        mem_lvl : 14,  /* memory hierarchy level */
        mem_snoop : 5, /* snoop mode */
        mem_lock : 2,  /* lock instr */
        mem_dtlb : 7,  /* tlb access */
        mem_rsvd : 31;
  };
};

/* type of opcode (load/store/prefetch,code) */
#define PERF_MEM_OP_NA 0x01     /* not available */
#define PERF_MEM_OP_LOAD 0x02   /* load instruction */
#define PERF_MEM_OP_STORE 0x04  /* store instruction */
#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
#define PERF_MEM_OP_EXEC 0x10   /* code (execution) */
#define PERF_MEM_OP_SHIFT 0

/* memory hierarchy (memory level, hit or miss) */
#define PERF_MEM_LVL_NA 0x01        /* not available */
#define PERF_MEM_LVL_HIT 0x02       /* hit level */
#define PERF_MEM_LVL_MISS 0x04      /* miss level  */
#define PERF_MEM_LVL_L1 0x08        /* L1 */
#define PERF_MEM_LVL_LFB 0x10       /* Line Fill Buffer */
#define PERF_MEM_LVL_L2 0x20        /* L2 */
#define PERF_MEM_LVL_L3 0x40        /* L3 */
#define PERF_MEM_LVL_LOC_RAM 0x80   /* Local DRAM */
#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
#define PERF_MEM_LVL_IO 0x1000      /* I/O memory */
#define PERF_MEM_LVL_UNC 0x2000     /* Uncached memory */
#define PERF_MEM_LVL_SHIFT 5

/* snoop mode */
#define PERF_MEM_SNOOP_NA 0x01   /* not available */
#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
#define PERF_MEM_SNOOP_HIT 0x04  /* snoop hit */
#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
#define PERF_MEM_SNOOP_SHIFT 19

/* locked instruction */
#define PERF_MEM_LOCK_NA 0x01     /* not available */
#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
#define PERF_MEM_LOCK_SHIFT 24

/* TLB access */
#define PERF_MEM_TLB_NA 0x01   /* not available */
#define PERF_MEM_TLB_HIT 0x02  /* hit level */
#define PERF_MEM_TLB_MISS 0x04 /* miss level */
#define PERF_MEM_TLB_L1 0x08   /* L1 */
#define PERF_MEM_TLB_L2 0x10   /* L2 */
#define PERF_MEM_TLB_WK 0x20   /* Hardware Walker*/
#define PERF_MEM_TLB_OS 0x40   /* OS fault handler */
#define PERF_MEM_TLB_SHIFT 26

#define PERF_MEM_S(a, s) (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)

/*
 * single taken branch record layout:
 *
 *      from: source instruction (may not always be a branch insn)
 *        to: branch target
 *   mispred: branch target was mispredicted
 * predicted: branch target was predicted
 *
 * support for mispred, predicted is optional. In case it
 * is not supported mispred = predicted = 0.
 *
 *     in_tx: running in a hardware transaction
 *     abort: aborting a hardware transaction
 */
struct perf_branch_entry {
  __u64 from;
  __u64 to;
  __u64 mispred : 1, /* target mispredicted */
      predicted : 1, /* target predicted */
      in_tx : 1,     /* in transaction */
      abort : 1,     /* transaction abort */
      reserved : 60;
};

#endif /* _UAPI_LINUX_PERF_EVENT_H */