//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header defines the BitcodeReader class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/ReaderWriter.h"
#include "BitcodeReader.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Module.h"
#include "llvm/Operator.h"
#include "llvm/AutoUpgrade.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/OperandTraits.h"
using namespace llvm;
void BitcodeReader::FreeState() {
if (BufferOwned)
delete Buffer;
Buffer = 0;
std::vector<Type*>().swap(TypeList);
ValueList.clear();
MDValueList.clear();
std::vector<AttrListPtr>().swap(MAttributes);
std::vector<BasicBlock*>().swap(FunctionBBs);
std::vector<Function*>().swap(FunctionsWithBodies);
DeferredFunctionInfo.clear();
MDKindMap.clear();
}
//===----------------------------------------------------------------------===//
// Helper functions to implement forward reference resolution, etc.
//===----------------------------------------------------------------------===//
/// ConvertToString - Convert a string from a record into an std::string, return
/// true on failure.
template<typename StrTy>
static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
StrTy &Result) {
if (Idx > Record.size())
return true;
for (unsigned i = Idx, e = Record.size(); i != e; ++i)
Result += (char)Record[i];
return false;
}
static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
switch (Val) {
default: // Map unknown/new linkages to external
case 0: return GlobalValue::ExternalLinkage;
case 1: return GlobalValue::WeakAnyLinkage;
case 2: return GlobalValue::AppendingLinkage;
case 3: return GlobalValue::InternalLinkage;
case 4: return GlobalValue::LinkOnceAnyLinkage;
case 5: return GlobalValue::DLLImportLinkage;
case 6: return GlobalValue::DLLExportLinkage;
case 7: return GlobalValue::ExternalWeakLinkage;
case 8: return GlobalValue::CommonLinkage;
case 9: return GlobalValue::PrivateLinkage;
case 10: return GlobalValue::WeakODRLinkage;
case 11: return GlobalValue::LinkOnceODRLinkage;
case 12: return GlobalValue::AvailableExternallyLinkage;
case 13: return GlobalValue::LinkerPrivateLinkage;
case 14: return GlobalValue::LinkerPrivateWeakLinkage;
case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
}
}
static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
switch (Val) {
default: // Map unknown visibilities to default.
case 0: return GlobalValue::DefaultVisibility;
case 1: return GlobalValue::HiddenVisibility;
case 2: return GlobalValue::ProtectedVisibility;
}
}
static int GetDecodedCastOpcode(unsigned Val) {
switch (Val) {
default: return -1;
case bitc::CAST_TRUNC : return Instruction::Trunc;
case bitc::CAST_ZEXT : return Instruction::ZExt;
case bitc::CAST_SEXT : return Instruction::SExt;
case bitc::CAST_FPTOUI : return Instruction::FPToUI;
case bitc::CAST_FPTOSI : return Instruction::FPToSI;
case bitc::CAST_UITOFP : return Instruction::UIToFP;
case bitc::CAST_SITOFP : return Instruction::SIToFP;
case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
case bitc::CAST_FPEXT : return Instruction::FPExt;
case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
case bitc::CAST_BITCAST : return Instruction::BitCast;
}
}
static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
switch (Val) {
default: return -1;
case bitc::BINOP_ADD:
return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
case bitc::BINOP_SUB:
return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
case bitc::BINOP_MUL:
return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
case bitc::BINOP_UDIV: return Instruction::UDiv;
case bitc::BINOP_SDIV:
return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
case bitc::BINOP_UREM: return Instruction::URem;
case bitc::BINOP_SREM:
return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
case bitc::BINOP_SHL: return Instruction::Shl;
case bitc::BINOP_LSHR: return Instruction::LShr;
case bitc::BINOP_ASHR: return Instruction::AShr;
case bitc::BINOP_AND: return Instruction::And;
case bitc::BINOP_OR: return Instruction::Or;
case bitc::BINOP_XOR: return Instruction::Xor;
}
}
static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
switch (Val) {
default: return AtomicRMWInst::BAD_BINOP;
case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
case bitc::RMW_ADD: return AtomicRMWInst::Add;
case bitc::RMW_SUB: return AtomicRMWInst::Sub;
case bitc::RMW_AND: return AtomicRMWInst::And;
case bitc::RMW_NAND: return AtomicRMWInst::Nand;
case bitc::RMW_OR: return AtomicRMWInst::Or;
case bitc::RMW_XOR: return AtomicRMWInst::Xor;
case bitc::RMW_MAX: return AtomicRMWInst::Max;
case bitc::RMW_MIN: return AtomicRMWInst::Min;
case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
}
}
static AtomicOrdering GetDecodedOrdering(unsigned Val) {
switch (Val) {
case bitc::ORDERING_NOTATOMIC: return NotAtomic;
case bitc::ORDERING_UNORDERED: return Unordered;
case bitc::ORDERING_MONOTONIC: return Monotonic;
case bitc::ORDERING_ACQUIRE: return Acquire;
case bitc::ORDERING_RELEASE: return Release;
case bitc::ORDERING_ACQREL: return AcquireRelease;
default: // Map unknown orderings to sequentially-consistent.
