HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Android 10
|
10.0.0_r6
下载
查看原文件
收藏
根目录
external
swiftshader
src
Shader
ShaderCore.cpp
// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "ShaderCore.hpp" #include "Renderer/Renderer.hpp" #include "Common/Debug.hpp" #include
namespace sw { extern TranscendentalPrecision logPrecision; extern TranscendentalPrecision expPrecision; extern TranscendentalPrecision rcpPrecision; extern TranscendentalPrecision rsqPrecision; Vector4s::Vector4s() { } Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w) { this->x = Short4(x); this->y = Short4(y); this->z = Short4(z); this->w = Short4(w); } Vector4s::Vector4s(const Vector4s &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; } Vector4s &Vector4s::operator=(const Vector4s &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; return *this; } Short4 &Vector4s::operator[](int i) { switch(i) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; } return x; } Vector4f::Vector4f() { } Vector4f::Vector4f(float x, float y, float z, float w) { this->x = Float4(x); this->y = Float4(y); this->z = Float4(z); this->w = Float4(w); } Vector4f::Vector4f(const Vector4f &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; } Vector4f &Vector4f::operator=(const Vector4f &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; return *this; } Float4 &Vector4f::operator[](int i) { switch(i) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; } return x; } Float4 exponential2(RValue
x, bool pp) { // This implementation is based on 2^(i + f) = 2^i * 2^f, // where i is the integer part of x and f is the fraction. // For 2^i we can put the integer part directly in the exponent of // the IEEE-754 floating-point number. Clamp to prevent overflow // past the representation of infinity. Float4 x0 = x; x0 = Min(x0, As
(Int4(0x43010000))); // 129.00000e+0f x0 = Max(x0, As
(Int4(0xC2FDFFFF))); // -126.99999e+0f Int4 i = RoundInt(x0 - Float4(0.5f)); Float4 ii = As
((i + Int4(127)) << 23); // Add single-precision bias, and shift into exponent. // For the fractional part use a polynomial // which approximates 2^f in the 0 to 1 range. Float4 f = x0 - Float4(i); Float4 ff = As
(Int4(0x3AF61905)); // 1.8775767e-3f ff = ff * f + As
(Int4(0x3C134806)); // 8.9893397e-3f ff = ff * f + As
(Int4(0x3D64AA23)); // 5.5826318e-2f ff = ff * f + As
(Int4(0x3E75EAD4)); // 2.4015361e-1f ff = ff * f + As
(Int4(0x3F31727B)); // 6.9315308e-1f ff = ff * f + Float4(1.0f); return ii * ff; } Float4 logarithm2(RValue
x, bool absolute, bool pp) { Float4 x0; Float4 x1; Float4 x2; Float4 x3; x0 = x; x1 = As
(As
(x0) & Int4(0x7F800000)); x1 = As
(As
(x1) >> 8); x1 = As
(As
(x1) | As
(Float4(1.0f))); x1 = (x1 - Float4(1.4960938f)) * Float4(256.0f); // FIXME: (x1 - 1.4960938f) * 256.0f; x0 = As
((As
(x0) & Int4(0x007FFFFF)) | As
(Float4(1.0f))); x2 = (Float4(9.5428179e-2f) * x0 + Float4(4.7779095e-1f)) * x0 + Float4(1.9782813e-1f); x3 = ((Float4(1.6618466e-2f) * x0 + Float4(2.0350508e-1f)) * x0 + Float4(2.7382900e-1f)) * x0 + Float4(4.0496687e-2f); x2 /= x3; x1 += (x0 - Float4(1.0f)) * x2; Int4 pos_inf_x = CmpEQ(As
(x), Int4(0x7F800000)); return As
((pos_inf_x & As
(x)) | (~pos_inf_x & As
(x1))); } Float4 exponential(RValue
x, bool pp) { // FIXME: Propagate the constant return exponential2(Float4(1.44269504f) * x, pp); // 1/ln(2) } Float4 logarithm(RValue
x, bool absolute, bool pp) { // FIXME: Propagate the constant return Float4(6.93147181e-1f) * logarithm2(x, absolute, pp); // ln(2) } Float4 power(RValue
