HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Android 10
|
10.0.0_r6
下载
查看原文件
收藏
根目录
external
skia
include
private
SkVx.h
/* * Copyright 2019 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SKVX_DEFINED #define SKVX_DEFINED // skvx::Vec
are SIMD vectors of N T's, a v1.5 successor to SkNx
. // // This time we're leaning a bit less on platform-specific intrinsics and a bit // more on Clang/GCC vector extensions, but still keeping the option open to // drop in platform-specific intrinsics, actually more easily than before. // // We've also fixed a few of the caveats that used to make SkNx awkward to work // with across translation units. skvx::Vec
always has N*sizeof(T) size // and alignof(T) alignment and is safe to use across translation units freely. #include "SkTypes.h" // SK_CPU_SSE_LEVEL*, etc. #include
// std::min, std::max #include
// std::ceil, std::floor, std::trunc, std::round, std::sqrt, etc. #include
// intXX_t #include
// memcpy() #include
// std::initializer_list #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 #include
#elif defined(SK_ARM_HAS_NEON) #include
#endif namespace skvx { // All Vec have the same simple memory layout, the same as `T vec[N]`. // This gives Vec a consistent ABI, letting them pass between files compiled with // different instruction sets (e.g. SSE2 and AVX2) without fear of ODR violation. template
struct Vec { static_assert((N & (N-1)) == 0, "N must be a power of 2."); Vec
lo, hi; // Methods belong here in the class declaration of Vec only if: // - they must be here, like constructors or operator[]; // - they'll definitely never want a specialized implementation. // Other operations on Vec should be defined outside the type. Vec() = default; Vec(T x) : lo(x), hi(x) {} Vec(std::initializer_list
xs) { T vals[N] = {0}; memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)N)*sizeof(T)); lo = Vec
::Load(vals + 0); hi = Vec
::Load(vals + N/2); } T operator[](int i) const { return i < N/2 ? lo[i] : hi[i-N/2]; } T& operator[](int i) { return i < N/2 ? lo[i] : hi[i-N/2]; } static Vec Load(const void* ptr) { Vec v; memcpy(&v, ptr, sizeof(Vec)); return v; } void store(void* ptr) const { memcpy(ptr, this, sizeof(Vec)); } }; template
struct Vec<1,T> { T val; Vec() = default; Vec(T x) : val(x) {} Vec(std::initializer_list
xs) : val(xs.size() ? *xs.begin() : 0) {} T operator[](int) const { return val; } T& operator[](int) { return val; } static Vec Load(const void* ptr) { Vec v; memcpy(&v, ptr, sizeof(Vec)); return v; } void store(void* ptr) const { memcpy(ptr, this, sizeof(Vec)); } }; #if defined(__GNUC__) && !defined(__clang__) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 // GCC warns about ABI changes when returning >= 32 byte vectors when -mavx is not enabled. // This only happens for types like VExt whose ABI we don't care about, not for Vec itself. #pragma GCC diagnostic ignored "-Wpsabi" #endif // Helps tamp down on the repetitive boilerplate. #define SINT template
static inline #define SIT template < typename T> static inline #define SI static inline template
