// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VkBuffer.hpp"
#include "VkBufferView.hpp"
#include "VkCommandBuffer.hpp"
#include "VkCommandPool.hpp"
#include "VkConfig.h"
#include "VkDebug.hpp"
#include "VkDescriptorPool.hpp"
#include "VkDescriptorSetLayout.hpp"
#include "VkDestroy.h"
#include "VkDevice.hpp"
#include "VkDeviceMemory.hpp"
#include "VkEvent.hpp"
#include "VkFence.hpp"
#include "VkFramebuffer.hpp"
#include "VkGetProcAddress.h"
#include "VkImage.hpp"
#include "VkImageView.hpp"
#include "VkInstance.hpp"
#include "VkPhysicalDevice.hpp"
#include "VkPipeline.hpp"
#include "VkPipelineCache.hpp"
#include "VkPipelineLayout.hpp"
#include "VkQueryPool.hpp"
#include "VkQueue.hpp"
#include "VkSampler.hpp"
#include "VkSemaphore.hpp"
#include "VkShaderModule.hpp"
#include "VkRenderPass.hpp"
#include <algorithm>
#include <cstring>
#include <string>
extern "C"
{
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(VkInstance instance, const char* pName)
{
TRACE("(VkInstance instance = 0x%X, const char* pName = 0x%X)", instance, pName);
return vk::GetInstanceProcAddr(instance, pName);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateInstance(const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkInstance* pInstance)
{
TRACE("(const VkInstanceCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkInstance* pInstance = 0x%X)",
pCreateInfo, pAllocator, pInstance);
if(pCreateInfo->enabledLayerCount)
{
UNIMPLEMENTED();
}
if(pCreateInfo->enabledExtensionCount)
{
UNIMPLEMENTED();
}
if(pCreateInfo->pNext)
{
switch(*reinterpret_cast<const VkStructureType*>(pCreateInfo->pNext))
{
case VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO:
// According to the Vulkan spec, section 2.7.2. Implicit Valid Usage:
// "The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and
// VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO are reserved for
// internal use by the loader, and do not have corresponding
// Vulkan structures in this Specification."
break;
default:
UNIMPLEMENTED();
}
}
*pInstance = VK_NULL_HANDLE;
VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
VkResult result = vk::DispatchablePhysicalDevice::Create(pAllocator, pCreateInfo, &physicalDevice);
if(result != VK_SUCCESS)
{
return result;
}
vk::Instance::CreateInfo info =
{
pCreateInfo,
physicalDevice
};
result = vk::DispatchableInstance::Create(pAllocator, &info, pInstance);
if(result != VK_SUCCESS)
{
vk::destroy(physicalDevice, pAllocator);
return result;
}
return result;
}
VKAPI_ATTR void VKAPI_CALL vkDestroyInstance(VkInstance instance, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkInstance instance = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", instance, pAllocator);
vk::destroy(instance, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumeratePhysicalDevices(VkInstance instance, uint32_t* pPhysicalDeviceCount, VkPhysicalDevice* pPhysicalDevices)
{
TRACE("(VkInstance instance = 0x%X, uint32_t* pPhysicalDeviceCount = 0x%X, VkPhysicalDevice* pPhysicalDevices = 0x%X)",
instance, pPhysicalDeviceCount, pPhysicalDevices);
if(!pPhysicalDevices)
{
*pPhysicalDeviceCount = vk::Cast(instance)->getPhysicalDeviceCount();
}
else
{
vk::Cast(instance)->getPhysicalDevices(*pPhysicalDeviceCount, pPhysicalDevices);
}
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceFeatures* pFeatures = 0x%X)",
physicalDevice, pFeatures);
*pFeatures = vk::Cast(physicalDevice)->getFeatures();
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties* pFormatProperties)
{
TRACE("GetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice = 0x%X, VkFormat format = %d, VkFormatProperties* pFormatProperties = 0x%X)",
physicalDevice, (int)format, pFormatProperties);
vk::Cast(physicalDevice)->getFormatProperties(format, pFormatProperties);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkImageTiling tiling, VkImageUsageFlags usage, VkImageCreateFlags flags, VkImageFormatProperties* pImageFormatProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkFormat format = %d, VkImageType type = %d, VkImageTiling tiling = %d, VkImageUsageFlags usage = %d, VkImageCreateFlags flags = %d, VkImageFormatProperties* pImageFormatProperties = 0x%X)",
physicalDevice, (int)format, (int)type, (int)tiling, usage, flags, pImageFormatProperties);
VkFormatProperties properties;
vk::Cast(physicalDevice)->getFormatProperties(format, &properties);
switch (tiling)
{
case VK_IMAGE_TILING_LINEAR:
if (properties.linearTilingFeatures == 0) return VK_ERROR_FORMAT_NOT_SUPPORTED;
break;
case VK_IMAGE_TILING_OPTIMAL:
if (properties.optimalTilingFeatures == 0) return VK_ERROR_FORMAT_NOT_SUPPORTED;
break;
default:
UNIMPLEMENTED();
}
vk::Cast(physicalDevice)->getImageFormatProperties(format, type, tiling, usage, flags, pImageFormatProperties);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties* pProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceProperties* pProperties = 0x%X)",
physicalDevice, pProperties);
*pProperties = vk::Cast(physicalDevice)->getProperties();
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice, uint32_t* pQueueFamilyPropertyCount, VkQueueFamilyProperties* pQueueFamilyProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, uint32_t* pQueueFamilyPropertyCount = 0x%X, VkQueueFamilyProperties* pQueueFamilyProperties = 0x%X))", physicalDevice, pQueueFamilyPropertyCount, pQueueFamilyProperties);
if(!pQueueFamilyProperties)
{
*pQueueFamilyPropertyCount = vk::Cast(physicalDevice)->getQueueFamilyPropertyCount();
}
else
{
vk::Cast(physicalDevice)->getQueueFamilyProperties(*pQueueFamilyPropertyCount, pQueueFamilyProperties);
}
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties* pMemoryProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceMemoryProperties* pMemoryProperties = 0x%X)", physicalDevice, pMemoryProperties);
*pMemoryProperties = vk::Cast(physicalDevice)->getMemoryProperties();
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance, const char* pName)
{
TRACE("(VkInstance instance = 0x%X, const char* pName = 0x%X)", instance, pName);
return vk::GetInstanceProcAddr(instance, pName);
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice device, const char* pName)
{
TRACE("(VkDevice device = 0x%X, const char* pName = 0x%X)", device, pName);
return vk::GetDeviceProcAddr(device, pName);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDevice* pDevice)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkDeviceCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkDevice* pDevice = 0x%X)",
physicalDevice, pCreateInfo, pAllocator, pDevice);
if(pCreateInfo->enabledLayerCount)
{
// "The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated and their values must be ignored by implementations."
UNIMPLEMENTED(); // TODO(b/119321052): UNIMPLEMENTED() should be used only for features that must still be implemented. Use a more informational macro here.
}
const VkBaseInStructure* extensionCreateInfo = reinterpret_cast<const VkBaseInStructure*>(pCreateInfo->pNext);
while(extensionCreateInfo)
{
switch(extensionCreateInfo->sType)
{
case VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO:
// According to the Vulkan spec, section 2.7.2. Implicit Valid Usage:
// "The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and
// VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO are reserved for
// internal use by the loader, and do not have corresponding
// Vulkan structures in this Specification."
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2:
{
ASSERT(!pCreateInfo->pEnabledFeatures); // "If the pNext chain includes a VkPhysicalDeviceFeatures2 structure, then pEnabledFeatures must be NULL"
const VkPhysicalDeviceFeatures2* physicalDeviceFeatures2 = reinterpret_cast<const VkPhysicalDeviceFeatures2*>(extensionCreateInfo);
if(!vk::Cast(physicalDevice)->hasFeatures(physicalDeviceFeatures2->features))
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES:
{
const VkPhysicalDeviceSamplerYcbcrConversionFeatures* samplerYcbcrConversionFeatures = reinterpret_cast<const VkPhysicalDeviceSamplerYcbcrConversionFeatures*>(extensionCreateInfo);
if(samplerYcbcrConversionFeatures->samplerYcbcrConversion == VK_TRUE)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES:
{
const VkPhysicalDevice16BitStorageFeatures* storage16BitFeatures = reinterpret_cast<const VkPhysicalDevice16BitStorageFeatures*>(extensionCreateInfo);
if(storage16BitFeatures->storageBuffer16BitAccess == VK_TRUE ||
storage16BitFeatures->uniformAndStorageBuffer16BitAccess == VK_TRUE ||
storage16BitFeatures->storagePushConstant16 == VK_TRUE ||
storage16BitFeatures->storageInputOutput16 == VK_TRUE)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES:
{
const VkPhysicalDeviceVariablePointerFeatures* variablePointerFeatures = reinterpret_cast<const VkPhysicalDeviceVariablePointerFeatures*>(extensionCreateInfo);
if(variablePointerFeatures->variablePointersStorageBuffer == VK_TRUE ||
variablePointerFeatures->variablePointers == VK_TRUE)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO:
{
const VkDeviceGroupDeviceCreateInfo* groupDeviceCreateInfo = reinterpret_cast<const VkDeviceGroupDeviceCreateInfo*>(extensionCreateInfo);
if((groupDeviceCreateInfo->physicalDeviceCount != 1) ||
(groupDeviceCreateInfo->pPhysicalDevices[0] != physicalDevice))
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
default:
// "the [driver] must skip over, without processing (other than reading the sType and pNext members) any structures in the chain with sType values not defined by [supported extenions]"
UNIMPLEMENTED(); // TODO(b/119321052): UNIMPLEMENTED() should be used only for features that must still be implemented. Use a more informational macro here.