x, RValue
y, bool pp) { Float4 log = logarithm2(x, true, pp); log *= y; return exponential2(log, pp); } Float4 reciprocal(RValue
x, bool pp, bool finite, bool exactAtPow2) { Float4 rcp; if(!pp && rcpPrecision >= WHQL) { rcp = Float4(1.0f) / x; } else { rcp = Rcp_pp(x, exactAtPow2); if(!pp) { rcp = (rcp + rcp) - (x * rcp * rcp); } } if(finite) { int big = 0x7F7FFFFF; rcp = Min(rcp, Float4((float&)big)); } return rcp; } Float4 reciprocalSquareRoot(RValue
x, bool absolute, bool pp) { Float4 abs = x; if(absolute) { abs = Abs(abs); } Float4 rsq; if(!pp) { rsq = Float4(1.0f) / Sqrt(abs); } else { rsq = RcpSqrt_pp(abs); if(!pp) { rsq = rsq * (Float4(3.0f) - rsq * rsq * abs) * Float4(0.5f); } rsq = As
(CmpNEQ(As
(abs), Int4(0x7F800000)) & As
(rsq)); } return rsq; } Float4 modulo(RValue
x, RValue
y) { return x - y * Floor(x / y); } Float4 sine_pi(RValue
x, bool pp) { const Float4 A = Float4(-4.05284734e-1f); // -4/pi^2 const Float4 B = Float4(1.27323954e+0f); // 4/pi const Float4 C = Float4(7.75160950e-1f); const Float4 D = Float4(2.24839049e-1f); // Parabola approximating sine Float4 sin = x * (Abs(x) * A + B); // Improve precision from 0.06 to 0.001 if(true) { sin = sin * (Abs(sin) * D + C); } return sin; } Float4 cosine_pi(RValue
x, bool pp) { // cos(x) = sin(x + pi/2) Float4 y = x + Float4(1.57079632e+0f); // Wrap around y -= As
(CmpNLT(y, Float4(3.14159265e+0f)) & As
(Float4(6.28318530e+0f))); return sine_pi(y, pp); } Float4 sine(RValue
x, bool pp) { // Reduce to [-0.5, 0.5] range Float4 y = x * Float4(1.59154943e-1f); // 1/2pi y = y - Round(y); if(!pp) { // From the paper: "A Fast, Vectorizable Algorithm for Producing Single-Precision Sine-Cosine Pairs" // This implementation passes OpenGL ES 3.0 precision requirements, at the cost of more operations: // !pp : 17 mul, 7 add, 1 sub, 1 reciprocal // pp : 4 mul, 2 add, 2 abs Float4 y2 = y * y; Float4 c1 = y2 * (y2 * (y2 * Float4(-0.0204391631f) + Float4(0.2536086171f)) + Float4(-1.2336977925f)) + Float4(1.0f); Float4 s1 = y * (y2 * (y2 * (y2 * Float4(-0.0046075748f) + Float4(0.0796819754f)) + Float4(-0.645963615f)) + Float4(1.5707963235f)); Float4 c2 = (c1 * c1) - (s1 * s1); Float4 s2 = Float4(2.0f) * s1 * c1; return Float4(2.0f) * s2 * c2 * reciprocal(s2 * s2 + c2 * c2, pp, true); } const Float4 A = Float4(-16.0f); const Float4 B = Float4(8.0f); const Float4 C = Float4(7.75160950e-1f); const Float4 D = Float4(2.24839049e-1f); // Parabola approximating sine Float4 sin = y * (Abs(y) * A + B); // Improve precision from 0.06 to 0.001 if(true) { sin = sin * (Abs(sin) * D + C); } return sin; } Float4 cosine(RValue
x, bool pp) { // cos(x) = sin(x + pi/2) Float4 y = x + Float4(1.57079632e+0f); return sine(y, pp); } Float4 tangent(RValue
x, bool pp) { return sine(x, pp) / cosine(x, pp); } Float4 arccos(RValue
x, bool pp) { // pi/2 - arcsin(x) return Float4(1.57079632e+0f) - arcsin(x); } Float4 arcsin(RValue
x, bool pp) { if(false) // Simpler implementation fails even lowp precision tests { // x*(pi/2-sqrt(1-x*x)*pi/5) return x * (Float4(1.57079632e+0f) - Sqrt(Float4(1.0f) - x*x) * Float4(6.28318531e-1f)); } else { // From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun const Float4 half_pi(1.57079632f); const Float4 a0(1.5707288f); const Float4 a1(-0.2121144f); const Float4 a2(0.0742610f); const Float4 a3(-0.0187293f); Float4 absx = Abs(x); return As
(As
(half_pi - Sqrt(Float4(1.0f) - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^ (As
