// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Texture.cpp: Implements the Texture class and its derived classes
// Texture2D, TextureCubeMap, Texture3D and Texture2DArray. Implements GL texture objects
// and related functionality. [OpenGL ES 2.0.24] section 3.7 page 63.
#include "Texture.h"
#include "main.h"
#include "mathutil.h"
#include "Framebuffer.h"
#include "Device.hpp"
#include "Sampler.h"
#include "Shader.h"
#include "libEGL/Display.h"
#include "common/Surface.hpp"
#include "common/debug.h"
#include <algorithm>
namespace es2
{
egl::Image*& ImageLevels::getNullImage()
{
static egl::Image* nullImage;
nullImage = nullptr;
return nullImage;
}
Texture::Texture(GLuint name) : egl::Texture(name)
{
mMinFilter = GL_NEAREST_MIPMAP_LINEAR;
mMagFilter = GL_LINEAR;
mWrapS = GL_REPEAT;
mWrapT = GL_REPEAT;
mWrapR = GL_REPEAT;
mMaxAnisotropy = 1.0f;
mBaseLevel = 0;
mCompareFunc = GL_LEQUAL;
mCompareMode = GL_NONE;
mImmutableFormat = GL_FALSE;
mImmutableLevels = 0;
mMaxLevel = 1000;
mMaxLOD = 1000;
mMinLOD = -1000;
mSwizzleR = GL_RED;
mSwizzleG = GL_GREEN;
mSwizzleB = GL_BLUE;
mSwizzleA = GL_ALPHA;
resource = new sw::Resource(0);
}
Texture::~Texture()
{
resource->destruct();
}
sw::Resource *Texture::getResource() const
{
return resource;
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMinFilter(GLenum filter)
{
switch(filter)
{
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
if((getTarget() == GL_TEXTURE_EXTERNAL_OES) || (getTarget() == GL_TEXTURE_RECTANGLE_ARB))
{
return false;
}
// Fall through
case GL_NEAREST:
case GL_LINEAR:
mMinFilter = filter;
return true;
default:
return false;
}
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMagFilter(GLenum filter)
{
switch(filter)
{
case GL_NEAREST:
case GL_LINEAR:
mMagFilter = filter;
return true;
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapS(GLenum wrap)
{
switch(wrap)
{
case GL_REPEAT:
case GL_MIRRORED_REPEAT:
if((getTarget() == GL_TEXTURE_EXTERNAL_OES) || (getTarget() == GL_TEXTURE_RECTANGLE_ARB))
{
return false;
}
// Fall through
case GL_CLAMP_TO_EDGE:
mWrapS = wrap;
return true;
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapT(GLenum wrap)
{
switch(wrap)
{
case GL_REPEAT:
case GL_MIRRORED_REPEAT:
if((getTarget() == GL_TEXTURE_EXTERNAL_OES) || (getTarget() == GL_TEXTURE_RECTANGLE_ARB))
{
return false;
}
// Fall through
case GL_CLAMP_TO_EDGE:
mWrapT = wrap;
return true;
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapR(GLenum wrap)
{
switch(wrap)
{
case GL_REPEAT:
case GL_MIRRORED_REPEAT:
if((getTarget() == GL_TEXTURE_EXTERNAL_OES) || (getTarget() == GL_TEXTURE_RECTANGLE_ARB))
{
return false;
}
// Fall through
case GL_CLAMP_TO_EDGE:
mWrapR = wrap;
return true;
default:
return false;
}
}
// Returns true on successful max anisotropy update (valid anisotropy value)
bool Texture::setMaxAnisotropy(float textureMaxAnisotropy)
{
textureMaxAnisotropy = std::min(textureMaxAnisotropy, MAX_TEXTURE_MAX_ANISOTROPY);
if(textureMaxAnisotropy < 1.0f)
{
return false;
}
if(mMaxAnisotropy != textureMaxAnisotropy)
{
mMaxAnisotropy = textureMaxAnisotropy;
}
return true;
}
bool Texture::setBaseLevel(GLint baseLevel)
{
if(baseLevel < 0)
{
return false;
}
mBaseLevel = baseLevel;
return true;
}
bool Texture::setCompareFunc(GLenum compareFunc)
{
switch(compareFunc)
{
case GL_LEQUAL:
case GL_GEQUAL:
case GL_LESS:
case GL_GREATER:
case GL_EQUAL:
case GL_NOTEQUAL:
case GL_ALWAYS:
case GL_NEVER:
mCompareFunc = compareFunc;
return true;
default:
return false;
}
}
bool Texture::setCompareMode(GLenum compareMode)
{
switch(compareMode)
{
case GL_COMPARE_REF_TO_TEXTURE:
case GL_NONE:
mCompareMode = compareMode;
return true;
default:
return false;
}
}
void Texture::makeImmutable(GLsizei levels)
{
mImmutableFormat = GL_TRUE;
mImmutableLevels = levels;
}
bool Texture::setMaxLevel(GLint maxLevel)
{
mMaxLevel = maxLevel;
return true;
}
bool Texture::setMaxLOD(GLfloat maxLOD)
{
mMaxLOD = maxLOD;
return true;
}
bool Texture::setMinLOD(GLfloat minLOD)
{
mMinLOD = minLOD;
return true;
}
bool Texture::setSwizzleR(GLenum swizzleR)
{
switch(swizzleR)
{
case GL_RED:
case GL_GREEN:
case GL_BLUE:
case GL_ALPHA:
case GL_ZERO:
case GL_ONE:
mSwizzleR = swizzleR;
return true;
default:
return false;
}
}
bool Texture::setSwizzleG(GLenum swizzleG)
{
switch(swizzleG)
{
case GL_RED:
case GL_GREEN:
case GL_BLUE:
case GL_ALPHA:
case GL_ZERO:
case GL_ONE:
mSwizzleG = swizzleG;
return true;
default:
return false;
}
}
bool Texture::setSwizzleB(GLenum swizzleB)
{
switch(swizzleB)
{
case GL_RED:
case GL_GREEN:
case GL_BLUE:
case GL_ALPHA:
case GL_ZERO:
case GL_ONE:
mSwizzleB = swizzleB;
return true;
default:
return false;
}
}
bool Texture::setSwizzleA(GLenum swizzleA)
{
switch(swizzleA)
{
case GL_RED:
case GL_GREEN:
case GL_BLUE:
case GL_ALPHA:
case GL_ZERO:
case GL_ONE:
mSwizzleA = swizzleA;
return true;
default:
return false;
}
}
GLsizei Texture::getDepth(GLenum target, GLint level) const
{
return 1;
}
egl::Image *Texture::createSharedImage(GLenum target, unsigned int level)
{
egl::Image *image = getRenderTarget(target, level); // Increments reference count
if(image)
{
image->markShared();
}
return image;
}
void Texture::setImage(GLenum format, GLenum type, const gl::PixelStorageModes &unpackParameters, const void *pixels, egl::Image *image)
{
if(pixels && image)
{
GLsizei depth = (getTarget() == GL_TEXTURE_3D_OES || getTarget() == GL_TEXTURE_2D_ARRAY) ? image->getDepth() : 1;
image->loadImageData(0, 0, 0, image->getWidth(), image->getHeight(), depth, format, type, unpackParameters, pixels);
}
}
void Texture::setCompressedImage(GLsizei imageSize, const void *pixels, egl::Image *image)
{
if(pixels && image && (imageSize > 0)) // imageSize's correlation to width and height is already validated with gl::ComputeCompressedSize() at the API level
{
GLsizei depth = (getTarget() == GL_TEXTURE_3D_OES || getTarget() == GL_TEXTURE_2D_ARRAY) ? image->getDepth() : 1;
image->loadCompressedData(0, 0, 0, image->getWidth(), image->getHeight(), depth, imageSize, pixels);
}
}
void Texture::subImage(GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelStorageModes &unpackParameters, const void *pixels, egl::Image *image)
{
if(!image)
{
return error(GL_INVALID_OPERATION);
}
if(pixels && width > 0 && height > 0 && depth > 0)
{
image->loadImageData(xoffset, yoffset, zoffset, width, height, depth, format, type, unpackParameters, pixels);
}
}
void Texture::subImageCompressed(GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void *pixels, egl::Image *image)
{
if(!image)
{
return error(GL_INVALID_OPERATION);
}
if(pixels && (imageSize > 0)) // imageSize's correlation to width and height is already validated with gl::ComputeCompressedSize() at the API level
{
image->loadCompressedData(xoffset, yoffset, zoffset, width, height, depth, imageSize, pixels);
}
}
bool Texture::copy(egl::Image *source, const sw::SliceRect &sourceRect, GLint xoffset, GLint yoffset, GLint zoffset, egl::Image *dest)
{
Device *device = getDevice();
sw::SliceRect destRect(xoffset, yoffset, xoffset + (sourceRect.x1 - sourceRect.x0), yoffset + (sourceRect.y1 - sourceRect.y0), zoffset);
sw::SliceRectF sourceRectF(static_cast<float>(sourceRect.x0),
static_cast<float>(sourceRect.y0),
static_cast<float>(sourceRect.x1),
static_cast<float>(sourceRect.y1),
sourceRect.slice);
bool success = device->stretchRect(source, &sourceRectF, dest, &destRect, Device::ALL_BUFFERS);
if(!success)
{
return error(GL_OUT_OF_MEMORY, false);
}
return true;
}
bool Texture::isMipmapFiltered(Sampler *sampler) const
{
GLenum minFilter = sampler ? sampler->getMinFilter() : mMinFilter;
switch(minFilter)
{
case GL_NEAREST:
case GL_LINEAR:
return false;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
return true;
default: UNREACHABLE(minFilter);
}
return false;
}
Texture2D::Texture2D(GLuint name) : Texture(name)
{
mSurface = nullptr;
mColorbufferProxy = nullptr;
mProxyRefs = 0;
}
Texture2D::~Texture2D()
{
image.unbind(this);
if(mSurface)
{
mSurface->setBoundTexture(nullptr);
mSurface = nullptr;
}
mColorbufferProxy = nullptr;
}
// We need to maintain a count of references to renderbuffers acting as
// proxies for this texture, so that we do not attempt to use a pointer
// to a renderbuffer proxy which has been deleted.