break;
}
extensionCreateInfo = extensionCreateInfo->pNext;
}
ASSERT(pCreateInfo->queueCreateInfoCount > 0);
if(pCreateInfo->pEnabledFeatures)
{
if(!vk::Cast(physicalDevice)->hasFeatures(*(pCreateInfo->pEnabledFeatures)))
{
UNIMPLEMENTED();
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
uint32_t queueFamilyPropertyCount = vk::Cast(physicalDevice)->getQueueFamilyPropertyCount();
for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
{
const VkDeviceQueueCreateInfo& queueCreateInfo = pCreateInfo->pQueueCreateInfos[i];
if(queueCreateInfo.pNext || queueCreateInfo.flags)
{
UNIMPLEMENTED();
}
ASSERT(queueCreateInfo.queueFamilyIndex < queueFamilyPropertyCount);
(void)queueFamilyPropertyCount; // Silence unused variable warning
}
vk::Device::CreateInfo deviceCreateInfo =
{
pCreateInfo,
physicalDevice
};
return vk::DispatchableDevice::Create(pAllocator, &deviceCreateInfo, pDevice);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyDevice(VkDevice device, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, pAllocator);
vk::destroy(device, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceExtensionProperties(const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties)
{
TRACE("(const char* pLayerName = 0x%X, uint32_t* pPropertyCount = 0x%X, VkExtensionProperties* pProperties = 0x%X)",
pLayerName, pPropertyCount, pProperties);
static VkExtensionProperties extensionProperties[] =
{
{ VK_KHR_DEVICE_GROUP_CREATION_EXTENSION_NAME, VK_KHR_DEVICE_GROUP_CREATION_SPEC_VERSION },
{ VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_FENCE_CAPABILITIES_SPEC_VERSION },
{ VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_SPEC_VERSION },
{ VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_SPEC_VERSION },
{ VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_SPEC_VERSION },
};
uint32_t extensionPropertiesCount = sizeof(extensionProperties) / sizeof(extensionProperties[0]);
if(!pProperties)
{
*pPropertyCount = extensionPropertiesCount;
return VK_SUCCESS;
}
for(uint32_t i = 0; i < std::min(*pPropertyCount, extensionPropertiesCount); i++)
{
pProperties[i] = extensionProperties[i];
}
return (*pPropertyCount < extensionPropertiesCount) ? VK_INCOMPLETE : VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const char* pLayerName, uint32_t* pPropertyCount = 0x%X, VkExtensionProperties* pProperties = 0x%X)", physicalDevice, pPropertyCount, pProperties);
static VkExtensionProperties extensionProperties[] =
{
{ VK_KHR_16BIT_STORAGE_EXTENSION_NAME, VK_KHR_16BIT_STORAGE_SPEC_VERSION },
{ VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, VK_KHR_BIND_MEMORY_2_SPEC_VERSION },
{ VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, VK_KHR_DEDICATED_ALLOCATION_SPEC_VERSION },
{ VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME, VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_SPEC_VERSION },
{ VK_KHR_DEVICE_GROUP_EXTENSION_NAME, VK_KHR_DEVICE_GROUP_SPEC_VERSION },
{ VK_KHR_EXTERNAL_FENCE_EXTENSION_NAME, VK_KHR_EXTERNAL_FENCE_SPEC_VERSION },
{ VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_SPEC_VERSION },
{ VK_KHR_EXTERNAL_SEMAPHORE_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_SPEC_VERSION },
{ VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, VK_KHR_GET_MEMORY_REQUIREMENTS_2_SPEC_VERSION },
{ VK_KHR_MAINTENANCE1_EXTENSION_NAME, VK_KHR_MAINTENANCE1_SPEC_VERSION },
{ VK_KHR_MAINTENANCE2_EXTENSION_NAME, VK_KHR_MAINTENANCE2_SPEC_VERSION },
{ VK_KHR_MAINTENANCE3_EXTENSION_NAME, VK_KHR_MAINTENANCE3_SPEC_VERSION },
{ VK_KHR_MULTIVIEW_EXTENSION_NAME, VK_KHR_MULTIVIEW_SPEC_VERSION },
{ VK_KHR_RELAXED_BLOCK_LAYOUT_EXTENSION_NAME, VK_KHR_RELAXED_BLOCK_LAYOUT_SPEC_VERSION },
{ VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, VK_KHR_SAMPLER_YCBCR_CONVERSION_SPEC_VERSION },
{ VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME, VK_KHR_SHADER_DRAW_PARAMETERS_SPEC_VERSION },
{ VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_EXTENSION_NAME, VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_SPEC_VERSION },
{ VK_KHR_VARIABLE_POINTERS_EXTENSION_NAME, VK_KHR_VARIABLE_POINTERS_SPEC_VERSION },
};
uint32_t extensionPropertiesCount = sizeof(extensionProperties) / sizeof(extensionProperties[0]);
if(!pProperties)
{
*pPropertyCount = extensionPropertiesCount;
return VK_SUCCESS;
}
for(uint32_t i = 0; i < std::min(*pPropertyCount, extensionPropertiesCount); i++)
{
pProperties[i] = extensionProperties[i];
}
return (*pPropertyCount < extensionPropertiesCount) ? VK_INCOMPLETE : VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceLayerProperties(uint32_t* pPropertyCount, VkLayerProperties* pProperties)
{
TRACE("(uint32_t* pPropertyCount = 0x%X, VkLayerProperties* pProperties = 0x%X)", pPropertyCount, pProperties);
if(!pProperties)
{
*pPropertyCount = 0;
return VK_SUCCESS;
}
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t* pPropertyCount, VkLayerProperties* pProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, uint32_t* pPropertyCount = 0x%X, VkLayerProperties* pProperties = 0x%X)", physicalDevice, pPropertyCount, pProperties);
if(!pProperties)
{
*pPropertyCount = 0;
return VK_SUCCESS;
}
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkGetDeviceQueue(VkDevice device, uint32_t queueFamilyIndex, uint32_t queueIndex, VkQueue* pQueue)
{
TRACE("(VkDevice device = 0x%X, uint32_t queueFamilyIndex = %d, uint32_t queueIndex = %d, VkQueue* pQueue = 0x%X)",
device, queueFamilyIndex, queueIndex, pQueue);
*pQueue = vk::Cast(device)->getQueue(queueFamilyIndex, queueIndex);
}
VKAPI_ATTR VkResult VKAPI_CALL vkQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence fence)
{
TRACE("(VkQueue queue = 0x%X, uint32_t submitCount = %d, const VkSubmitInfo* pSubmits = 0x%X, VkFence fence = 0x%X)",
queue, submitCount, pSubmits, fence);
vk::Cast(queue)->submit(submitCount, pSubmits, fence);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkQueueWaitIdle(VkQueue queue)
{
TRACE("(VkQueue queue = 0x%X)", queue);
vk::Cast(queue)->waitIdle();
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkDeviceWaitIdle(VkDevice device)
{
TRACE("(VkDevice device = 0x%X)", device);
vk::Cast(device)->waitIdle();
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMemory)
{
TRACE("(VkDevice device = 0x%X, const VkMemoryAllocateInfo* pAllocateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkDeviceMemory* pMemory = 0x%X)",
device, pAllocateInfo, pAllocator, pMemory);
const VkBaseOutStructure* allocationInfo = reinterpret_cast<const VkBaseOutStructure*>(pAllocateInfo->pNext);
while(allocationInfo)
{
switch(allocationInfo->sType)
{
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
// This can safely be ignored, as the Vulkan spec mentions:
// "If the pNext chain includes a VkMemoryDedicatedAllocateInfo structure, then that structure
// includes a handle of the sole buffer or image resource that the memory *can* be bound to."