(x) & Int4(0x80000000))); } } // Approximation of atan in [0..1] Float4 arctan_01(Float4 x, bool pp) { if(pp) { return x * (Float4(-0.27f) * x + Float4(1.05539816f)); } else { // From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun const Float4 a2(-0.3333314528f); const Float4 a4(0.1999355085f); const Float4 a6(-0.1420889944f); const Float4 a8(0.1065626393f); const Float4 a10(-0.0752896400f); const Float4 a12(0.0429096138f); const Float4 a14(-0.0161657367f); const Float4 a16(0.0028662257f); Float4 x2 = x * x; return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16))))))))); } } Float4 arctan(RValue
x, bool pp) { Float4 absx = Abs(x); Int4 O = CmpNLT(absx, Float4(1.0f)); Float4 y = As
((O & As
(Float4(1.0f) / absx)) | (~O & As
(absx))); // FIXME: Vector select const Float4 half_pi(1.57079632f); Float4 theta = arctan_01(y, pp); return As
(((O & As
(half_pi - theta)) | (~O & As
(theta))) ^ // FIXME: Vector select (As
(x) & Int4(0x80000000))); } Float4 arctan(RValue
y, RValue
x, bool pp) { const Float4 pi(3.14159265f); // pi const Float4 minus_pi(-3.14159265f); // -pi const Float4 half_pi(1.57079632f); // pi/2 const Float4 quarter_pi(7.85398163e-1f); // pi/4 // Rotate to upper semicircle when in lower semicircle Int4 S = CmpLT(y, Float4(0.0f)); Float4 theta = As
(S & As
(minus_pi)); Float4 x0 = As
((As
(y) & Int4(0x80000000)) ^ As
(x)); Float4 y0 = Abs(y); // Rotate to right quadrant when in left quadrant Int4 Q = CmpLT(x0, Float4(0.0f)); theta += As
(Q & As
(half_pi)); Float4 x1 = As
((Q & As
(y0)) | (~Q & As
(x0))); // FIXME: Vector select Float4 y1 = As
((Q & As
(-x0)) | (~Q & As
(y0))); // FIXME: Vector select // Mirror to first octant when in second octant Int4 O = CmpNLT(y1, x1); Float4 x2 = As
((O & As
(y1)) | (~O & As
(x1))); // FIXME: Vector select Float4 y2 = As
((O & As
(x1)) | (~O & As
(y1))); // FIXME: Vector select // Approximation of atan in [0..1] Int4 zero_x = CmpEQ(x2, Float4(0.0f)); Int4 inf_y = IsInf(y2); // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4 Float4 atan2_theta = arctan_01(y2 / x2, pp); theta += As
((~zero_x & ~inf_y & ((O & As
(half_pi - atan2_theta)) | (~O & (As
(atan2_theta))))) | // FIXME: Vector select (inf_y & As
(quarter_pi))); // Recover loss of precision for tiny theta angles Int4 precision_loss = S & Q & O & ~inf_y; // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta return As
((precision_loss & As
(-atan2_theta)) | (~precision_loss & As
(theta))); // FIXME: Vector select } Float4 sineh(RValue
x, bool pp) { return (exponential(x, pp) - exponential(-x, pp)) * Float4(0.5f); } Float4 cosineh(RValue
x, bool pp) { return (exponential(x, pp) + exponential(-x, pp)) * Float4(0.5f); } Float4 tangenth(RValue
x, bool pp) { Float4 e_x = exponential(x, pp); Float4 e_minus_x = exponential(-x, pp); return (e_x - e_minus_x) / (e_x + e_minus_x); } Float4 arccosh(RValue
x, bool pp) { return logarithm(x + Sqrt(x + Float4(1.0f)) * Sqrt(x - Float4(1.0f)), pp); } Float4 arcsinh(RValue
x, bool pp) { return logarithm(x + Sqrt(x * x + Float4(1.0f)), pp); } Float4 arctanh(RValue