case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
}
}
static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
switch (Val) {
case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
default: // Map unknown scopes to cross-thread.
case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
}
}
namespace llvm {
namespace {
/// @brief A class for maintaining the slot number definition
/// as a placeholder for the actual definition for forward constants defs.
class ConstantPlaceHolder : public ConstantExpr {
void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
: ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
}
/// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
//static inline bool classof(const ConstantPlaceHolder *) { return true; }
static bool classof(const Value *V) {
return isa<ConstantExpr>(V) &&
cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
}
/// Provide fast operand accessors
//DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
}
// FIXME: can we inherit this from ConstantExpr?
template <>
struct OperandTraits<ConstantPlaceHolder> :
public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
};
}
void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
if (Idx == size()) {
push_back(V);
return;
}
if (Idx >= size())
resize(Idx+1);
WeakVH &OldV = ValuePtrs[Idx];
if (OldV == 0) {
OldV = V;
return;
}
// Handle constants and non-constants (e.g. instrs) differently for
// efficiency.
if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
ResolveConstants.push_back(std::make_pair(PHC, Idx));
OldV = V;
} else {
// If there was a forward reference to this value, replace it.
Value *PrevVal = OldV;
OldV->replaceAllUsesWith(V);
delete PrevVal;
}
}
Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
Type *Ty) {
if (Idx >= size())
resize(Idx + 1);
if (Value *V = ValuePtrs[Idx]) {
assert(Ty == V->getType() && "Type mismatch in constant table!");
return cast<Constant>(V);
}
// Create and return a placeholder, which will later be RAUW'd.
Constant *C = new ConstantPlaceHolder(Ty, Context);
ValuePtrs[Idx] = C;
return C;
}
Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
if (Idx >= size())
resize(Idx + 1);
if (Value *V = ValuePtrs[Idx]) {
assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
return V;
}
// No type specified, must be invalid reference.
if (Ty == 0) return 0;
// Create and return a placeholder, which will later be RAUW'd.
Value *V = new Argument(Ty);
ValuePtrs[Idx] = V;
return V;
}
/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
/// resolves any forward references. The idea behind this is that we sometimes
/// get constants (such as large arrays) which reference *many* forward ref
/// constants. Replacing each of these causes a lot of thrashing when
/// building/reuniquing the constant. Instead of doing this, we look at all the
/// uses and rewrite all the place holders at once for any constant that uses
/// a placeholder.
void BitcodeReaderValueList::ResolveConstantForwardRefs() {
// Sort the values by-pointer so that they are efficient to look up with a
// binary search.
std::sort(ResolveConstants.begin(), ResolveConstants.end());
SmallVector<Constant*, 64> NewOps;
while (!ResolveConstants.empty()) {
Value *RealVal = operator[](ResolveConstants.back().second);
Constant *Placeholder = ResolveConstants.back().first;
ResolveConstants.pop_back();
// Loop over all users of the placeholder, updating them to reference the
// new value. If they reference more than one placeholder, update them all
// at once.
while (!Placeholder->use_empty()) {
Value::use_iterator UI = Placeholder->use_begin();
User *U = *UI;
// If the using object isn't uniqued, just update the operands. This
// handles instructions and initializers for global variables.
if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
UI.getUse().set(RealVal);
continue;
}
// Otherwise, we have a constant that uses the placeholder. Replace that
// constant with a new constant that has *all* placeholder uses updated.