break;
default:
UNIMPLEMENTED();
break;
}
allocationInfo = allocationInfo->pNext;
}
VkResult result = vk::DeviceMemory::Create(pAllocator, pAllocateInfo, pMemory);
if(result != VK_SUCCESS)
{
return result;
}
// Make sure the memory allocation is done now so that OOM errors can be checked now
result = vk::Cast(*pMemory)->allocate();
if(result != VK_SUCCESS)
{
vk::destroy(*pMemory, pAllocator);
*pMemory = VK_NULL_HANDLE;
}
return result;
}
VKAPI_ATTR void VKAPI_CALL vkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkDeviceMemory memory = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, memory, pAllocator);
vk::destroy(memory, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void** ppData)
{
TRACE("(VkDevice device = 0x%X, VkDeviceMemory memory = 0x%X, VkDeviceSize offset = %d, VkDeviceSize size = %d, VkMemoryMapFlags flags = 0x%X, void** ppData = 0x%X)",
device, memory, offset, size, flags, ppData);
return vk::Cast(memory)->map(offset, size, ppData);
}
VKAPI_ATTR void VKAPI_CALL vkUnmapMemory(VkDevice device, VkDeviceMemory memory)
{
TRACE("(VkDevice device = 0x%X, VkDeviceMemory memory = 0x%X)", device, memory);
// Noop, memory will be released when the DeviceMemory object is released
}
VKAPI_ATTR VkResult VKAPI_CALL vkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges)
{
TRACE("(VkDevice device = 0x%X, uint32_t memoryRangeCount = %d, const VkMappedMemoryRange* pMemoryRanges = 0x%X)",
device, memoryRangeCount, pMemoryRanges);
// Noop, host and device memory are the same to SwiftShader
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges)
{
TRACE("(VkDevice device = 0x%X, uint32_t memoryRangeCount = %d, const VkMappedMemoryRange* pMemoryRanges = 0x%X)",
device, memoryRangeCount, pMemoryRanges);
// Noop, host and device memory are the same to SwiftShader
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkGetDeviceMemoryCommitment(VkDevice pDevice, VkDeviceMemory pMemory, VkDeviceSize* pCommittedMemoryInBytes)
{
TRACE("(VkDevice device = 0x%X, VkDeviceMemory memory = 0x%X, VkDeviceSize* pCommittedMemoryInBytes = 0x%X)",
pDevice, pMemory, pCommittedMemoryInBytes);
auto memory = vk::Cast(pMemory);
#if !defined(NDEBUG) || defined(DCHECK_ALWAYS_ON)
const auto& memoryProperties = vk::Cast(vk::Cast(pDevice)->getPhysicalDevice())->getMemoryProperties();
uint32_t typeIndex = memory->getMemoryTypeIndex();
ASSERT(typeIndex < memoryProperties.memoryTypeCount);
ASSERT(memoryProperties.memoryTypes[typeIndex].propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT);
#endif
*pCommittedMemoryInBytes = memory->getCommittedMemoryInBytes();
}
VKAPI_ATTR VkResult VKAPI_CALL vkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset)
{
TRACE("(VkDevice device = 0x%X, VkBuffer buffer = 0x%X, VkDeviceMemory memory = 0x%X, VkDeviceSize memoryOffset = %d)",
device, buffer, memory, memoryOffset);
vk::Cast(buffer)->bind(memory, memoryOffset);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory, VkDeviceSize memoryOffset)
{
TRACE("(VkDevice device = 0x%X, VkImage image = 0x%X, VkDeviceMemory memory = 0x%X, VkDeviceSize memoryOffset = %d)",
device, image, memory, memoryOffset);
vk::Cast(image)->bind(memory, memoryOffset);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer, VkMemoryRequirements* pMemoryRequirements)
{
TRACE("(VkDevice device = 0x%X, VkBuffer buffer = 0x%X, VkMemoryRequirements* pMemoryRequirements = 0x%X)",
device, buffer, pMemoryRequirements);
*pMemoryRequirements = vk::Cast(buffer)->getMemoryRequirements();
}
VKAPI_ATTR void VKAPI_CALL vkGetImageMemoryRequirements(VkDevice device, VkImage image, VkMemoryRequirements* pMemoryRequirements)
{
TRACE("(VkDevice device = 0x%X, VkImage image = 0x%X, VkMemoryRequirements* pMemoryRequirements = 0x%X)",
device, image, pMemoryRequirements);
*pMemoryRequirements = vk::Cast(image)->getMemoryRequirements();
}
VKAPI_ATTR void VKAPI_CALL vkGetImageSparseMemoryRequirements(VkDevice device, VkImage image, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
{
TRACE("(VkDevice device, VkImage image, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements* pSparseMemoryRequirements)",
device, image, pSparseMemoryRequirementCount, pSparseMemoryRequirements);
// The 'sparseBinding' feature is not supported, so images can not be created with the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag.
// "If the image was not created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT then pSparseMemoryRequirementCount will be set to zero and pSparseMemoryRequirements will not be written to."
*pSparseMemoryRequirementCount = 0;
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceSparseImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkSampleCountFlagBits samples, VkImageUsageFlags usage, VkImageTiling tiling, uint32_t* pPropertyCount, VkSparseImageFormatProperties* pProperties)
{
TRACE("()");
UNIMPLEMENTED();
}
VKAPI_ATTR VkResult VKAPI_CALL vkQueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo, VkFence fence)
{
TRACE("()");
UNIMPLEMENTED();
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateFence(VkDevice device, const VkFenceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFence* pFence)
{
TRACE("(VkDevice device = 0x%X, const VkFenceCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkFence* pFence = 0x%X)",
device, pCreateInfo, pAllocator, pFence);
if(pCreateInfo->pNext)
{
UNIMPLEMENTED();
}
return vk::Fence::Create(pAllocator, pCreateInfo, pFence);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyFence(VkDevice device, VkFence fence, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkFence fence = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, fence, pAllocator);
vk::destroy(fence, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkResetFences(VkDevice device, uint32_t fenceCount, const VkFence* pFences)
{
TRACE("(VkDevice device = 0x%X, uint32_t fenceCount = %d, const VkFence* pFences = 0x%X)",
device, fenceCount, pFences);
for(uint32_t i = 0; i < fenceCount; i++)
{
vk::Cast(pFences[i])->reset();
}
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetFenceStatus(VkDevice device, VkFence fence)
{
TRACE("(VkDevice device = 0x%X, VkFence fence = 0x%X)", device, fence);
return vk::Cast(fence)->getStatus();
}
VKAPI_ATTR VkResult VKAPI_CALL vkWaitForFences(VkDevice device, uint32_t fenceCount, const VkFence* pFences, VkBool32 waitAll, uint64_t timeout)
{
TRACE("(VkDevice device = 0x%X, uint32_t fenceCount = %d, const VkFence* pFences = 0x%X, VkBool32 waitAll = %d, uint64_t timeout = %d)",
device, fenceCount, pFences, waitAll, timeout);
vk::Cast(device)->waitForFences(fenceCount, pFences, waitAll, timeout);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateSemaphore(VkDevice device, const VkSemaphoreCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSemaphore* pSemaphore)
{
TRACE("(VkDevice device = 0x%X, const VkSemaphoreCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkSemaphore* pSemaphore = 0x%X)",
device, pCreateInfo, pAllocator, pSemaphore);
if(pCreateInfo->pNext || pCreateInfo->flags)
{
UNIMPLEMENTED();
}
return vk::Semaphore::Create(pAllocator, pCreateInfo, pSemaphore);
}
VKAPI_ATTR void VKAPI_CALL vkDestroySemaphore(VkDevice device, VkSemaphore semaphore, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkSemaphore semaphore = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, semaphore, pAllocator);
vk::destroy(semaphore, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateEvent(VkDevice device, const VkEventCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkEvent* pEvent)
{
TRACE("(VkDevice device = 0x%X, const VkEventCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkEvent* pEvent = 0x%X)",
device, pCreateInfo, pAllocator, pEvent);
if(pCreateInfo->pNext || pCreateInfo->flags)
{
UNIMPLEMENTED();
}
return vk::Event::Create(pAllocator, pCreateInfo, pEvent);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyEvent(VkDevice device, VkEvent event, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkEvent event = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, event, pAllocator);
vk::destroy(event, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetEventStatus(VkDevice device, VkEvent event)
{
TRACE("(VkDevice device = 0x%X, VkEvent event = 0x%X)", device, event);
return vk::Cast(event)->getStatus();
}
VKAPI_ATTR VkResult VKAPI_CALL vkSetEvent(VkDevice device, VkEvent event)
{
TRACE("(VkDevice device = 0x%X, VkEvent event = 0x%X)", device, event);
vk::Cast(event)->signal();
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkResetEvent(VkDevice device, VkEvent event)
{
TRACE("(VkDevice device = 0x%X, VkEvent event = 0x%X)", device, event);
vk::Cast(event)->reset();
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateQueryPool(VkDevice device, const VkQueryPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkQueryPool* pQueryPool)
{
TRACE("(VkDevice device = 0x%X, const VkQueryPoolCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkQueryPool* pQueryPool = 0x%X)",
device, pCreateInfo, pAllocator, pQueryPool);
if(pCreateInfo->pNext || pCreateInfo->flags)
{
UNIMPLEMENTED();
}
return vk::QueryPool::Create(pAllocator, pCreateInfo, pQueryPool);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyQueryPool(VkDevice device, VkQueryPool queryPool, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkQueryPool queryPool = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, queryPool, pAllocator);
vk::destroy(queryPool, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetQueryPoolResults(VkDevice device, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, size_t dataSize, void* pData, VkDeviceSize stride, VkQueryResultFlags flags)
{
TRACE("(VkDevice device = 0x%X, VkQueryPool queryPool = 0x%X, uint32_t firstQuery = %d, uint32_t queryCount = %d, size_t dataSize = %d, void* pData = 0x%X, VkDeviceSize stride = 0x%X, VkQueryResultFlags flags = %d)",
device, queryPool, firstQuery, queryCount, dataSize, pData, stride, flags);
vk::Cast(queryPool)->getResults(firstQuery, queryCount, dataSize, pData, stride, flags);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateBuffer(VkDevice device, const VkBufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer)