void Texture2D::addProxyRef(const Renderbuffer *proxy)
{
mProxyRefs++;
}
void Texture2D::releaseProxy(const Renderbuffer *proxy)
{
if(mProxyRefs > 0)
{
mProxyRefs--;
}
if(mProxyRefs == 0)
{
mColorbufferProxy = nullptr;
}
}
void Texture2D::sweep()
{
int imageCount = 0;
for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
if(image[i] && image[i]->isChildOf(this))
{
if(!image[i]->hasSingleReference())
{
return;
}
imageCount++;
}
}
if(imageCount == referenceCount)
{
destroy();
}
}
GLenum Texture2D::getTarget() const
{
return GL_TEXTURE_2D;
}
GLsizei Texture2D::getWidth(GLenum target, GLint level) const
{
ASSERT(target == getTarget());
return image[level] ? image[level]->getWidth() : 0;
}
GLsizei Texture2D::getHeight(GLenum target, GLint level) const
{
ASSERT(target == getTarget());
return image[level] ? image[level]->getHeight() : 0;
}
GLint Texture2D::getFormat(GLenum target, GLint level) const
{
ASSERT(target == getTarget());
return image[level] ? image[level]->getFormat() : GL_NONE;
}
int Texture2D::getTopLevel() const
{
int level = mBaseLevel;
while(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS && image[level])
{
level++;
}
return level - 1;
}
bool Texture2D::requiresSync() const
{
for(int level = 0; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
if(image[level] && image[level]->requiresSync())
{
return true;
}
}
return false;
}
void Texture2D::setImage(GLint level, GLsizei width, GLsizei height, GLint internalformat, GLenum format, GLenum type, const gl::PixelStorageModes &unpackParameters, const void *pixels)
{
if(image[level])
{
image[level]->release();
}
image[level] = egl::Image::create(this, width, height, internalformat);
if(!image[level])
{
return error(GL_OUT_OF_MEMORY);
}
Texture::setImage(format, type, unpackParameters, pixels, image[level]);
}
void Texture2D::bindTexImage(gl::Surface *surface)
{
image.release();
image[0] = surface->getRenderTarget();
mSurface = surface;
mSurface->setBoundTexture(this);
}
void Texture2D::releaseTexImage()
{
image.release();
if(mSurface)
{
mSurface->setBoundTexture(nullptr);
mSurface = nullptr;
}
}
void Texture2D::setCompressedImage(GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels)
{
if(image[level])
{
image[level]->release();
}
image[level] = egl::Image::create(this, width, height, format);
if(!image[level])
{
return error(GL_OUT_OF_MEMORY);
}
Texture::setCompressedImage(imageSize, pixels, image[level]);
}
void Texture2D::subImage(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const gl::PixelStorageModes &unpackParameters, const void *pixels)
{
Texture::subImage(xoffset, yoffset, 0, width, height, 1, format, type, unpackParameters, pixels, image[level]);
}
void Texture2D::subImageCompressed(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels)
{
Texture::subImageCompressed(xoffset, yoffset, 0, width, height, 1, format, imageSize, pixels, image[level]);
}
void Texture2D::copyImage(GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, Renderbuffer *source)
{
if(image[level])
{
image[level]->release();
}
image[level] = egl::Image::create(this, width, height, internalformat);
if(!image[level])
{
return error(GL_OUT_OF_MEMORY);
}
if(width != 0 && height != 0)
{
egl::Image *renderTarget = source->getRenderTarget();
if(!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
sw::SliceRect sourceRect(x, y, x + width, y + height, 0);
sourceRect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());
copy(renderTarget, sourceRect, 0, 0, 0, image[level]);
renderTarget->release();
}
}
void Texture2D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, Renderbuffer *source)
{
if(!image[level])
{
return error(GL_INVALID_OPERATION);
}
if(xoffset + width > image[level]->getWidth() || yoffset + height > image[level]->getHeight() || zoffset != 0)
{
return error(GL_INVALID_VALUE);
}
if(width > 0 && height > 0)
{
egl::Image *renderTarget = source->getRenderTarget();
if(!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
sw::SliceRect sourceRect(x, y, x + width, y + height, 0);
sourceRect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());
copy(renderTarget, sourceRect, xoffset, yoffset, zoffset, image[level]);
renderTarget->release();
}
}
void Texture2D::setSharedImage(egl::Image *sharedImage)
{
if(sharedImage == image[0])
{
return;
}
sharedImage->addRef();
if(image[0])
{
image[0]->release();
}
image[0] = sharedImage;
}
// Tests for 2D texture sampling completeness. [OpenGL ES 3.0.5] section 3.8.13 page 160.
bool Texture2D::isSamplerComplete(Sampler *sampler) const
{
if(!image[mBaseLevel])
{
return false;
}
GLsizei width = image[mBaseLevel]->getWidth();
GLsizei height = image[mBaseLevel]->getHeight();
if(width <= 0 || height <= 0)
{
return false;
}
if(isMipmapFiltered(sampler))
{
if(!isMipmapComplete())
{
return false;
}
}
return true;
}
// Tests for 2D texture (mipmap) completeness. [OpenGL ES 3.0.5] section 3.8.13 page 160.
bool Texture2D::isMipmapComplete() const
{
if(mBaseLevel > mMaxLevel)
{
return false;
}
GLsizei width = image[mBaseLevel]->getWidth();
GLsizei height = image[mBaseLevel]->getHeight();
int maxsize = std::max(width, height);
int p = log2(maxsize) + mBaseLevel;
int q = std::min(p, mMaxLevel);
for(int level = mBaseLevel + 1; level <= q; level++)
{
if(!image[level])
{
return false;
}
if(image[level]->getFormat() != image[mBaseLevel]->getFormat())
{
return false;
}
int i = level - mBaseLevel;
if(image[level]->getWidth() != std::max(1, width >> i))
{
return false;
}
if(image[level]->getHeight() != std::max(1, height >> i))
{
return false;
}
}
return true;
}
bool Texture2D::isCompressed(GLenum target, GLint level) const
{
return IsCompressed(getFormat(target, level));
}
bool Texture2D::isDepth(GLenum target, GLint level) const
{
return IsDepthTexture(getFormat(target, level));
}
void Texture2D::generateMipmaps()
{
if(!image[mBaseLevel])
{
return; // Image unspecified. Not an error.
}
if(image[mBaseLevel]->getWidth() == 0 || image[mBaseLevel]->getHeight() == 0)
{
return; // Zero dimension. Not an error.