x, bool pp) { return logarithm((Float4(1.0f) + x) / (Float4(1.0f) - x), pp) * Float4(0.5f); } Float4 dot2(const Vector4f &v0, const Vector4f &v1) { return v0.x * v1.x + v0.y * v1.y; } Float4 dot3(const Vector4f &v0, const Vector4f &v1) { return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z; } Float4 dot4(const Vector4f &v0, const Vector4f &v1) { return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z + v0.w * v1.w; } void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) { Int2 tmp0 = UnpackHigh(row0, row1); Int2 tmp1 = UnpackHigh(row2, row3); Int2 tmp2 = UnpackLow(row0, row1); Int2 tmp3 = UnpackLow(row2, row3); row0 = UnpackLow(tmp2, tmp3); row1 = UnpackHigh(tmp2, tmp3); row2 = UnpackLow(tmp0, tmp1); row3 = UnpackHigh(tmp0, tmp1); } void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) { Int2 tmp0 = UnpackHigh(row0, row1); Int2 tmp1 = UnpackHigh(row2, row3); Int2 tmp2 = UnpackLow(row0, row1); Int2 tmp3 = UnpackLow(row2, row3); row0 = UnpackLow(tmp2, tmp3); row1 = UnpackHigh(tmp2, tmp3); row2 = UnpackLow(tmp0, tmp1); } void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); Float4 tmp2 = UnpackHigh(row0, row1); Float4 tmp3 = UnpackHigh(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); row1 = Float4(tmp0.zw, tmp1.zw); row2 = Float4(tmp2.xy, tmp3.xy); row3 = Float4(tmp2.zw, tmp3.zw); } void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); Float4 tmp2 = UnpackHigh(row0, row1); Float4 tmp3 = UnpackHigh(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); row1 = Float4(tmp0.zw, tmp1.zw); row2 = Float4(tmp2.xy, tmp3.xy); } void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); row1 = Float4(tmp0.zw, tmp1.zw); } void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); } void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp01 = UnpackLow(row0, row1); Float4 tmp23 = UnpackHigh(row0, row1); row0 = tmp01; row1 = Float4(tmp01.zw, row1.zw); row2 = tmp23; row3 = Float4(tmp23.zw, row3.zw); } void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N) { switch(N) { case 1: transpose4x1(row0, row1, row2, row3); break; case 2: transpose4x2(row0, row1, row2, row3); break; case 3: transpose4x3(row0, row1, row2, row3); break; case 4: transpose4x4(row0, row1, row2, row3); break; } } const Vector4f RegisterFile::operator[](RValue
index) { ASSERT(indirectAddressable); Int index0 = Extract(index, 0); Int index1 = Extract(index, 1); Int index2 = Extract(index, 2); Int index3 = Extract(index, 3); Vector4f r; r.x.x = Extract(x[0][index0], 0); r.x.y = Extract(x[0][index1], 1); r.x.z = Extract(x[0][index2], 2); r.x.w = Extract(x[0][index3], 3); r.y.x = Extract(y[0][index0], 0); r.y.y = Extract(y[0][index1], 1); r.y.z = Extract(y[0][index2], 2); r.y.w = Extract(y[0][index3], 3); r.z.x = Extract(z[0][index0], 0); r.z.y = Extract(z[0][index1], 1); r.z.z = Extract(z[0][index2], 2); r.z.w = Extract(z[0][index3], 3); r.w.x = Extract(w[0][index0], 0); r.w.y = Extract(w[0][index1], 1); r.w.z = Extract(w[0][index2], 2); r.w.w = Extract(w[0][index3], 3); return r; } void RegisterFile::scatter_x(Int4 index, RValue
r) { ASSERT(indirectAddressable); Int index0 = Extract(index, 0); Int index1 = Extract(index, 1); Int index2 = Extract(index, 2); Int index3 = Extract(index, 3); x[0][index0] = Insert(x[0][index0], Extract(r, 0), 0); x[0][index1] = Insert(x[0][index1], Extract(r, 1), 1); x[0][index2] = Insert(x[0][index2], Extract(r, 2), 2); x[0][index3] = Insert(x[0][index3], Extract(r, 3), 3); } void RegisterFile::scatter_y(Int4 index, RValue
r) { ASSERT(indirectAddressable); Int index0 = Extract(index, 0); Int index1 = Extract(index, 1); Int index2 = Extract(index, 2); Int index3 = Extract(index, 3); y[0][index0] = Insert(y[0][index0], Extract(r, 0), 0); y[0][index1] = Insert(y[0][index1], Extract(r, 1), 1); y[0][index2] = Insert(y[0][index2], Extract(r, 2), 2); y[0][index3] = Insert(y[0][index3], Extract(r, 3), 3); } void RegisterFile::scatter_z(Int4 index, RValue