{
TRACE("(VkDevice device = 0x%X, const VkBufferCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkBuffer* pBuffer = 0x%X)",
device, pCreateInfo, pAllocator, pBuffer);
if(pCreateInfo->pNext)
{
UNIMPLEMENTED();
}
return vk::Buffer::Create(pAllocator, pCreateInfo, pBuffer);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkBuffer buffer = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, buffer, pAllocator);
vk::destroy(buffer, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateBufferView(VkDevice device, const VkBufferViewCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBufferView* pView)
{
TRACE("(VkDevice device, const VkBufferViewCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBufferView* pView)",
device, pCreateInfo, pAllocator, pView);
if(pCreateInfo->pNext || pCreateInfo->flags)
{
UNIMPLEMENTED();
}
return vk::BufferView::Create(pAllocator, pCreateInfo, pView);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyBufferView(VkDevice device, VkBufferView bufferView, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device, VkBufferView bufferView, const VkAllocationCallbacks* pAllocator)",
device, bufferView, pAllocator);
vk::destroy(bufferView, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateImage(VkDevice device, const VkImageCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkImage* pImage)
{
TRACE("(VkDevice device = 0x%X, const VkImageCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkImage* pImage = 0x%X)",
device, pCreateInfo, pAllocator, pImage);
if(pCreateInfo->pNext)
{
UNIMPLEMENTED();
}
return vk::Image::Create(pAllocator, pCreateInfo, pImage);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkImage image = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, image, pAllocator);
vk::destroy(image, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL vkGetImageSubresourceLayout(VkDevice device, VkImage image, const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout)
{
TRACE("(VkDevice device, VkImage image, const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout)",
device, image, pSubresource, pLayout);
vk::Cast(image)->getSubresourceLayout(pSubresource, pLayout);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateImageView(VkDevice device, const VkImageViewCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkImageView* pView)
{
TRACE("(VkDevice device = 0x%X, const VkImageViewCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkImageView* pView = 0x%X)",
device, pCreateInfo, pAllocator, pView);
if(pCreateInfo->pNext || pCreateInfo->flags)
{
UNIMPLEMENTED();
}
return vk::ImageView::Create(pAllocator, pCreateInfo, pView);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyImageView(VkDevice device, VkImageView imageView, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkImageView imageView = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, imageView, pAllocator);
vk::destroy(imageView, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule)
{
TRACE("(VkDevice device = 0x%X, const VkShaderModuleCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkShaderModule* pShaderModule = 0x%X)",
device, pCreateInfo, pAllocator, pShaderModule);
if(pCreateInfo->pNext || pCreateInfo->flags)
{
UNIMPLEMENTED();
}
return vk::ShaderModule::Create(pAllocator, pCreateInfo, pShaderModule);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyShaderModule(VkDevice device, VkShaderModule shaderModule, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkShaderModule shaderModule = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, shaderModule, pAllocator);
vk::destroy(shaderModule, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreatePipelineCache(VkDevice device, const VkPipelineCacheCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipelineCache* pPipelineCache)
{
TRACE("(VkDevice device, const VkPipelineCacheCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipelineCache* pPipelineCache)",
device, pCreateInfo, pAllocator, pPipelineCache);
if(pCreateInfo->pNext || pCreateInfo->flags)
{
UNIMPLEMENTED();
}
return vk::PipelineCache::Create(pAllocator, pCreateInfo, pPipelineCache);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyPipelineCache(VkDevice device, VkPipelineCache pipelineCache, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device, VkPipelineCache pipelineCache, const VkAllocationCallbacks* pAllocator)",
device, pipelineCache, pAllocator);
vk::destroy(pipelineCache, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetPipelineCacheData(VkDevice device, VkPipelineCache pipelineCache, size_t* pDataSize, void* pData)
{
TRACE("()");
UNIMPLEMENTED();
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkMergePipelineCaches(VkDevice device, VkPipelineCache dstCache, uint32_t srcCacheCount, const VkPipelineCache* pSrcCaches)
{
TRACE("()");
UNIMPLEMENTED();
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines)
{
TRACE("(VkDevice device = 0x%X, VkPipelineCache pipelineCache = 0x%X, uint32_t createInfoCount = %d, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator = 0x%X, VkPipeline* pPipelines = 0x%X)",
device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
// TODO (b/123588002): Optimize based on pipelineCache.
VkResult errorResult = VK_SUCCESS;
for(uint32_t i = 0; i < createInfoCount; i++)
{
VkResult result = vk::GraphicsPipeline::Create(pAllocator, &pCreateInfos[i], &pPipelines[i]);
if(result != VK_SUCCESS)
{
// According to the Vulkan spec, section 9.4. Multiple Pipeline Creation
// "When an application attempts to create many pipelines in a single command,
// it is possible that some subset may fail creation. In that case, the
// corresponding entries in the pPipelines output array will be filled with
// VK_NULL_HANDLE values. If any pipeline fails creation (for example, due to
// out of memory errors), the vkCreate*Pipelines commands will return an
// error code. The implementation will attempt to create all pipelines, and
// only return VK_NULL_HANDLE values for those that actually failed."
pPipelines[i] = VK_NULL_HANDLE;
errorResult = result;
}
else
{
static_cast<vk::GraphicsPipeline*>(vk::Cast(pPipelines[i]))->compileShaders(pAllocator, &pCreateInfos[i]);
}
}
return errorResult;
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkComputePipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines)
{
TRACE("(VkDevice device = 0x%X, VkPipelineCache pipelineCache = 0x%X, uint32_t createInfoCount = %d, const VkComputePipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator = 0x%X, VkPipeline* pPipelines = 0x%X)",
device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
// TODO (b/123588002): Optimize based on pipelineCache.
VkResult errorResult = VK_SUCCESS;
for(uint32_t i = 0; i < createInfoCount; i++)
{
VkResult result = vk::ComputePipeline::Create(pAllocator, &pCreateInfos[i], &pPipelines[i]);
if(result != VK_SUCCESS)
{
// According to the Vulkan spec, section 9.4. Multiple Pipeline Creation
// "When an application attempts to create many pipelines in a single command,
// it is possible that some subset may fail creation. In that case, the
// corresponding entries in the pPipelines output array will be filled with
// VK_NULL_HANDLE values. If any pipeline fails creation (for example, due to
// out of memory errors), the vkCreate*Pipelines commands will return an
// error code. The implementation will attempt to create all pipelines, and
// only return VK_NULL_HANDLE values for those that actually failed."
pPipelines[i] = VK_NULL_HANDLE;
errorResult = result;
}
}
return errorResult;
}
VKAPI_ATTR void VKAPI_CALL vkDestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkPipeline pipeline = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, pipeline, pAllocator);
vk::destroy(pipeline, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipelineLayout* pPipelineLayout)
{
TRACE("(VkDevice device = 0x%X, const VkPipelineLayoutCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkPipelineLayout* pPipelineLayout = 0x%X)",
device, pCreateInfo, pAllocator, pPipelineLayout);
if(pCreateInfo->pNext || pCreateInfo->flags)
{
UNIMPLEMENTED();
}
return vk::PipelineLayout::Create(pAllocator, pCreateInfo, pPipelineLayout);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyPipelineLayout(VkDevice device, VkPipelineLayout pipelineLayout, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkPipelineLayout pipelineLayout = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, pipelineLayout, pAllocator);
vk::destroy(pipelineLayout, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateSampler(VkDevice device, const VkSamplerCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSampler* pSampler)
{
TRACE("(VkDevice device = 0x%X, const VkSamplerCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkSampler* pSampler = 0x%X)",
device, pCreateInfo, pAllocator, pSampler);
if(pCreateInfo->pNext || pCreateInfo->flags)
{
UNIMPLEMENTED();
}
return vk::Sampler::Create(pAllocator, pCreateInfo, pSampler);
}
VKAPI_ATTR void VKAPI_CALL vkDestroySampler(VkDevice device, VkSampler sampler, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkSampler sampler = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, sampler, pAllocator);
vk::destroy(sampler, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateDescriptorSetLayout(VkDevice device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorSetLayout* pSetLayout)
{
TRACE("(VkDevice device = 0x%X, const VkDescriptorSetLayoutCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkDescriptorSetLayout* pSetLayout = 0x%X)",
device, pCreateInfo, pAllocator, pSetLayout);
if(pCreateInfo->pNext)
{
UNIMPLEMENTED();
}
return vk::DescriptorSetLayout::Create(pAllocator, pCreateInfo, pSetLayout);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyDescriptorSetLayout(VkDevice device, VkDescriptorSetLayout descriptorSetLayout, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkDescriptorSetLayout descriptorSetLayout = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, descriptorSetLayout, pAllocator);