}
int maxsize = std::max(image[mBaseLevel]->getWidth(), image[mBaseLevel]->getHeight());
int p = log2(maxsize) + mBaseLevel;
int q = std::min(p, mMaxLevel);
for(int i = mBaseLevel + 1; i <= q; i++)
{
if(image[i])
{
image[i]->release();
}
image[i] = egl::Image::create(this, std::max(image[mBaseLevel]->getWidth() >> i, 1), std::max(image[mBaseLevel]->getHeight() >> i, 1), image[mBaseLevel]->getFormat());
if(!image[i])
{
return error(GL_OUT_OF_MEMORY);
}
getDevice()->stretchRect(image[i - 1], 0, image[i], 0, Device::ALL_BUFFERS | Device::USE_FILTER);
}
}
egl::Image *Texture2D::getImage(unsigned int level)
{
return image[level];
}
Renderbuffer *Texture2D::getRenderbuffer(GLenum target, GLint level)
{
if(target != getTarget())
{
return error(GL_INVALID_OPERATION, (Renderbuffer*)nullptr);
}
if(!mColorbufferProxy)
{
mColorbufferProxy = new Renderbuffer(name, new RenderbufferTexture2D(this, level));
}
else
{
mColorbufferProxy->setLevel(level);
}
return mColorbufferProxy;
}
egl::Image *Texture2D::getRenderTarget(GLenum target, unsigned int level)
{
ASSERT(target == getTarget());
ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS);
if(image[level])
{
image[level]->addRef();
}
return image[level];
}
bool Texture2D::isShared(GLenum target, unsigned int level) const
{
ASSERT(target == getTarget());
ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS);
if(mSurface) // Bound to an EGLSurface
{
return true;
}
if(!image[level])
{
return false;
}
return image[level]->isShared();
}
Texture2DRect::Texture2DRect(GLuint name) : Texture2D(name)
{
mMinFilter = GL_LINEAR;
mMagFilter = GL_LINEAR;
mWrapS = GL_CLAMP_TO_EDGE;
mWrapT = GL_CLAMP_TO_EDGE;
mWrapR = GL_CLAMP_TO_EDGE;
}
GLenum Texture2DRect::getTarget() const
{
return GL_TEXTURE_RECTANGLE_ARB;
}
Renderbuffer *Texture2DRect::getRenderbuffer(GLenum target, GLint level)
{
if((target != getTarget()) || (level != 0))
{
return error(GL_INVALID_OPERATION, (Renderbuffer*)nullptr);
}
if(!mColorbufferProxy)
{
mColorbufferProxy = new Renderbuffer(name, new RenderbufferTexture2DRect(this));
}
return mColorbufferProxy;
}
TextureCubeMap::TextureCubeMap(GLuint name) : Texture(name)
{
for(int f = 0; f < 6; f++)
{
mFaceProxies[f] = nullptr;
mFaceProxyRefs[f] = 0;
}
}
TextureCubeMap::~TextureCubeMap()
{
for(int i = 0; i < 6; i++)
{
image[i].unbind(this);
mFaceProxies[i] = nullptr;
}
}
// We need to maintain a count of references to renderbuffers acting as
// proxies for this texture, so that the texture is not deleted while
// proxy references still exist. If the reference count drops to zero,
// we set our proxy pointer null, so that a new attempt at referencing
// will cause recreation.
void TextureCubeMap::addProxyRef(const Renderbuffer *proxy)
{
for(int f = 0; f < 6; f++)
{
if(mFaceProxies[f] == proxy)
{
mFaceProxyRefs[f]++;
}
}
}
void TextureCubeMap::releaseProxy(const Renderbuffer *proxy)
{
for(int f = 0; f < 6; f++)
{
if(mFaceProxies[f] == proxy)
{
if(mFaceProxyRefs[f] > 0)
{
mFaceProxyRefs[f]--;
}
if(mFaceProxyRefs[f] == 0)
{
mFaceProxies[f] = nullptr;
}
}
}
}
void TextureCubeMap::sweep()
{
int imageCount = 0;
for(int f = 0; f < 6; f++)
{
for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
if(image[f][i] && image[f][i]->isChildOf(this))
{
if(!image[f][i]->hasSingleReference())
{
return;
}
imageCount++;
}
}
}
if(imageCount == referenceCount)
{
destroy();
}
}
GLenum TextureCubeMap::getTarget() const
{
return GL_TEXTURE_CUBE_MAP;
}
GLsizei TextureCubeMap::getWidth(GLenum target, GLint level) const
{
int face = CubeFaceIndex(target);
return image[face][level] ? image[face][level]->getWidth() : 0;
}
GLsizei TextureCubeMap::getHeight(GLenum target, GLint level) const
{
int face = CubeFaceIndex(target);
return image[face][level] ? image[face][level]->getHeight() : 0;
}
GLint TextureCubeMap::getFormat(GLenum target, GLint level) const
{
int face = CubeFaceIndex(target);
return image[face][level] ? image[face][level]->getFormat() : 0;
}
int TextureCubeMap::getTopLevel() const
{
int level = mBaseLevel;
while(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS && image[0][level])
{
level++;
}
return level - 1;
}
bool TextureCubeMap::requiresSync() const
{
for(int level = 0; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
for(int face = 0; face < 6; face++)
{
if(image[face][level] && image[face][level]->requiresSync())
{
return true;
}
}
}
return false;
}
void TextureCubeMap::setCompressedImage(GLenum target, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels)
{
int face = CubeFaceIndex(target);
if(image[face][level])
{
image[face][level]->release();
}
image[face][level] = egl::Image::create(this, width, height, 1, 1, format);
if(!image[face][level])
{
return error(GL_OUT_OF_MEMORY);
}
Texture::setCompressedImage(imageSize, pixels, image[face][level]);
}
void TextureCubeMap::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const gl::PixelStorageModes &unpackParameters, const void *pixels)
{
Texture::subImage(xoffset, yoffset, 0, width, height, 1, format, type, unpackParameters, pixels, image[CubeFaceIndex(target)][level]);
}
void TextureCubeMap::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels)
{
Texture::subImageCompressed(xoffset, yoffset, 0, width, height, 1, format, imageSize, pixels, image[CubeFaceIndex(target)][level]);
}
// Tests for cube map sampling completeness. [OpenGL ES 3.0.5] section 3.8.13 page 161.
bool TextureCubeMap::isSamplerComplete(Sampler *sampler) const
{
for(int face = 0; face < 6; face++)
{
if(!image[face][mBaseLevel])
{
return false;
}
}
int size = image[0][mBaseLevel]->getWidth();
if(size <= 0)
{
return false;
}
if(!isMipmapFiltered(sampler))
{
if(!isCubeComplete())
{
return false;
}
}
else
{
if(!isMipmapCubeComplete()) // Also tests for isCubeComplete()
{
return false;
}
}
return true;
}
// Tests for cube texture completeness. [OpenGL ES 3.0.5] section 3.8.13 page 160.