SI D bit_pun(S s) { static_assert(sizeof(D) == sizeof(S), ""); D d; memcpy(&d, &s, sizeof(D)); return d; } // Translate from a value type T to its corresponding Mask, the result of a comparison. template
struct Mask { using type = T; }; template <> struct Mask
{ using type = int32_t; }; template <> struct Mask
{ using type = int64_t; }; template
using M = typename Mask
::type; // Join two Vec
into one Vec<2N,T>. SINT Vec<2*N,T> join(Vec
lo, Vec
hi) { Vec<2*N,T> v; v.lo = lo; v.hi = hi; return v; } // We have two default strategies for implementing most operations: // 1) lean on Clang/GCC vector extensions when available; // 2) recurse to scalar portable implementations when not. // At the end we can drop in platform-specific implementations that override either default. #if !defined(SKNX_NO_SIMD) && (defined(__clang__) || defined(__GNUC__)) // VExt
types have the same size as Vec
and support most operations directly. // N.B. VExt
alignment is N*alignof(T), stricter than Vec
's alignof(T). #if defined(__clang__) template
using VExt = T __attribute__((ext_vector_type(N))); #elif defined(__GNUC__) template
struct VExtHelper { typedef T __attribute__((vector_size(N*sizeof(T)))) type; }; template
using VExt = typename VExtHelper
::type; // For some reason some (new!) versions of GCC cannot seem to deduce N in the generic // to_vec
() below for N=4 and T=float. This workaround seems to help... SI Vec<4,float> to_vec(VExt<4,float> v) { return bit_pun
>(v); } #endif SINT VExt
to_vext(Vec
v) { return bit_pun
>(v); } SINT Vec
to_vec(VExt
v) { return bit_pun
>(v); } SINT Vec
operator+(Vec
x, Vec
y) { return to_vec(to_vext(x) + to_vext(y)); } SINT Vec
operator-(Vec
x, Vec
y) { return to_vec(to_vext(x) - to_vext(y)); } SINT Vec
operator*(Vec
x, Vec
y) { return to_vec(to_vext(x) * to_vext(y)); } SINT Vec
operator/(Vec
x, Vec
y) { return to_vec(to_vext(x) / to_vext(y)); } SINT Vec
operator^(Vec
x, Vec
y) { return to_vec(to_vext(x) ^ to_vext(y)); } SINT Vec
operator&(Vec
x, Vec
y) { return to_vec(to_vext(x) & to_vext(y)); } SINT Vec
operator|(Vec
x, Vec
y) { return to_vec(to_vext(x) | to_vext(y)); } SINT Vec
operator!(Vec
x) { return to_vec(!to_vext(x)); } SINT Vec
operator-(Vec
x) { return to_vec(-to_vext(x)); } SINT Vec
operator~(Vec
x) { return to_vec(~to_vext(x)); } SINT Vec
operator<<(Vec
x, int bits) { return to_vec(to_vext(x) << bits); } SINT Vec
operator>>(Vec
x, int bits) { return to_vec(to_vext(x) >> bits); } SINT Vec
> operator==(Vec
x, Vec
y) { return bit_pun
>>(to_vext(x) == to_vext(y)); } SINT Vec
> operator!=(Vec
x, Vec
y) { return bit_pun
>>(to_vext(x) != to_vext(y)); } SINT Vec
> operator<=(Vec
x, Vec
y) { return bit_pun
>>(to_vext(x) <= to_vext(y)); } SINT Vec
> operator>=(Vec
x, Vec
y) { return bit_pun
>>(to_vext(x) >= to_vext(y)); } SINT Vec
> operator< (Vec
x, Vec
y) { return bit_pun
>>(to_vext(x) < to_vext(y)); } SINT Vec
> operator> (Vec
x, Vec
y) { return bit_pun