vk::destroy(descriptorSetLayout, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateDescriptorPool(VkDevice device, const VkDescriptorPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorPool* pDescriptorPool)
{
TRACE("(VkDevice device = 0x%X, const VkDescriptorPoolCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkDescriptorPool* pDescriptorPool = 0x%X)",
device, pCreateInfo, pAllocator, pDescriptorPool);
if(pCreateInfo->pNext)
{
UNIMPLEMENTED();
}
return vk::DescriptorPool::Create(pAllocator, pCreateInfo, pDescriptorPool);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkDescriptorPool descriptorPool = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, descriptorPool, pAllocator);
vk::destroy(descriptorPool, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkResetDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags)
{
TRACE("(VkDevice device = 0x%X, VkDescriptorPool descriptorPool = 0x%X, VkDescriptorPoolResetFlags flags = 0x%X)",
device, descriptorPool, flags);
if(flags)
{
UNIMPLEMENTED();
}
return vk::Cast(descriptorPool)->reset();
}
VKAPI_ATTR VkResult VKAPI_CALL vkAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo* pAllocateInfo, VkDescriptorSet* pDescriptorSets)
{
TRACE("(VkDevice device = 0x%X, const VkDescriptorSetAllocateInfo* pAllocateInfo = 0x%X, VkDescriptorSet* pDescriptorSets = 0x%X)",
device, pAllocateInfo, pDescriptorSets);
if(pAllocateInfo->pNext)
{
UNIMPLEMENTED();
}
return vk::Cast(pAllocateInfo->descriptorPool)->allocateSets(
pAllocateInfo->descriptorSetCount, pAllocateInfo->pSetLayouts, pDescriptorSets);
}
VKAPI_ATTR VkResult VKAPI_CALL vkFreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t descriptorSetCount, const VkDescriptorSet* pDescriptorSets)
{
TRACE("(VkDevice device = 0x%X, VkDescriptorPool descriptorPool = 0x%X, uint32_t descriptorSetCount = %d, const VkDescriptorSet* pDescriptorSets = 0x%X)",
device, descriptorPool, descriptorSetCount, pDescriptorSets);
vk::Cast(descriptorPool)->freeSets(descriptorSetCount, pDescriptorSets);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkUpdateDescriptorSets(VkDevice device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet* pDescriptorCopies)
{
TRACE("()");
UNIMPLEMENTED();
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateFramebuffer(VkDevice device, const VkFramebufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFramebuffer* pFramebuffer)
{
TRACE("(VkDevice device = 0x%X, const VkFramebufferCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkFramebuffer* pFramebuffer = 0x%X)",
device, pCreateInfo, pAllocator, pFramebuffer);
if(pCreateInfo->pNext || pCreateInfo->flags)
{
UNIMPLEMENTED();
}
return vk::Framebuffer::Create(pAllocator, pCreateInfo, pFramebuffer);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyFramebuffer(VkDevice device, VkFramebuffer framebuffer, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkFramebuffer framebuffer = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)");
vk::destroy(framebuffer, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateRenderPass(VkDevice device, const VkRenderPassCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkRenderPass* pRenderPass)
{
TRACE("(VkDevice device = 0x%X, const VkRenderPassCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkRenderPass* pRenderPass = 0x%X)",
device, pCreateInfo, pAllocator, pRenderPass);
if(pCreateInfo->pNext || pCreateInfo->flags)
{
UNIMPLEMENTED();
}
return vk::RenderPass::Create(pAllocator, pCreateInfo, pRenderPass);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyRenderPass(VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkRenderPass renderPass = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, renderPass, pAllocator);
vk::destroy(renderPass, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL vkGetRenderAreaGranularity(VkDevice device, VkRenderPass renderPass, VkExtent2D* pGranularity)
{
TRACE("()");
UNIMPLEMENTED();
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateCommandPool(VkDevice device, const VkCommandPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkCommandPool* pCommandPool)
{
TRACE("(VkDevice device = 0x%X, const VkCommandPoolCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkCommandPool* pCommandPool = 0x%X)",
device, pCreateInfo, pAllocator, pCommandPool);
if(pCreateInfo->pNext)
{
UNIMPLEMENTED();
}
return vk::CommandPool::Create(pAllocator, pCreateInfo, pCommandPool);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyCommandPool(VkDevice device, VkCommandPool commandPool, const VkAllocationCallbacks* pAllocator)
{
TRACE("(VkDevice device = 0x%X, VkCommandPool commandPool = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)",
device, commandPool, pAllocator);
vk::destroy(commandPool, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkResetCommandPool(VkDevice device, VkCommandPool commandPool, VkCommandPoolResetFlags flags)
{
TRACE("(VkDevice device = 0x%X, VkCommandPool commandPool = 0x%X, VkCommandPoolResetFlags flags = %d )",
device, commandPool, flags);
return vk::Cast(commandPool)->reset(flags);
}
VKAPI_ATTR VkResult VKAPI_CALL vkAllocateCommandBuffers(VkDevice device, const VkCommandBufferAllocateInfo* pAllocateInfo, VkCommandBuffer* pCommandBuffers)
{
TRACE("(VkDevice device = 0x%X, const VkCommandBufferAllocateInfo* pAllocateInfo = 0x%X, VkCommandBuffer* pCommandBuffers = 0x%X)",
device, pAllocateInfo, pCommandBuffers);
if(pAllocateInfo->pNext)
{
UNIMPLEMENTED();
}
return vk::Cast(pAllocateInfo->commandPool)->allocateCommandBuffers(
pAllocateInfo->level, pAllocateInfo->commandBufferCount, pCommandBuffers);
}
VKAPI_ATTR void VKAPI_CALL vkFreeCommandBuffers(VkDevice device, VkCommandPool commandPool, uint32_t commandBufferCount, const VkCommandBuffer* pCommandBuffers)
{
TRACE("(VkDevice device = 0x%X, VkCommandPool commandPool = 0x%X, uint32_t commandBufferCount = %d, const VkCommandBuffer* pCommandBuffers = 0x%X)",
device, commandPool, commandBufferCount, pCommandBuffers);
vk::Cast(commandPool)->freeCommandBuffers(commandBufferCount, pCommandBuffers);
}
VKAPI_ATTR VkResult VKAPI_CALL vkBeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo* pBeginInfo)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, const VkCommandBufferBeginInfo* pBeginInfo = 0x%X)",
commandBuffer, pBeginInfo);
if(pBeginInfo->pNext)
{
UNIMPLEMENTED();
}
return vk::Cast(commandBuffer)->begin(pBeginInfo->flags, pBeginInfo->pInheritanceInfo);
}
VKAPI_ATTR VkResult VKAPI_CALL vkEndCommandBuffer(VkCommandBuffer commandBuffer)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X)", commandBuffer);
return vk::Cast(commandBuffer)->end();
}
VKAPI_ATTR VkResult VKAPI_CALL vkResetCommandBuffer(VkCommandBuffer commandBuffer, VkCommandBufferResetFlags flags)
{
TRACE("VkCommandBuffer commandBuffer = 0x%X, VkCommandBufferResetFlags flags = %d", commandBuffer, flags);
return vk::Cast(commandBuffer)->reset(flags);
}
VKAPI_ATTR void VKAPI_CALL vkCmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkPipelineBindPoint pipelineBindPoint = %d, VkPipeline pipeline = 0x%X)",
commandBuffer, pipelineBindPoint, pipeline);
vk::Cast(commandBuffer)->bindPipeline(pipelineBindPoint, pipeline);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport* pViewports)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t firstViewport = %d, uint32_t viewportCount = %d, const VkViewport* pViewports = 0x%X)",
commandBuffer, firstViewport, viewportCount, pViewports);
vk::Cast(commandBuffer)->setViewport(firstViewport, viewportCount, pViewports);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount, const VkRect2D* pScissors)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t firstScissor = %d, uint32_t scissorCount = %d, const VkRect2D* pScissors = 0x%X)",
commandBuffer, firstScissor, scissorCount, pScissors);
vk::Cast(commandBuffer)->setScissor(firstScissor, scissorCount, pScissors);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, float lineWidth = %f)", commandBuffer, lineWidth);
vk::Cast(commandBuffer)->setLineWidth(lineWidth);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetDepthBias(VkCommandBuffer commandBuffer, float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, float depthBiasConstantFactor = %f, float depthBiasClamp = %f, float depthBiasSlopeFactor = %f)",
commandBuffer, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
vk::Cast(commandBuffer)->setDepthBias(depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4])
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, const float blendConstants[4] = {%f, %f, %f, %f})",
commandBuffer, blendConstants[0], blendConstants[1], blendConstants[2], blendConstants[3]);
vk::Cast(commandBuffer)->setBlendConstants(blendConstants);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, float minDepthBounds = %f, float maxDepthBounds = %f)",
commandBuffer, minDepthBounds, maxDepthBounds);
vk::Cast(commandBuffer)->setDepthBounds(minDepthBounds, maxDepthBounds);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilCompareMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t compareMask)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkStencilFaceFlags faceMask = %d, uint32_t compareMask = %d)",
commandBuffer, faceMask, compareMask);
vk::Cast(commandBuffer)->setStencilCompareMask(faceMask, compareMask);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilWriteMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t writeMask)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkStencilFaceFlags faceMask = %d, uint32_t writeMask = %d)",
commandBuffer, faceMask, writeMask);
vk::Cast(commandBuffer)->setStencilWriteMask(faceMask, writeMask);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilReference(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t reference)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkStencilFaceFlags faceMask = %d, uint32_t reference = %d)",
commandBuffer, faceMask, reference);
vk::Cast(commandBuffer)->setStencilReference(faceMask, reference);
}