bool TextureCubeMap::isCubeComplete() const
{
if(image[0][mBaseLevel]->getWidth() <= 0 || image[0][mBaseLevel]->getHeight() != image[0][mBaseLevel]->getWidth())
{
return false;
}
for(unsigned int face = 1; face < 6; face++)
{
if(image[face][mBaseLevel]->getWidth() != image[0][mBaseLevel]->getWidth() ||
image[face][mBaseLevel]->getWidth() != image[0][mBaseLevel]->getHeight() ||
image[face][mBaseLevel]->getFormat() != image[0][mBaseLevel]->getFormat())
{
return false;
}
}
return true;
}
bool TextureCubeMap::isMipmapCubeComplete() const
{
if(mBaseLevel > mMaxLevel)
{
return false;
}
if(!isCubeComplete())
{
return false;
}
GLsizei size = image[0][mBaseLevel]->getWidth();
int p = log2(size) + mBaseLevel;
int q = std::min(p, mMaxLevel);
for(int face = 0; face < 6; face++)
{
for(int level = mBaseLevel + 1; level <= q; level++)
{
if(!image[face][level])
{
return false;
}
if(image[face][level]->getFormat() != image[0][mBaseLevel]->getFormat())
{
return false;
}
int i = level - mBaseLevel;
if(image[face][level]->getWidth() != std::max(1, size >> i))
{
return false;
}
}
}
return true;
}
void TextureCubeMap::updateBorders(int level)
{
egl::Image *posX = image[CubeFaceIndex(GL_TEXTURE_CUBE_MAP_POSITIVE_X)][level];
egl::Image *negX = image[CubeFaceIndex(GL_TEXTURE_CUBE_MAP_NEGATIVE_X)][level];
egl::Image *posY = image[CubeFaceIndex(GL_TEXTURE_CUBE_MAP_POSITIVE_Y)][level];
egl::Image *negY = image[CubeFaceIndex(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y)][level];
egl::Image *posZ = image[CubeFaceIndex(GL_TEXTURE_CUBE_MAP_POSITIVE_Z)][level];
egl::Image *negZ = image[CubeFaceIndex(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z)][level];
if(!posX || !negX || !posY || !negY || !posZ || !negZ)
{
return;
}
if(posX->getBorder() == 0) // Non-seamless cube map.
{
return;
}
if(!posX->hasDirtyContents() || !posY->hasDirtyContents() || !posZ->hasDirtyContents() || !negX->hasDirtyContents() || !negY->hasDirtyContents() || !negZ->hasDirtyContents())
{
return;
}
// Copy top / bottom first.
posX->copyCubeEdge(sw::Surface::BOTTOM, negY, sw::Surface::RIGHT);
posY->copyCubeEdge(sw::Surface::BOTTOM, posZ, sw::Surface::TOP);
posZ->copyCubeEdge(sw::Surface::BOTTOM, negY, sw::Surface::TOP);
negX->copyCubeEdge(sw::Surface::BOTTOM, negY, sw::Surface::LEFT);
negY->copyCubeEdge(sw::Surface::BOTTOM, negZ, sw::Surface::BOTTOM);
negZ->copyCubeEdge(sw::Surface::BOTTOM, negY, sw::Surface::BOTTOM);
posX->copyCubeEdge(sw::Surface::TOP, posY, sw::Surface::RIGHT);
posY->copyCubeEdge(sw::Surface::TOP, negZ, sw::Surface::TOP);
posZ->copyCubeEdge(sw::Surface::TOP, posY, sw::Surface::BOTTOM);
negX->copyCubeEdge(sw::Surface::TOP, posY, sw::Surface::LEFT);
negY->copyCubeEdge(sw::Surface::TOP, posZ, sw::Surface::BOTTOM);
negZ->copyCubeEdge(sw::Surface::TOP, posY, sw::Surface::TOP);
// Copy left / right after top and bottom are done.
// The corner colors will be computed assuming top / bottom are already set.
posX->copyCubeEdge(sw::Surface::RIGHT, negZ, sw::Surface::LEFT);
posY->copyCubeEdge(sw::Surface::RIGHT, posX, sw::Surface::TOP);
posZ->copyCubeEdge(sw::Surface::RIGHT, posX, sw::Surface::LEFT);
negX->copyCubeEdge(sw::Surface::RIGHT, posZ, sw::Surface::LEFT);
negY->copyCubeEdge(sw::Surface::RIGHT, posX, sw::Surface::BOTTOM);
negZ->copyCubeEdge(sw::Surface::RIGHT, negX, sw::Surface::LEFT);
posX->copyCubeEdge(sw::Surface::LEFT, posZ, sw::Surface::RIGHT);
posY->copyCubeEdge(sw::Surface::LEFT, negX, sw::Surface::TOP);
posZ->copyCubeEdge(sw::Surface::LEFT, negX, sw::Surface::RIGHT);
negX->copyCubeEdge(sw::Surface::LEFT, negZ, sw::Surface::RIGHT);
negY->copyCubeEdge(sw::Surface::LEFT, negX, sw::Surface::BOTTOM);
negZ->copyCubeEdge(sw::Surface::LEFT, posX, sw::Surface::RIGHT);
posX->markContentsClean();
posY->markContentsClean();
posZ->markContentsClean();
negX->markContentsClean();
negY->markContentsClean();
negZ->markContentsClean();
}
bool TextureCubeMap::isCompressed(GLenum target, GLint level) const
{
return IsCompressed(getFormat(target, level));
}
bool TextureCubeMap::isDepth(GLenum target, GLint level) const
{
return IsDepthTexture(getFormat(target, level));
}
void TextureCubeMap::releaseTexImage()
{
UNREACHABLE(0); // Cube maps cannot have an EGL surface bound as an image
}