>>(to_vext(x) > to_vext(y)); } #else // Either SKNX_NO_SIMD is defined, or Clang/GCC vector extensions are not available. // We'll implement things portably, in a way that should be easily autovectorizable. // N == 1 scalar implementations. SIT Vec<1,T> operator+(Vec<1,T> x, Vec<1,T> y) { return x.val + y.val; } SIT Vec<1,T> operator-(Vec<1,T> x, Vec<1,T> y) { return x.val - y.val; } SIT Vec<1,T> operator*(Vec<1,T> x, Vec<1,T> y) { return x.val * y.val; } SIT Vec<1,T> operator/(Vec<1,T> x, Vec<1,T> y) { return x.val / y.val; } SIT Vec<1,T> operator^(Vec<1,T> x, Vec<1,T> y) { return x.val ^ y.val; } SIT Vec<1,T> operator&(Vec<1,T> x, Vec<1,T> y) { return x.val & y.val; } SIT Vec<1,T> operator|(Vec<1,T> x, Vec<1,T> y) { return x.val | y.val; } SIT Vec<1,T> operator!(Vec<1,T> x) { return !x.val; } SIT Vec<1,T> operator-(Vec<1,T> x) { return -x.val; } SIT Vec<1,T> operator~(Vec<1,T> x) { return ~x.val; } SIT Vec<1,T> operator<<(Vec<1,T> x, int bits) { return x.val << bits; } SIT Vec<1,T> operator>>(Vec<1,T> x, int bits) { return x.val >> bits; } SIT Vec<1,M
> operator==(Vec<1,T> x, Vec<1,T> y) { return x.val == y.val ? ~0 : 0; } SIT Vec<1,M
> operator!=(Vec<1,T> x, Vec<1,T> y) { return x.val != y.val ? ~0 : 0; } SIT Vec<1,M
> operator<=(Vec<1,T> x, Vec<1,T> y) { return x.val <= y.val ? ~0 : 0; } SIT Vec<1,M
> operator>=(Vec<1,T> x, Vec<1,T> y) { return x.val >= y.val ? ~0 : 0; } SIT Vec<1,M
> operator< (Vec<1,T> x, Vec<1,T> y) { return x.val < y.val ? ~0 : 0; } SIT Vec<1,M
> operator> (Vec<1,T> x, Vec<1,T> y) { return x.val > y.val ? ~0 : 0; } // All default N != 1 implementations just recurse on lo and hi halves. SINT Vec
operator+(Vec
x, Vec
y) { return join(x.lo + y.lo, x.hi + y.hi); } SINT Vec
operator-(Vec
x, Vec
y) { return join(x.lo - y.lo, x.hi - y.hi); } SINT Vec
operator*(Vec
x, Vec
y) { return join(x.lo * y.lo, x.hi * y.hi); } SINT Vec
operator/(Vec
x, Vec
y) { return join(x.lo / y.lo, x.hi / y.hi); } SINT Vec
operator^(Vec
x, Vec
y) { return join(x.lo ^ y.lo, x.hi ^ y.hi); } SINT Vec
operator&(Vec
x, Vec
y) { return join(x.lo & y.lo, x.hi & y.hi); } SINT Vec
operator|(Vec
x, Vec
y) { return join(x.lo | y.lo, x.hi | y.hi); } SINT Vec
operator!(Vec
x) { return join(!x.lo, !x.hi); } SINT Vec
operator-(Vec
x) { return join(-x.lo, -x.hi); } SINT Vec
operator~(Vec
x) { return join(~x.lo, ~x.hi); } SINT Vec
operator<<(Vec
x, int bits) { return join(x.lo << bits, x.hi << bits); } SINT Vec
operator>>(Vec
x, int bits) { return join(x.lo >> bits, x.hi >> bits); } SINT Vec
> operator==(Vec
x, Vec
y) { return join(x.lo == y.lo, x.hi == y.hi); } SINT Vec
> operator!=(Vec
x, Vec
y) { return join(x.lo != y.lo, x.hi != y.hi); } SINT Vec
> operator<=(Vec
x, Vec
y) { return join(x.lo <= y.lo, x.hi <= y.hi); } SINT Vec
> operator>=(Vec
x, Vec
y) { return join(x.lo >= y.lo, x.hi >= y.hi); } SINT Vec
> operator< (Vec
x, Vec
y) { return join(x.lo < y.lo, x.hi < y.hi); } SINT Vec
> operator> (Vec
x, Vec
y) { return join(x.lo > y.lo, x.hi > y.hi); } #endif // Some operations we want are not expressible with Clang/GCC vector // extensions, so we implement them using the recursive approach. // N == 1 scalar implementations. SIT Vec<1,T> if_then_else(Vec<1,M
> cond, Vec<1,T> t, Vec<1,T> e) { auto t_bits = bit_pun
>(t), e_bits = bit_pun
>(e); return bit_pun