Constant *UserC = cast<Constant>(U);
for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
I != E; ++I) {
Value *NewOp;
if (!isa<ConstantPlaceHolder>(*I)) {
// Not a placeholder reference.
NewOp = *I;
} else if (*I == Placeholder) {
// Common case is that it just references this one placeholder.
NewOp = RealVal;
} else {
// Otherwise, look up the placeholder in ResolveConstants.
ResolveConstantsTy::iterator It =
std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
std::pair<Constant*, unsigned>(cast<Constant>(*I),
0));
assert(It != ResolveConstants.end() && It->first == *I);
NewOp = operator[](It->second);
}
NewOps.push_back(cast<Constant>(NewOp));
}
// Make the new constant.
Constant *NewC;
if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
NewC = ConstantArray::get(UserCA->getType(), NewOps);
} else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
NewC = ConstantStruct::get(UserCS->getType(), NewOps);
} else if (isa<ConstantVector>(UserC)) {
NewC = ConstantVector::get(NewOps);
} else {
assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
}
UserC->replaceAllUsesWith(NewC);
UserC->destroyConstant();
NewOps.clear();
}
// Update all ValueHandles, they should be the only users at this point.
Placeholder->replaceAllUsesWith(RealVal);
delete Placeholder;
}
}
void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
if (Idx == size()) {
push_back(V);
return;
}
if (Idx >= size())
resize(Idx+1);
WeakVH &OldV = MDValuePtrs[Idx];
if (OldV == 0) {
OldV = V;
return;
}
// If there was a forward reference to this value, replace it.
MDNode *PrevVal = cast<MDNode>(OldV);
OldV->replaceAllUsesWith(V);
MDNode::deleteTemporary(PrevVal);
// Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
// value for Idx.
MDValuePtrs[Idx] = V;
}
Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
if (Idx >= size())
resize(Idx + 1);
if (Value *V = MDValuePtrs[Idx]) {
assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
return V;
}
// Create and return a placeholder, which will later be RAUW'd.
Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
MDValuePtrs[Idx] = V;
return V;
}
Type *BitcodeReader::getTypeByID(unsigned ID) {
// The type table size is always specified correctly.
if (ID >= TypeList.size())
return 0;
if (Type *Ty = TypeList[ID])
return Ty;
// If we have a forward reference, the only possible case is when it is to a
// named struct. Just create a placeholder for now.
return TypeList[ID] = StructType::create(Context);
}
/// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
if (ID >= TypeList.size())
TypeList.resize(ID+1);
return TypeList[ID];
}
//===----------------------------------------------------------------------===//
// Functions for parsing blocks from the bitcode file
//===----------------------------------------------------------------------===//
bool BitcodeReader::ParseAttributeBlock() {
if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
return Error("Malformed block record");
if (!MAttributes.empty())
return Error("Multiple PARAMATTR blocks found!");
SmallVector<uint64_t, 64> Record;
SmallVector<AttributeWithIndex, 8> Attrs;
// Read all the records.
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of PARAMATTR block");
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
default: // Default behavior: ignore.
break;
case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
if (Record.size() & 1)
return Error("Invalid ENTRY record");
// FIXME : Remove this autoupgrade code in LLVM 3.0.
// If Function attributes are using index 0 then transfer them
// to index ~0. Index 0 is used for return value attributes but used to be
// used for function attributes.
Attributes RetAttribute = Attribute::None;
Attributes FnAttribute = Attribute::None;
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
// FIXME: remove in LLVM 3.0
// The alignment is stored as a 16-bit raw value from bits 31--16.