VKAPI_ATTR void VKAPI_CALL vkCmdBindDescriptorSets(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout layout, uint32_t firstSet, uint32_t descriptorSetCount, const VkDescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkPipelineBindPoint pipelineBindPoint = %d, VkPipelineLayout layout = 0x%X, uint32_t firstSet = %d, uint32_t descriptorSetCount = %d, const VkDescriptorSet* pDescriptorSets = 0x%X, uint32_t dynamicOffsetCount = %d, const uint32_t* pDynamicOffsets = 0x%X)",
commandBuffer, pipelineBindPoint, layout, firstSet, descriptorSetCount, pDescriptorSets, dynamicOffsetCount, pDynamicOffsets);
vk::Cast(commandBuffer)->bindDescriptorSets(pipelineBindPoint, layout, firstSet, descriptorSetCount, pDescriptorSets, dynamicOffsetCount, pDynamicOffsets);
}
VKAPI_ATTR void VKAPI_CALL vkCmdBindIndexBuffer(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkIndexType indexType)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer buffer = 0x%X, VkDeviceSize offset = %d, VkIndexType indexType = %d)",
commandBuffer, buffer, offset, indexType);
vk::Cast(commandBuffer)->bindIndexBuffer(buffer, offset, indexType);
}
VKAPI_ATTR void VKAPI_CALL vkCmdBindVertexBuffers(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount, const VkBuffer* pBuffers, const VkDeviceSize* pOffsets)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t firstBinding = %d, uint32_t bindingCount = %d, const VkBuffer* pBuffers = 0x%X, const VkDeviceSize* pOffsets = 0x%X)",
commandBuffer, firstBinding, bindingCount, pBuffers, pOffsets);
vk::Cast(commandBuffer)->bindVertexBuffers(firstBinding, bindingCount, pBuffers, pOffsets);
}
VKAPI_ATTR void VKAPI_CALL vkCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t vertexCount = %d, uint32_t instanceCount = %d, uint32_t firstVertex = %d, uint32_t firstInstance = %d)",
commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
vk::Cast(commandBuffer)->draw(vertexCount, instanceCount, firstVertex, firstInstance);
}
VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t indexCount = %d, uint32_t instanceCount = %d, uint32_t firstIndex = %d, int32_t vertexOffset = %d, uint32_t firstInstance = %d)",
commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
vk::Cast(commandBuffer)->drawIndexed(indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
}
VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer buffer = 0x%X, VkDeviceSize offset = %d, uint32_t drawCount = %d, uint32_t stride = %d)",
commandBuffer, buffer, offset, drawCount, stride);
vk::Cast(commandBuffer)->drawIndirect(buffer, offset, drawCount, stride);
}
VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer buffer = 0x%X, VkDeviceSize offset = %d, uint32_t drawCount = %d, uint32_t stride = %d)",
commandBuffer, buffer, offset, drawCount, stride);
vk::Cast(commandBuffer)->drawIndexedIndirect(buffer, offset, drawCount, stride);
}
VKAPI_ATTR void VKAPI_CALL vkCmdDispatch(VkCommandBuffer commandBuffer, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t groupCountX = %d, uint32_t groupCountY = %d, uint32_t groupCountZ = %d)",
commandBuffer, groupCountX, groupCountY, groupCountZ);
vk::Cast(commandBuffer)->dispatch(groupCountX, groupCountY, groupCountZ);
}
VKAPI_ATTR void VKAPI_CALL vkCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer buffer = 0x%X, VkDeviceSize offset = %d)",
commandBuffer, buffer, offset);
vk::Cast(commandBuffer)->dispatchIndirect(buffer, offset);
}
VKAPI_ATTR void VKAPI_CALL vkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer, uint32_t regionCount, const VkBufferCopy* pRegions)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer srcBuffer = 0x%X, VkBuffer dstBuffer = 0x%X, uint32_t regionCount = %d, const VkBufferCopy* pRegions = 0x%X)",
commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions);
vk::Cast(commandBuffer)->copyBuffer(srcBuffer, dstBuffer, regionCount, pRegions);
}
VKAPI_ATTR void VKAPI_CALL vkCmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageCopy* pRegions)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage srcImage = 0x%X, VkImageLayout srcImageLayout = %d, VkImage dstImage = 0x%X, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkImageCopy* pRegions = 0x%X)",
commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
vk::Cast(commandBuffer)->copyImage(srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
}
VKAPI_ATTR void VKAPI_CALL vkCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageBlit* pRegions, VkFilter filter)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage srcImage = 0x%X, VkImageLayout srcImageLayout = %d, VkImage dstImage = 0x%X, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkImageBlit* pRegions = 0x%X, VkFilter filter = %d)",
commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions, filter);
vk::Cast(commandBuffer)->blitImage(srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions, filter);
}
VKAPI_ATTR void VKAPI_CALL vkCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkBufferImageCopy* pRegions)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer srcBuffer = 0x%X, VkImage dstImage = 0x%X, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkBufferImageCopy* pRegions = 0x%X)",
commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions);
vk::Cast(commandBuffer)->copyBufferToImage(srcBuffer, dstImage, dstImageLayout, regionCount, pRegions);
}
VKAPI_ATTR void VKAPI_CALL vkCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkBuffer dstBuffer, uint32_t regionCount, const VkBufferImageCopy* pRegions)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage srcImage = 0x%X, VkImageLayout srcImageLayout = %d, VkBuffer dstBuffer = 0x%X, uint32_t regionCount = %d, const VkBufferImageCopy* pRegions = 0x%X)",
commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions);
vk::Cast(commandBuffer)->copyImageToBuffer(srcImage, srcImageLayout, dstBuffer, regionCount, pRegions);
}
VKAPI_ATTR void VKAPI_CALL vkCmdUpdateBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize dataSize, const void* pData)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer dstBuffer = 0x%X, VkDeviceSize dstOffset = %d, VkDeviceSize dataSize = %d, const void* pData = 0x%X)",
commandBuffer, dstBuffer, dstOffset, dataSize, pData);
vk::Cast(commandBuffer)->updateBuffer(dstBuffer, dstOffset, dataSize, pData);
}
VKAPI_ATTR void VKAPI_CALL vkCmdFillBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize size, uint32_t data)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer dstBuffer = 0x%X, VkDeviceSize dstOffset = %d, VkDeviceSize size = %d, uint32_t data = %d)",
commandBuffer, dstBuffer, dstOffset, size, data);
vk::Cast(commandBuffer)->fillBuffer(dstBuffer, dstOffset, size, data);
}
VKAPI_ATTR void VKAPI_CALL vkCmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout, const VkClearColorValue* pColor, uint32_t rangeCount, const VkImageSubresourceRange* pRanges)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage image = 0x%X, VkImageLayout imageLayout = %d, const VkClearColorValue* pColor = 0x%X, uint32_t rangeCount = %d, const VkImageSubresourceRange* pRanges = 0x%X)",
commandBuffer, image, imageLayout, pColor, rangeCount, pRanges);
vk::Cast(commandBuffer)->clearColorImage(image, imageLayout, pColor, rangeCount, pRanges);
}
VKAPI_ATTR void VKAPI_CALL vkCmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout, const VkClearDepthStencilValue* pDepthStencil, uint32_t rangeCount, const VkImageSubresourceRange* pRanges)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage image = 0x%X, VkImageLayout imageLayout = %d, const VkClearDepthStencilValue* pDepthStencil = 0x%X, uint32_t rangeCount = %d, const VkImageSubresourceRange* pRanges = 0x%X)",
commandBuffer, image, imageLayout, pDepthStencil, rangeCount, pRanges);
vk::Cast(commandBuffer)->clearDepthStencilImage(image, imageLayout, pDepthStencil, rangeCount, pRanges);
}
VKAPI_ATTR void VKAPI_CALL vkCmdClearAttachments(VkCommandBuffer commandBuffer, uint32_t attachmentCount, const VkClearAttachment* pAttachments, uint32_t rectCount, const VkClearRect* pRects)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t attachmentCount = %d, const VkClearAttachment* pAttachments = 0x%X, uint32_t rectCount = %d, const VkClearRect* pRects = 0x%X)",
commandBuffer, attachmentCount, pAttachments, rectCount, pRects);
vk::Cast(commandBuffer)->clearAttachments(attachmentCount, pAttachments, rectCount, pRects);
}
VKAPI_ATTR void VKAPI_CALL vkCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageResolve* pRegions)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage srcImage = 0x%X, VkImageLayout srcImageLayout = %d, VkImage dstImage = 0x%X, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkImageResolve* pRegions = 0x%X)",
commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
vk::Cast(commandBuffer)->resolveImage(srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkEvent event = 0x%X, VkPipelineStageFlags stageMask = %d)",
commandBuffer, event, stageMask);
vk::Cast(commandBuffer)->setEvent(event, stageMask);
}
VKAPI_ATTR void VKAPI_CALL vkCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkEvent event = 0x%X, VkPipelineStageFlags stageMask = %d)",
commandBuffer, event, stageMask);
vk::Cast(commandBuffer)->resetEvent(event, stageMask);
}
VKAPI_ATTR void VKAPI_CALL vkCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t eventCount = %d, const VkEvent* pEvents = 0x%X, VkPipelineStageFlags srcStageMask = %d, VkPipelineStageFlags dstStageMask = %d, uint32_t memoryBarrierCount = %d, const VkMemoryBarrier* pMemoryBarriers = 0x%X, uint32_t bufferMemoryBarrierCount = %d, const VkBufferMemoryBarrier* pBufferMemoryBarriers = 0x%X, uint32_t imageMemoryBarrierCount = %d, const VkImageMemoryBarrier* pImageMemoryBarriers = 0x%X)",
commandBuffer, eventCount, pEvents, srcStageMask, dstStageMask, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
vk::Cast(commandBuffer)->waitEvents(eventCount, pEvents, srcStageMask, dstStageMask, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
}
VKAPI_ATTR void VKAPI_CALL vkCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkPipelineStageFlags srcStageMask = 0x%X, VkPipelineStageFlags dstStageMask = 0x%X, VkDependencyFlags dependencyFlags = %d, uint32_t memoryBarrierCount = %d, onst VkMemoryBarrier* pMemoryBarriers = 0x%X,"