void TextureCubeMap::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLint internalformat, GLenum format, GLenum type, const gl::PixelStorageModes &unpackParameters, const void *pixels)
{
int face = CubeFaceIndex(target);
if(image[face][level])
{
image[face][level]->release();
}
image[face][level] = egl::Image::create(this, width, height, 1, 1, internalformat);
if(!image[face][level])
{
return error(GL_OUT_OF_MEMORY);
}
Texture::setImage(format, type, unpackParameters, pixels, image[face][level]);
}
void TextureCubeMap::copyImage(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, Renderbuffer *source)
{
int face = CubeFaceIndex(target);
if(image[face][level])
{
image[face][level]->release();
}
image[face][level] = egl::Image::create(this, width, height, 1, 1, internalformat);
if(!image[face][level])
{
return error(GL_OUT_OF_MEMORY);
}
if(width != 0 && height != 0)
{
egl::Image *renderTarget = source->getRenderTarget();
if(!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
sw::SliceRect sourceRect(x, y, x + width, y + height, 0);
sourceRect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());
copy(renderTarget, sourceRect, 0, 0, 0, image[face][level]);
renderTarget->release();
}
}
egl::Image *TextureCubeMap::getImage(int face, unsigned int level)
{
return image[face][level];
}
egl::Image *TextureCubeMap::getImage(GLenum face, unsigned int level)
{
return image[CubeFaceIndex(face)][level];
}
void TextureCubeMap::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, Renderbuffer *source)
{
int face = CubeFaceIndex(target);
if(!image[face][level])
{
return error(GL_INVALID_OPERATION);
}
GLsizei size = image[face][level]->getWidth();
if(xoffset + width > size || yoffset + height > size || zoffset != 0)
{
return error(GL_INVALID_VALUE);
}
if(width > 0 && height > 0)
{
egl::Image *renderTarget = source->getRenderTarget();
if(!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
sw::SliceRect sourceRect(x, y, x + width, y + height, 0);
sourceRect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());
copy(renderTarget, sourceRect, xoffset, yoffset, zoffset, image[face][level]);
renderTarget->release();
}
}
void TextureCubeMap::generateMipmaps()
{
if(!isCubeComplete())
{
return error(GL_INVALID_OPERATION);
}
int p = log2(image[0][mBaseLevel]->getWidth()) + mBaseLevel;
int q = std::min(p, mMaxLevel);
for(int f = 0; f < 6; f++)
{
ASSERT(image[f][mBaseLevel]);
for(int i = mBaseLevel + 1; i <= q; i++)
{
if(image[f][i])
{
image[f][i]->release();
}
image[f][i] = egl::Image::create(this, std::max(image[f][mBaseLevel]->getWidth() >> i, 1), std::max(image[f][mBaseLevel]->getHeight() >> i, 1), 1, 1, image[f][mBaseLevel]->getFormat());
if(!image[f][i])
{
return error(GL_OUT_OF_MEMORY);
}
getDevice()->stretchRect(image[f][i - 1], 0, image[f][i], 0, Device::ALL_BUFFERS | Device::USE_FILTER);
}
}
}
Renderbuffer *TextureCubeMap::getRenderbuffer(GLenum target, GLint level)
{
if(!IsCubemapTextureTarget(target))
{
return error(GL_INVALID_OPERATION, (Renderbuffer*)nullptr);
}
int face = CubeFaceIndex(target);
if(!mFaceProxies[face])
{
mFaceProxies[face] = new Renderbuffer(name, new RenderbufferTextureCubeMap(this, target, level));
}
else
{
mFaceProxies[face]->setLevel(level);
}
return mFaceProxies[face];
}
egl::Image *TextureCubeMap::getRenderTarget(GLenum target, unsigned int level)
{
ASSERT(IsCubemapTextureTarget(target));
ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS);
int face = CubeFaceIndex(target);
if(image[face][level])
{
image[face][level]->addRef();
}
return image[face][level];
}
bool TextureCubeMap::isShared(GLenum target, unsigned int level) const
{
ASSERT(IsCubemapTextureTarget(target));
ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS);
int face = CubeFaceIndex(target);
if(!image[face][level])
{
return false;
}
return image[face][level]->isShared();
}
Texture3D::Texture3D(GLuint name) : Texture(name)
{
mSurface = nullptr;
mColorbufferProxy = nullptr;
mProxyRefs = 0;
}
Texture3D::~Texture3D()
{
image.unbind(this);
if(mSurface)
{
mSurface->setBoundTexture(nullptr);
mSurface = nullptr;
}
mColorbufferProxy = nullptr;
}
// We need to maintain a count of references to renderbuffers acting as
// proxies for this texture, so that we do not attempt to use a pointer
// to a renderbuffer proxy which has been deleted.