( (cond.val & t_bits) | (~cond.val & e_bits) ); } SIT bool any(Vec<1,T> x) { return x.val != 0; } SIT bool all(Vec<1,T> x) { return x.val != 0; } SIT T min(Vec<1,T> x) { return x.val; } SIT T max(Vec<1,T> x) { return x.val; } SIT Vec<1,T> min(Vec<1,T> x, Vec<1,T> y) { return std::min(x.val, y.val); } SIT Vec<1,T> max(Vec<1,T> x, Vec<1,T> y) { return std::max(x.val, y.val); } SIT Vec<1,T> ceil(Vec<1,T> x) { return std:: ceil(x.val); } SIT Vec<1,T> floor(Vec<1,T> x) { return std::floor(x.val); } SIT Vec<1,T> trunc(Vec<1,T> x) { return std::trunc(x.val); } SIT Vec<1,T> round(Vec<1,T> x) { return std::round(x.val); } SIT Vec<1,T> sqrt(Vec<1,T> x) { return std:: sqrt(x.val); } SIT Vec<1,T> abs(Vec<1,T> x) { return std:: abs(x.val); } SIT Vec<1,T> rcp(Vec<1,T> x) { return 1 / x.val; } SIT Vec<1,T> rsqrt(Vec<1,T> x) { return rcp(sqrt(x)); } SIT Vec<1,T> mad(Vec<1,T> f, Vec<1,T> m, Vec<1,T> a) { return f*m+a; } // All default N != 1 implementations just recurse on lo and hi halves. SINT Vec
if_then_else(Vec
> cond, Vec
t, Vec
e) { return join(if_then_else(cond.lo, t.lo, e.lo), if_then_else(cond.hi, t.hi, e.hi)); } SINT bool any(Vec
x) { return any(x.lo) || any(x.hi); } SINT bool all(Vec
x) { return all(x.lo) && all(x.hi); } SINT T min(Vec
x) { return std::min(min(x.lo), min(x.hi)); } SINT T max(Vec
x) { return std::max(max(x.lo), max(x.hi)); } SINT Vec
min(Vec
x, Vec
y) { return join(min(x.lo, y.lo), min(x.hi, y.hi)); } SINT Vec
max(Vec
x, Vec
y) { return join(max(x.lo, y.lo), max(x.hi, y.hi)); } SINT Vec
ceil(Vec
x) { return join( ceil(x.lo), ceil(x.hi)); } SINT Vec
floor(Vec
x) { return join(floor(x.lo), floor(x.hi)); } SINT Vec
trunc(Vec
x) { return join(trunc(x.lo), trunc(x.hi)); } SINT Vec
round(Vec
x) { return join(round(x.lo), round(x.hi)); } SINT Vec
sqrt(Vec
x) { return join( sqrt(x.lo), sqrt(x.hi)); } SINT Vec
abs(Vec
x) { return join( abs(x.lo), abs(x.hi)); } SINT Vec
rcp(Vec
x) { return join( rcp(x.lo), rcp(x.hi)); } SINT Vec
rsqrt(Vec
x) { return join(rsqrt(x.lo), rsqrt(x.hi)); } SINT Vec
mad(Vec
f, Vec
m, Vec
a) { return join(mad(f.lo, m.lo, a.lo), mad(f.hi, m.hi, a.hi)); } // Scalar/vector operations just splat the scalar to a vector... SINT Vec
operator+ (T x, Vec
y) { return Vec
(x) + y; } SINT Vec
operator- (T x, Vec
y) { return Vec
(x) - y; } SINT Vec
operator* (T x, Vec
y) { return Vec
(x) * y; } SINT Vec
operator/ (T x, Vec
y) { return Vec
(x) / y; } SINT Vec
operator^ (T x, Vec
y) { return Vec
(x) ^ y; } SINT Vec
operator& (T x, Vec
y) { return Vec
(x) & y; } SINT Vec
operator| (T x, Vec
y) { return Vec
(x) | y; } SINT Vec
> operator==(T x, Vec
y) { return Vec
(x) == y; } SINT Vec
> operator!=(T x, Vec
y) { return Vec
(x) != y; } SINT Vec
> operator<=(T x, Vec
y) { return Vec
(x) <= y; } SINT Vec
> operator>=(T x, Vec
y) { return Vec
(x) >= y; } SINT Vec
> operator< (T x, Vec
y) { return Vec
(x) < y; } SINT Vec
> operator> (T x, Vec
y) { return Vec
(x) > y; } SINT Vec
min(T x, Vec
y) { return min(Vec
(x), y); } SINT Vec
max(T x, Vec
y) { return max(Vec
(x), y); } // ... and same deal for vector/scalar operations. SINT Vec
operator+ (Vec
x, T y) { return x + Vec
(y); } SINT Vec
operator- (Vec
x, T y) { return x - Vec
(y); } SINT Vec
operator* (Vec
x, T y) { return x * Vec
(y); } SINT Vec
operator/ (Vec
x, T y) { return x / Vec
(y); } SINT Vec
operator^ (Vec
x, T y) { return x ^ Vec
(y); } SINT Vec
operator& (Vec
x, T y) { return x & Vec