" uint32_t bufferMemoryBarrierCount = %d, const VkBufferMemoryBarrier* pBufferMemoryBarriers = 0x%X, uint32_t imageMemoryBarrierCount = %d, const VkImageMemoryBarrier* pImageMemoryBarriers = 0x%X)",
commandBuffer, srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
vk::Cast(commandBuffer)->pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags,
memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
}
VKAPI_ATTR void VKAPI_CALL vkCmdBeginQuery(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query, VkQueryControlFlags flags)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkQueryPool queryPool = 0x%X, uint32_t query = %d, VkQueryControlFlags flags = %d)",
commandBuffer, queryPool, query, flags);
vk::Cast(commandBuffer)->beginQuery(queryPool, query, flags);
}
VKAPI_ATTR void VKAPI_CALL vkCmdEndQuery(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkQueryPool queryPool = 0x%X, uint32_t query = %d)",
commandBuffer, queryPool, query);
vk::Cast(commandBuffer)->endQuery(queryPool, query);
}
VKAPI_ATTR void VKAPI_CALL vkCmdResetQueryPool(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkQueryPool queryPool = 0x%X, uint32_t firstQuery = %d, uint32_t queryCount = %d)",
commandBuffer, queryPool, firstQuery, queryCount);
vk::Cast(commandBuffer)->resetQueryPool(queryPool, firstQuery, queryCount);
}
VKAPI_ATTR void VKAPI_CALL vkCmdWriteTimestamp(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage, VkQueryPool queryPool, uint32_t query)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkPipelineStageFlagBits pipelineStage = %d, VkQueryPool queryPool = 0x%X, uint32_t query = %d)",
commandBuffer, pipelineStage, queryPool, query);
vk::Cast(commandBuffer)->writeTimestamp(pipelineStage, queryPool, query);
}
VKAPI_ATTR void VKAPI_CALL vkCmdCopyQueryPoolResults(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize stride, VkQueryResultFlags flags)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkQueryPool queryPool = 0x%X, uint32_t firstQuery = %d, uint32_t queryCount = %d, VkBuffer dstBuffer = 0x%X, VkDeviceSize dstOffset = %d, VkDeviceSize stride = %d, VkQueryResultFlags flags = %d)",
commandBuffer, queryPool, firstQuery, queryCount, dstBuffer, dstOffset, stride, flags);
vk::Cast(commandBuffer)->copyQueryPoolResults(queryPool, firstQuery, queryCount, dstBuffer, dstOffset, stride, flags);
}
VKAPI_ATTR void VKAPI_CALL vkCmdPushConstants(VkCommandBuffer commandBuffer, VkPipelineLayout layout, VkShaderStageFlags stageFlags, uint32_t offset, uint32_t size, const void* pValues)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkPipelineLayout layout = 0x%X, VkShaderStageFlags stageFlags = %d, uint32_t offset = %d, uint32_t size = %d, const void* pValues = 0x%X)",
commandBuffer, layout, stageFlags, offset, size, pValues);
vk::Cast(commandBuffer)->pushConstants(layout, stageFlags, offset, size, pValues);
}
VKAPI_ATTR void VKAPI_CALL vkCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin, VkSubpassContents contents)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, const VkRenderPassBeginInfo* pRenderPassBegin = 0x%X, VkSubpassContents contents = %d)",
commandBuffer, pRenderPassBegin, contents);
if(pRenderPassBegin->pNext)
{
UNIMPLEMENTED();
}
vk::Cast(commandBuffer)->beginRenderPass(pRenderPassBegin->renderPass, pRenderPassBegin->framebuffer,
pRenderPassBegin->renderArea, pRenderPassBegin->clearValueCount,
pRenderPassBegin->pClearValues, contents);
}
VKAPI_ATTR void VKAPI_CALL vkCmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkSubpassContents contents = %d)",
commandBuffer, contents);
vk::Cast(commandBuffer)->nextSubpass(contents);
}
VKAPI_ATTR void VKAPI_CALL vkCmdEndRenderPass(VkCommandBuffer commandBuffer)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X)", commandBuffer);
vk::Cast(commandBuffer)->endRenderPass();
}
VKAPI_ATTR void VKAPI_CALL vkCmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer* pCommandBuffers)
{
TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t commandBufferCount = %d, const VkCommandBuffer* pCommandBuffers = 0x%X)",
commandBuffer, commandBufferCount, pCommandBuffers);
vk::Cast(commandBuffer)->executeCommands(commandBufferCount, pCommandBuffers);
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceVersion(uint32_t* pApiVersion)
{
TRACE("(uint32_t* pApiVersion = 0x%X)", pApiVersion);
*pApiVersion = vk::API_VERSION;
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkBindBufferMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo* pBindInfos)
{
TRACE("(VkDevice device = 0x%X, uint32_t bindInfoCount = %d, const VkBindBufferMemoryInfo* pBindInfos = 0x%X)",
device, bindInfoCount, pBindInfos);
for(uint32_t i = 0; i < bindInfoCount; i++)
{
if(pBindInfos[i].pNext)
{
UNIMPLEMENTED();
}
vk::Cast(pBindInfos[i].buffer)->bind(pBindInfos[i].memory, pBindInfos[i].memoryOffset);
}
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkBindImageMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindImageMemoryInfo* pBindInfos)
{
TRACE("()");
UNIMPLEMENTED();
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkGetDeviceGroupPeerMemoryFeatures(VkDevice device, uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
{
TRACE("(VkDevice device = 0x%X, uint32_t heapIndex = %d, uint32_t localDeviceIndex = %d, uint32_t remoteDeviceIndex = %d, VkPeerMemoryFeatureFlags* pPeerMemoryFeatures = 0x%X)",
device, heapIndex, localDeviceIndex, remoteDeviceIndex, pPeerMemoryFeatures);
ASSERT(localDeviceIndex != remoteDeviceIndex); // "localDeviceIndex must not equal remoteDeviceIndex"
UNREACHABLE(remoteDeviceIndex); // Only one physical device is supported, and since the device indexes can't be equal, this should never be called.
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
{
TRACE("()");
UNIMPLEMENTED();
}
VKAPI_ATTR void VKAPI_CALL vkCmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ)
{
TRACE("()");
UNIMPLEMENTED();
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumeratePhysicalDeviceGroups(VkInstance instance, uint32_t* pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
{
TRACE("VkInstance instance = 0x%X, uint32_t* pPhysicalDeviceGroupCount = 0x%X, VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties = 0x%X",
instance, pPhysicalDeviceGroupCount, pPhysicalDeviceGroupProperties);
if(!pPhysicalDeviceGroupProperties)
{
*pPhysicalDeviceGroupCount = vk::Cast(instance)->getPhysicalDeviceGroupCount();
}
else
{
vk::Cast(instance)->getPhysicalDeviceGroups(*pPhysicalDeviceGroupCount, pPhysicalDeviceGroupProperties);
}
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkGetImageMemoryRequirements2(VkDevice device, const VkImageMemoryRequirementsInfo2* pInfo, VkMemoryRequirements2* pMemoryRequirements)
{
TRACE("(VkDevice device = 0x%X, const VkImageMemoryRequirementsInfo2* pInfo = 0x%X, VkMemoryRequirements2* pMemoryRequirements = 0x%X)",
device, pInfo, pMemoryRequirements);
if(pInfo->pNext || pMemoryRequirements->pNext)
{
UNIMPLEMENTED();
}
vkGetImageMemoryRequirements(device, pInfo->image, &(pMemoryRequirements->memoryRequirements));
}
VKAPI_ATTR void VKAPI_CALL vkGetBufferMemoryRequirements2(VkDevice device, const VkBufferMemoryRequirementsInfo2* pInfo, VkMemoryRequirements2* pMemoryRequirements)
{
TRACE("(VkDevice device = 0x%X, const VkBufferMemoryRequirementsInfo2* pInfo = 0x%X, VkMemoryRequirements2* pMemoryRequirements = 0x%X)",
device, pInfo, pMemoryRequirements);
if(pInfo->pNext || pMemoryRequirements->pNext)
{
UNIMPLEMENTED();
}
vkGetBufferMemoryRequirements(device, pInfo->buffer, &(pMemoryRequirements->memoryRequirements));
}
VKAPI_ATTR void VKAPI_CALL vkGetImageSparseMemoryRequirements2(VkDevice device, const VkImageSparseMemoryRequirementsInfo2* pInfo, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
{
TRACE("(VkDevice device = 0x%X, const VkImageSparseMemoryRequirementsInfo2* pInfo = 0x%X, uint32_t* pSparseMemoryRequirementCount = 0x%X, VkSparseImageMemoryRequirements2* pSparseMemoryRequirements = 0x%X)",
device, pInfo, pSparseMemoryRequirementCount, pSparseMemoryRequirements);
if(pInfo->pNext || pSparseMemoryRequirements->pNext)
{
UNIMPLEMENTED();
}
vkGetImageSparseMemoryRequirements(device, pInfo->image, pSparseMemoryRequirementCount, &(pSparseMemoryRequirements->memoryRequirements));
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures2* pFeatures)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceFeatures2* pFeatures = 0x%X)", physicalDevice, pFeatures);
VkBaseOutStructure* extensionFeatures = reinterpret_cast<VkBaseOutStructure*>(pFeatures->pNext);
while(extensionFeatures)
{
switch(extensionFeatures->sType)
{
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES:
{
auto& features = *reinterpret_cast<VkPhysicalDeviceSamplerYcbcrConversionFeatures*>(extensionFeatures);
vk::Cast(physicalDevice)->getFeatures(&features);
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES:
{
auto& features = *reinterpret_cast<VkPhysicalDevice16BitStorageFeatures*>(extensionFeatures);
vk::Cast(physicalDevice)->getFeatures(&features);
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES:
{
auto& features = *reinterpret_cast<VkPhysicalDeviceVariablePointerFeatures*>(extensionFeatures);
vk::Cast(physicalDevice)->getFeatures(&features);
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR:
{
auto& features = *reinterpret_cast<VkPhysicalDevice8BitStorageFeaturesKHR*>(extensionFeatures);
vk::Cast(physicalDevice)->getFeatures(&features);
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES:
{
auto& features = *reinterpret_cast<VkPhysicalDeviceMultiviewFeatures*>(extensionFeatures);
vk::Cast(physicalDevice)->getFeatures(&features);
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES:
{
auto& features = *reinterpret_cast<VkPhysicalDeviceProtectedMemoryFeatures*>(extensionFeatures);
vk::Cast(physicalDevice)->getFeatures(&features);
}
break;
default:
// "the [driver] must skip over, without processing (other than reading the sType and pNext members) any structures in the chain with sType values not defined by [supported extenions]"
UNIMPLEMENTED(); // TODO(b/119321052): UNIMPLEMENTED() should be used only for features that must still be implemented. Use a more informational macro here.