void Texture3D::addProxyRef(const Renderbuffer *proxy)
{
mProxyRefs++;
}
void Texture3D::releaseProxy(const Renderbuffer *proxy)
{
if(mProxyRefs > 0)
{
mProxyRefs--;
}
if(mProxyRefs == 0)
{
mColorbufferProxy = nullptr;
}
}
void Texture3D::sweep()
{
int imageCount = 0;
for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
if(image[i] && image[i]->isChildOf(this))
{
if(!image[i]->hasSingleReference())
{
return;
}
imageCount++;
}
}
if(imageCount == referenceCount)
{
destroy();
}
}
GLenum Texture3D::getTarget() const
{
return GL_TEXTURE_3D_OES;
}
GLsizei Texture3D::getWidth(GLenum target, GLint level) const
{
ASSERT(target == getTarget());
return image[level] ? image[level]->getWidth() : 0;
}
GLsizei Texture3D::getHeight(GLenum target, GLint level) const
{
ASSERT(target == getTarget());
return image[level] ? image[level]->getHeight() : 0;
}
GLsizei Texture3D::getDepth(GLenum target, GLint level) const
{
ASSERT(target == getTarget());
return image[level] ? image[level]->getDepth() : 0;
}
GLint Texture3D::getFormat(GLenum target, GLint level) const
{
ASSERT(target == getTarget());
return image[level] ? image[level]->getFormat() : GL_NONE;
}
int Texture3D::getTopLevel() const
{
int level = mBaseLevel;
while(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS && image[level])
{
level++;
}
return level - 1;
}
bool Texture3D::requiresSync() const
{
for(int level = 0; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
if(image[level] && image[level]->requiresSync())
{
return true;
}
}
return false;
}
void Texture3D::setImage(GLint level, GLsizei width, GLsizei height, GLsizei depth, GLint internalformat, GLenum format, GLenum type, const gl::PixelStorageModes &unpackParameters, const void *pixels)
{
if(image[level])
{
image[level]->release();
}
image[level] = egl::Image::create(this, width, height, depth, 0, internalformat);
if(!image[level])
{
return error(GL_OUT_OF_MEMORY);
}
Texture::setImage(format, type, unpackParameters, pixels, image[level]);
}
void Texture3D::releaseTexImage()
{
UNREACHABLE(0); // 3D textures cannot have an EGL surface bound as an image
}
void Texture3D::setCompressedImage(GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei depth, GLsizei imageSize, const void *pixels)
{
if(image[level])
{
image[level]->release();
}
image[level] = egl::Image::create(this, width, height, depth, 0, format);
if(!image[level])
{
return error(GL_OUT_OF_MEMORY);
}
Texture::setCompressedImage(imageSize, pixels, image[level]);
}
void Texture3D::subImage(GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelStorageModes &unpackParameters, const void *pixels)
{
Texture::subImage(xoffset, yoffset, zoffset, width, height, depth, format, type, unpackParameters, pixels, image[level]);
}
void Texture3D::subImageCompressed(GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void *pixels)
{
Texture::subImageCompressed(xoffset, yoffset, zoffset, width, height, depth, format, imageSize, pixels, image[level]);
}
void Texture3D::copyImage(GLint level, GLenum internalformat, GLint x, GLint y, GLint z, GLsizei width, GLsizei height, GLsizei depth, Renderbuffer *source)
{
if(image[level])
{
image[level]->release();
}
image[level] = egl::Image::create(this, width, height, depth, 0, internalformat);
if(!image[level])
{
return error(GL_OUT_OF_MEMORY);
}
if(width != 0 && height != 0 && depth != 0)
{
egl::Image *renderTarget = source->getRenderTarget();
if(!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
sw::SliceRect sourceRect(x, y, x + width, y + height, z);
sourceRect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());
for(GLint sliceZ = 0; sliceZ < depth; sliceZ++, sourceRect.slice++)
{
copy(renderTarget, sourceRect, 0, 0, sliceZ, image[level]);
}
renderTarget->release();
}
}
void Texture3D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, Renderbuffer *source)
{
if(!image[level])
{
return error(GL_INVALID_OPERATION);
}
if(xoffset + width > image[level]->getWidth() || yoffset + height > image[level]->getHeight() || zoffset >= image[level]->getDepth())
{
return error(GL_INVALID_VALUE);
}
if(width > 0 && height > 0)
{
egl::Image *renderTarget = source->getRenderTarget();
if(!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
sw::SliceRect sourceRect = {x, y, x + width, y + height, 0};
sourceRect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());
copy(renderTarget, sourceRect, xoffset, yoffset, zoffset, image[level]);
renderTarget->release();
}
}
void Texture3D::setSharedImage(egl::Image *sharedImage)
{
sharedImage->addRef();
if(image[0])
{
image[0]->release();
}
image[0] = sharedImage;
}
// Tests for 3D texture sampling completeness. [OpenGL ES 3.0.5] section 3.8.13 page 160.
bool Texture3D::isSamplerComplete(Sampler *sampler) const
{
if(!image[mBaseLevel])
{
return false;
}
GLsizei width = image[mBaseLevel]->getWidth();
GLsizei height = image[mBaseLevel]->getHeight();
GLsizei depth = image[mBaseLevel]->getDepth();
if(width <= 0 || height <= 0 || depth <= 0)
{
return false;
}
if(isMipmapFiltered(sampler))
{
if(!isMipmapComplete())
{
return false;
}
}
return true;
}
// Tests for 3D texture (mipmap) completeness. [OpenGL ES 3.0.5] section 3.8.13 page 160.
bool Texture3D::isMipmapComplete() const
{
if(mBaseLevel > mMaxLevel)
{
return false;
}
GLsizei width = image[mBaseLevel]->getWidth();
GLsizei height = image[mBaseLevel]->getHeight();
GLsizei depth = image[mBaseLevel]->getDepth();
bool isTexture2DArray = getTarget() == GL_TEXTURE_2D_ARRAY;
int maxsize = isTexture2DArray ? std::max(width, height) : std::max(std::max(width, height), depth);
int p = log2(maxsize) + mBaseLevel;
int q = std::min(p, mMaxLevel);
for(int level = mBaseLevel + 1; level <= q; level++)
{
if(!image[level])
{
return false;
}
if(image[level]->getFormat() != image[mBaseLevel]->getFormat())
{
return false;
}
int i = level - mBaseLevel;
if(image[level]->getWidth() != std::max(1, width >> i))
{
return false;
}
if(image[level]->getHeight() != std::max(1, height >> i))
{
return false;
}
int levelDepth = isTexture2DArray ? depth : std::max(1, depth >> i);
if(image[level]->getDepth() != levelDepth)
{
return false;
}
}
return true;
}
bool Texture3D::isCompressed(GLenum target, GLint level) const
{
return IsCompressed(getFormat(target, level));
}
bool Texture3D::isDepth(GLenum target, GLint level) const
{
return IsDepthTexture(getFormat(target, level));
}
void Texture3D::generateMipmaps()
{
if(!image[mBaseLevel])
{
return; // Image unspecified. Not an error.
}
if(image[mBaseLevel]->getWidth() == 0 || image[mBaseLevel]->getHeight() == 0 || image[mBaseLevel]->getDepth() == 0)
{
return; // Zero dimension. Not an error.