r) { ASSERT(indirectAddressable); Int index0 = Extract(index, 0); Int index1 = Extract(index, 1); Int index2 = Extract(index, 2); Int index3 = Extract(index, 3); z[0][index0] = Insert(z[0][index0], Extract(r, 0), 0); z[0][index1] = Insert(z[0][index1], Extract(r, 1), 1); z[0][index2] = Insert(z[0][index2], Extract(r, 2), 2); z[0][index3] = Insert(z[0][index3], Extract(r, 3), 3); } void RegisterFile::scatter_w(Int4 index, RValue
r) { ASSERT(indirectAddressable); Int index0 = Extract(index, 0); Int index1 = Extract(index, 1); Int index2 = Extract(index, 2); Int index3 = Extract(index, 3); w[0][index0] = Insert(w[0][index0], Extract(r, 0), 0); w[0][index1] = Insert(w[0][index1], Extract(r, 1), 1); w[0][index2] = Insert(w[0][index2], Extract(r, 2), 2); w[0][index3] = Insert(w[0][index3], Extract(r, 3), 3); } void ShaderCore::mov(Vector4f &dst, const Vector4f &src, bool integerDestination) { if(integerDestination) { dst.x = As
(RoundInt(src.x)); dst.y = As
(RoundInt(src.y)); dst.z = As
(RoundInt(src.z)); dst.w = As
(RoundInt(src.w)); } else { dst = src; } } void ShaderCore::neg(Vector4f &dst, const Vector4f &src) { dst.x = -src.x; dst.y = -src.y; dst.z = -src.z; dst.w = -src.w; } void ShaderCore::ineg(Vector4f &dst, const Vector4f &src) { dst.x = As
(-As
(src.x)); dst.y = As
(-As
(src.y)); dst.z = As
(-As
(src.z)); dst.w = As
(-As
(src.w)); } void ShaderCore::f2b(Vector4f &dst, const Vector4f &src) { dst.x = As
(CmpNEQ(src.x, Float4(0.0f))); dst.y = As
(CmpNEQ(src.y, Float4(0.0f))); dst.z = As
(CmpNEQ(src.z, Float4(0.0f))); dst.w = As
(CmpNEQ(src.w, Float4(0.0f))); } void ShaderCore::b2f(Vector4f &dst, const Vector4f &src) { dst.x = As
(As
(src.x) & As
(Float4(1.0f))); dst.y = As
(As
(src.y) & As
(Float4(1.0f))); dst.z = As
(As
(src.z) & As
(Float4(1.0f))); dst.w = As
(As
(src.w) & As
(Float4(1.0f))); } void ShaderCore::f2i(Vector4f &dst, const Vector4f &src) { dst.x = As
(Int4(src.x)); dst.y = As
(Int4(src.y)); dst.z = As
(Int4(src.z)); dst.w = As
(Int4(src.w)); } void ShaderCore::i2f(Vector4f &dst, const Vector4f &src) { dst.x = Float4(As
(src.x)); dst.y = Float4(As
(src.y)); dst.z = Float4(As
(src.z)); dst.w = Float4(As
(src.w)); } void ShaderCore::f2u(Vector4f &dst, const Vector4f &src) { dst.x = As
(UInt4(src.x)); dst.y = As
(UInt4(src.y)); dst.z = As
(UInt4(src.z)); dst.w = As
(UInt4(src.w)); } void ShaderCore::u2f(Vector4f &dst, const Vector4f &src) { dst.x = Float4(As
(src.x)); dst.y = Float4(As
(src.y)); dst.z = Float4(As
(src.z)); dst.w = Float4(As
(src.w)); } void ShaderCore::i2b(Vector4f &dst, const Vector4f &src) { dst.x = As
(CmpNEQ(As
(src.x), Int4(0))); dst.y = As
(CmpNEQ(As
(src.y), Int4(0))); dst.z = As
(CmpNEQ(As
(src.z), Int4(0))); dst.w = As
(CmpNEQ(As
(src.w), Int4(0))); } void ShaderCore::b2i(Vector4f &dst, const Vector4f &src) { dst.x = As
(As
(src.x) & Int4(1)); dst.y = As
(As
(src.y) & Int4(1)); dst.z = As
(As
(src.z) & Int4(1)); dst.w = As
(As
(src.w) & Int4(1)); } void ShaderCore::add(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { dst.x = src0.x + src1.x; dst.y = src0.y + src1.y; dst.z = src0.z + src1.z; dst.w = src0.w + src1.w; } void ShaderCore::iadd(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { dst.x = As
(As
(src0.x) + As
(src1.x)); dst.y = As
(As
(src0.y) + As
(src1.y)); dst.z = As
(As
(src0.z) + As
(src1.z)); dst.w = As
(As
(src0.w) + As