break;
}
extensionFeatures = extensionFeatures->pNext;
}
vkGetPhysicalDeviceFeatures(physicalDevice, &(pFeatures->features));
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties2* pProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceProperties2* pProperties = 0x%X)", physicalDevice, pProperties);
VkBaseOutStructure* extensionProperties = reinterpret_cast<VkBaseOutStructure*>(pProperties->pNext);
while(extensionProperties)
{
switch(extensionProperties->sType)
{
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES:
{
auto& properties = *reinterpret_cast<VkPhysicalDeviceIDProperties*>(extensionProperties);
vk::Cast(physicalDevice)->getProperties(&properties);
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES:
{
auto& properties = *reinterpret_cast<VkPhysicalDeviceMaintenance3Properties*>(extensionProperties);
vk::Cast(physicalDevice)->getProperties(&properties);
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES:
{
auto& properties = *reinterpret_cast<VkPhysicalDeviceMultiviewProperties*>(extensionProperties);
vk::Cast(physicalDevice)->getProperties(&properties);
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES:
{
auto& properties = *reinterpret_cast<VkPhysicalDevicePointClippingProperties*>(extensionProperties);
vk::Cast(physicalDevice)->getProperties(&properties);
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES:
{
auto& properties = *reinterpret_cast<VkPhysicalDeviceProtectedMemoryProperties*>(extensionProperties);
vk::Cast(physicalDevice)->getProperties(&properties);
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES:
{
auto& properties = *reinterpret_cast<VkPhysicalDeviceSubgroupProperties*>(extensionProperties);
vk::Cast(physicalDevice)->getProperties(&properties);
}
break;
default:
// "the [driver] must skip over, without processing (other than reading the sType and pNext members) any structures in the chain with sType values not defined by [supported extenions]"
UNIMPLEMENTED(); // TODO(b/119321052): UNIMPLEMENTED() should be used only for features that must still be implemented. Use a more informational macro here.
break;
}
extensionProperties = extensionProperties->pNext;
}
vkGetPhysicalDeviceProperties(physicalDevice, &(pProperties->properties));
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFormatProperties2(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties2* pFormatProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkFormat format = %d, VkFormatProperties2* pFormatProperties = 0x%X)",
physicalDevice, format, pFormatProperties);
if(pFormatProperties->pNext)
{
UNIMPLEMENTED();
}
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &(pFormatProperties->formatProperties));
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceImageFormatProperties2(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo, VkImageFormatProperties2* pImageFormatProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo = 0x%X, VkImageFormatProperties2* pImageFormatProperties = 0x%X)",
physicalDevice, pImageFormatInfo, pImageFormatProperties);
if(pImageFormatInfo->pNext || pImageFormatProperties->pNext)
{
UNIMPLEMENTED();
}
return vkGetPhysicalDeviceImageFormatProperties(physicalDevice,
pImageFormatInfo->format,
pImageFormatInfo->type,
pImageFormatInfo->tiling,
pImageFormatInfo->usage,
pImageFormatInfo->flags,
&(pImageFormatProperties->imageFormatProperties));
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice, uint32_t* pQueueFamilyPropertyCount, VkQueueFamilyProperties2* pQueueFamilyProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, uint32_t* pQueueFamilyPropertyCount = 0x%X, VkQueueFamilyProperties2* pQueueFamilyProperties = 0x%X)",
physicalDevice, pQueueFamilyPropertyCount, pQueueFamilyProperties);
if(pQueueFamilyProperties && pQueueFamilyProperties->pNext)
{
UNIMPLEMENTED();
}
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, pQueueFamilyPropertyCount,
pQueueFamilyProperties ? &(pQueueFamilyProperties->queueFamilyProperties) : nullptr);
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceMemoryProperties2* pMemoryProperties = 0x%X)", physicalDevice, pMemoryProperties);
if(pMemoryProperties->pNext)
{
UNIMPLEMENTED();
}
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &(pMemoryProperties->memoryProperties));
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceSparseImageFormatProperties2(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSparseImageFormatInfo2* pFormatInfo, uint32_t* pPropertyCount, VkSparseImageFormatProperties2* pProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkPhysicalDeviceSparseImageFormatInfo2* pFormatInfo = 0x%X, uint32_t* pPropertyCount = 0x%X, VkSparseImageFormatProperties2* pProperties = 0x%X)",
physicalDevice, pFormatInfo, pPropertyCount, pProperties);
if(pProperties && pProperties->pNext)
{
UNIMPLEMENTED();
}
vkGetPhysicalDeviceSparseImageFormatProperties(physicalDevice, pFormatInfo->format, pFormatInfo->type,
pFormatInfo->samples, pFormatInfo->usage, pFormatInfo->tiling,
pPropertyCount, pProperties ? &(pProperties->properties) : nullptr);
}
VKAPI_ATTR void VKAPI_CALL vkTrimCommandPool(VkDevice device, VkCommandPool commandPool, VkCommandPoolTrimFlags flags)
{
TRACE("(VkDevice device = 0x%X, VkCommandPool commandPool = 0x%X, VkCommandPoolTrimFlags flags = %d)",
device, commandPool, flags);
vk::Cast(commandPool)->trim(flags);
}
VKAPI_ATTR void VKAPI_CALL vkGetDeviceQueue2(VkDevice device, const VkDeviceQueueInfo2* pQueueInfo, VkQueue* pQueue)
{
TRACE("(VkDevice device = 0x%X, const VkDeviceQueueInfo2* pQueueInfo = 0x%X, VkQueue* pQueue = 0x%X)",
device, pQueueInfo, pQueue);
if(pQueueInfo->pNext)
{
UNIMPLEMENTED();
}
// The only flag that can be set here is VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT
// According to the Vulkan spec, 4.3.1. Queue Family Properties:
// "VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT specifies that the device queue is a
// protected-capable queue. If the protected memory feature is not enabled,
// the VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT bit of flags must not be set."
if(pQueueInfo->flags)
{
*pQueue = VK_NULL_HANDLE;
}
else
{
vkGetDeviceQueue(device, pQueueInfo->queueFamilyIndex, pQueueInfo->queueIndex, pQueue);
}
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateSamplerYcbcrConversion(VkDevice device, const VkSamplerYcbcrConversionCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSamplerYcbcrConversion* pYcbcrConversion)
{
TRACE("()");
UNIMPLEMENTED();
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkDestroySamplerYcbcrConversion(VkDevice device, VkSamplerYcbcrConversion ycbcrConversion, const VkAllocationCallbacks* pAllocator)
{
TRACE("()");
UNIMPLEMENTED();
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateDescriptorUpdateTemplate(VkDevice device, const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate)
{
TRACE("()");
UNIMPLEMENTED();
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkDestroyDescriptorUpdateTemplate(VkDevice device, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const VkAllocationCallbacks* pAllocator)
{
TRACE("()");
UNIMPLEMENTED();
}
VKAPI_ATTR void VKAPI_CALL vkUpdateDescriptorSetWithTemplate(VkDevice device, VkDescriptorSet descriptorSet, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void* pData)
{
TRACE("()");
UNIMPLEMENTED();
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceExternalBufferProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo, VkExternalBufferProperties* pExternalBufferProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo = 0x%X, VkExternalBufferProperties* pExternalBufferProperties = 0x%X)",
physicalDevice, pExternalBufferInfo, pExternalBufferProperties);
UNIMPLEMENTED();
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceExternalFenceProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo, VkExternalFenceProperties* pExternalFenceProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo = 0x%X, VkExternalFenceProperties* pExternalFenceProperties = 0x%X)",
physicalDevice, pExternalFenceInfo, pExternalFenceProperties);
UNIMPLEMENTED();
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceExternalSemaphoreProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo, VkExternalSemaphoreProperties* pExternalSemaphoreProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo = 0x%X, VkExternalSemaphoreProperties* pExternalSemaphoreProperties = 0x%X)",
physicalDevice, pExternalSemaphoreInfo, pExternalSemaphoreProperties);
UNIMPLEMENTED();
}
VKAPI_ATTR void VKAPI_CALL vkGetDescriptorSetLayoutSupport(VkDevice device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo, VkDescriptorSetLayoutSupport* pSupport)
{
TRACE("(VkDevice device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo, VkDescriptorSetLayoutSupport* pSupport)",
device, pCreateInfo, pSupport);
vk::Cast(device)->getDescriptorSetLayoutSupport(pCreateInfo, pSupport);
}
}