}
int maxsize = std::max(std::max(image[mBaseLevel]->getWidth(), image[mBaseLevel]->getHeight()), image[mBaseLevel]->getDepth());
int p = log2(maxsize) + mBaseLevel;
int q = std::min(p, mMaxLevel);
for(int i = mBaseLevel + 1; i <= q; i++)
{
if(image[i])
{
image[i]->release();
}
image[i] = egl::Image::create(this, std::max(image[mBaseLevel]->getWidth() >> i, 1), std::max(image[mBaseLevel]->getHeight() >> i, 1), std::max(image[mBaseLevel]->getDepth() >> i, 1), 0, image[mBaseLevel]->getFormat());
if(!image[i])
{
return error(GL_OUT_OF_MEMORY);
}
getDevice()->stretchCube(image[i - 1], image[i]);
}
}
egl::Image *Texture3D::getImage(unsigned int level)
{
return image[level];
}
Renderbuffer *Texture3D::getRenderbuffer(GLenum target, GLint level)
{
if(target != getTarget())
{
return error(GL_INVALID_OPERATION, (Renderbuffer*)nullptr);
}
if(!mColorbufferProxy)
{
mColorbufferProxy = new Renderbuffer(name, new RenderbufferTexture3D(this, level));
}
else
{
mColorbufferProxy->setLevel(level);
}
return mColorbufferProxy;
}
egl::Image *Texture3D::getRenderTarget(GLenum target, unsigned int level)
{
ASSERT(target == getTarget());
ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS);
if(image[level])
{
image[level]->addRef();
}
return image[level];
}
bool Texture3D::isShared(GLenum target, unsigned int level) const
{
ASSERT(target == getTarget());
ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS);
if(mSurface) // Bound to an EGLSurface
{
return true;
}
if(!image[level])
{
return false;
}
return image[level]->isShared();
}
Texture2DArray::Texture2DArray(GLuint name) : Texture3D(name)
{
}
Texture2DArray::~Texture2DArray()
{
}
GLenum Texture2DArray::getTarget() const
{
return GL_TEXTURE_2D_ARRAY;
}
void Texture2DArray::generateMipmaps()
{
if(!image[mBaseLevel])
{
return; // Image unspecified. Not an error.
}
if(image[mBaseLevel]->getWidth() == 0 || image[mBaseLevel]->getHeight() == 0 || image[mBaseLevel]->getDepth() == 0)
{
return; // Zero dimension. Not an error.
}
int depth = image[mBaseLevel]->getDepth();
int maxsize = std::max(image[mBaseLevel]->getWidth(), image[mBaseLevel]->getHeight());
int p = log2(maxsize) + mBaseLevel;
int q = std::min(p, mMaxLevel);
for(int i = mBaseLevel + 1; i <= q; i++)
{
if(image[i])
{
image[i]->release();
}
GLsizei w = std::max(image[mBaseLevel]->getWidth() >> i, 1);
GLsizei h = std::max(image[mBaseLevel]->getHeight() >> i, 1);
image[i] = egl::Image::create(this, w, h, depth, 0, image[mBaseLevel]->getFormat());
if(!image[i])
{
return error(GL_OUT_OF_MEMORY);
}
GLsizei srcw = image[i - 1]->getWidth();
GLsizei srch = image[i - 1]->getHeight();
for(int z = 0; z < depth; ++z)
{
sw::SliceRectF srcRect(0.0f, 0.0f, static_cast<float>(srcw), static_cast<float>(srch), z);
sw::SliceRect dstRect(0, 0, w, h, z);
getDevice()->stretchRect(image[i - 1], &srcRect, image[i], &dstRect, Device::ALL_BUFFERS | Device::USE_FILTER);
}
}
}
TextureExternal::TextureExternal(GLuint name) : Texture2D(name)
{
mMinFilter = GL_LINEAR;
mMagFilter = GL_LINEAR;
mWrapS = GL_CLAMP_TO_EDGE;
mWrapT = GL_CLAMP_TO_EDGE;
mWrapR = GL_CLAMP_TO_EDGE;
}
TextureExternal::~TextureExternal()
{
}
GLenum TextureExternal::getTarget() const
{
return GL_TEXTURE_EXTERNAL_OES;
}
}
NO_SANITIZE_FUNCTION egl::Image *createBackBuffer(int width, int height, sw::Format format, int multiSampleDepth)
{
if(width > es2::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE || height > es2::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE)
{
ERR("Invalid parameters: %dx%d", width, height);
return nullptr;
}
GLenum internalformat = sw2es::ConvertBackBufferFormat(format);
return egl::Image::create(width, height, internalformat, multiSampleDepth, false);
}
NO_SANITIZE_FUNCTION egl::Image *createBackBufferFromClientBuffer(const egl::ClientBuffer& clientBuffer)
{
if(clientBuffer.getWidth() > es2::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE ||
clientBuffer.getHeight() > es2::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE)
{
ERR("Invalid parameters: %dx%d", clientBuffer.getWidth(), clientBuffer.getHeight());
return nullptr;
}
return egl::Image::create(clientBuffer);
}
NO_SANITIZE_FUNCTION egl::Image *createDepthStencil(int width, int height, sw::Format format, int multiSampleDepth)
{
if(width > es2::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE || height > es2::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE)
{
ERR("Invalid parameters: %dx%d", width, height);
return nullptr;
}
bool lockable = true;
switch(format)
{
// case sw::FORMAT_D15S1:
case sw::FORMAT_D24S8:
case sw::FORMAT_D24X8:
// case sw::FORMAT_D24X4S4:
case sw::FORMAT_D24FS8:
case sw::FORMAT_D32:
case sw::FORMAT_D16:
lockable = false;
break;
// case sw::FORMAT_S8_LOCKABLE:
// case sw::FORMAT_D16_LOCKABLE:
case sw::FORMAT_D32F_LOCKABLE:
// case sw::FORMAT_D32_LOCKABLE:
case sw::FORMAT_DF24S8:
case sw::FORMAT_DF16S8:
lockable = true;
break;
default:
UNREACHABLE(format);
}
GLenum internalformat = sw2es::ConvertDepthStencilFormat(format);
egl::Image *surface = egl::Image::create(width, height, internalformat, multiSampleDepth, lockable);
if(!surface)
{
ERR("Out of memory");
return nullptr;
}
return surface;
}