(src1.w)); } void ShaderCore::sub(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { dst.x = src0.x - src1.x; dst.y = src0.y - src1.y; dst.z = src0.z - src1.z; dst.w = src0.w - src1.w; } void ShaderCore::isub(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { dst.x = As
(As
(src0.x) - As
(src1.x)); dst.y = As
(As
(src0.y) - As
(src1.y)); dst.z = As
(As
(src0.z) - As
(src1.z)); dst.w = As
(As
(src0.w) - As
(src1.w)); } void ShaderCore::mad(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, const Vector4f &src2) { dst.x = src0.x * src1.x + src2.x; dst.y = src0.y * src1.y + src2.y; dst.z = src0.z * src1.z + src2.z; dst.w = src0.w * src1.w + src2.w; } void ShaderCore::imad(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, const Vector4f &src2) { dst.x = As
(As
(src0.x) * As
(src1.x) + As
(src2.x)); dst.y = As
(As
(src0.y) * As
(src1.y) + As
(src2.y)); dst.z = As
(As
(src0.z) * As
(src1.z) + As
(src2.z)); dst.w = As
(As
(src0.w) * As
(src1.w) + As
(src2.w)); } void ShaderCore::mul(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { dst.x = src0.x * src1.x; dst.y = src0.y * src1.y; dst.z = src0.z * src1.z; dst.w = src0.w * src1.w; } void ShaderCore::imul(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { dst.x = As
(As
(src0.x) * As
(src1.x)); dst.y = As
(As
(src0.y) * As
(src1.y)); dst.z = As
(As
(src0.z) * As
(src1.z)); dst.w = As
(As
(src0.w) * As
(src1.w)); } void ShaderCore::rcpx(Vector4f &dst, const Vector4f &src, bool pp) { Float4 rcp = reciprocal(src.x, pp, true, true); dst.x = rcp; dst.y = rcp; dst.z = rcp; dst.w = rcp; } void ShaderCore::div(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { dst.x = src0.x / src1.x; dst.y = src0.y / src1.y; dst.z = src0.z / src1.z; dst.w = src0.w / src1.w; } void ShaderCore::idiv(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { Float4 intMax(As
(Int4(INT_MAX))); cmp0i(dst.x, src1.x, intMax, src1.x); dst.x = As
(As
(src0.x) / As
(dst.x)); cmp0i(dst.y, src1.y, intMax, src1.y); dst.y = As
(As
(src0.y) / As
(dst.y)); cmp0i(dst.z, src1.z, intMax, src1.z); dst.z = As
(As
(src0.z) / As
(dst.z)); cmp0i(dst.w, src1.w, intMax, src1.w); dst.w = As
(As
(src0.w) / As
(dst.w)); } void ShaderCore::udiv(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { Float4 uintMax(As
(UInt4(UINT_MAX))); cmp0i(dst.x, src1.x, uintMax, src1.x); dst.x = As
(As
(src0.x) / As
(dst.x)); cmp0i(dst.y, src1.y, uintMax, src1.y); dst.y = As
(As
(src0.y) / As
(dst.y)); cmp0i(dst.z, src1.z, uintMax, src1.z); dst.z = As
(As
(src0.z) / As
(dst.z)); cmp0i(dst.w, src1.w, uintMax, src1.w); dst.w = As
(As
(src0.w) / As
(dst.w)); } void ShaderCore::mod(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { dst.x = modulo(src0.x, src1.x); dst.y = modulo(src0.y, src1.y); dst.z = modulo(src0.z, src1.z); dst.w = modulo(src0.w, src1.w); } void ShaderCore::imod(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { Float4 intMax(As
(Int4(INT_MAX))); cmp0i(dst.x, src1.x, intMax, src1.x); dst.x = As
(As
(src0.x) % As
(dst.x)); cmp0i(dst.y, src1.y, intMax, src1.y); dst.y = As
(As
(src0.y) % As
(dst.y)); cmp0i(dst.z, src1.z, intMax, src1.z); dst.z = As
(As
(src0.z) % As
(dst.z)); cmp0i(dst.w, src1.w, intMax, src1.w); dst.w = As
(As
(src0.w) % As
(dst.w)); } void ShaderCore::umod(Vector4f &dst, const Vector4f &src0, const Vector4f &src1) { Float4 uintMax(As
(UInt4(UINT_MAX))); cmp0i(dst.x, src1.x, uintMax, src1.x); dst.x = As
(As
(src0.x) % As
(dst.x)); cmp0i(dst.y, src1.y, uintMax, src1.y); dst.y = As
(As
(src0.y) % As
(dst.y)); cmp0i(dst.z, src1.z, uintMax, src1.z); dst.z = As