// We shift the bits above 31 down by 11 bits.
unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
if (Alignment && !isPowerOf2_32(Alignment))
return Error("Alignment is not a power of two.");
Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
if (Alignment)
ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
Record[i+1] = ReconstitutedAttr;
if (Record[i] == 0)
RetAttribute = Record[i+1];
else if (Record[i] == ~0U)
FnAttribute = Record[i+1];
}
unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
Attribute::ReadOnly|Attribute::ReadNone);
if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
(RetAttribute & OldRetAttrs) != 0) {
if (FnAttribute == Attribute::None) { // add a slot so they get added.
Record.push_back(~0U);
Record.push_back(0);
}
FnAttribute |= RetAttribute & OldRetAttrs;
RetAttribute &= ~OldRetAttrs;
}
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
if (Record[i] == 0) {
if (RetAttribute != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
} else if (Record[i] == ~0U) {
if (FnAttribute != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
} else if (Record[i+1] != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
}
MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
Attrs.clear();
break;
}
}
}
}
bool BitcodeReader::ParseTypeTable() {
if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
return Error("Malformed block record");
return ParseTypeTableBody();
}
bool BitcodeReader::ParseTypeTableBody() {
if (!TypeList.empty())
return Error("Multiple TYPE_BLOCKs found!");
SmallVector<uint64_t, 64> Record;
unsigned NumRecords = 0;
SmallString<64> TypeName;
// Read all the records for this type table.
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (NumRecords != TypeList.size())
return Error("Invalid type forward reference in TYPE_BLOCK");
if (Stream.ReadBlockEnd())
return Error("Error at end of type table block");
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
Type *ResultTy = 0;
switch (Stream.ReadRecord(Code, Record)) {
default: return Error("unknown type in type table");
case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
// TYPE_CODE_NUMENTRY contains a count of the number of types in the
// type list. This allows us to reserve space.
if (Record.size() < 1)
return Error("Invalid TYPE_CODE_NUMENTRY record");
TypeList.resize(Record[0]);
continue;
case bitc::TYPE_CODE_VOID: // VOID
ResultTy = Type::getVoidTy(Context);
break;
case bitc::TYPE_CODE_FLOAT: // FLOAT
ResultTy = Type::getFloatTy(Context);
break;
case bitc::TYPE_CODE_DOUBLE: // DOUBLE
ResultTy = Type::getDoubleTy(Context);
break;
case bitc::TYPE_CODE_X86_FP80: // X86_FP80
ResultTy = Type::getX86_FP80Ty(Context);
break;
case bitc::TYPE_CODE_FP128: // FP128
ResultTy = Type::getFP128Ty(Context);
break;
case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
ResultTy = Type::getPPC_FP128Ty(Context);
break;
case bitc::TYPE_CODE_LABEL: // LABEL
ResultTy = Type::getLabelTy(Context);
break;
case bitc::TYPE_CODE_METADATA: // METADATA
ResultTy = Type::getMetadataTy(Context);
break;
case bitc::TYPE_CODE_X86_MMX: // X86_MMX
ResultTy = Type::getX86_MMXTy(Context);
break;
case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
if (Record.size() < 1)
return Error("Invalid Integer type record");
ResultTy = IntegerType::get(Context, Record[0]);
break;
case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
// [pointee type, address space]
if (Record.size() < 1)
return Error("Invalid POINTER type record");
unsigned AddressSpace = 0;
if (Record.size() == 2)
AddressSpace = Record[1];
ResultTy = getTypeByID(Record[0]);
if (ResultTy == 0) return Error("invalid element type in pointer type");
ResultTy = PointerType::get(ResultTy, AddressSpace);
break;
}
case bitc::TYPE_CODE_FUNCTION: {
// FIXME: attrid is dead, remove it in LLVM 3.0
// FUNCTION: [vararg, attrid, retty, paramty x N]
if (Record.size() < 3)
return Error("Invalid FUNCTION type record");
std::vector<Type*> ArgTys;
for (unsigned i = 3, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
ArgTys.push_back(T);
else
break;
}
ResultTy = getTypeByID(Record[2]);
if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
return Error("invalid type in function type");
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
if (Record.size() < 1)
return Error("Invalid STRUCT type record");
std::vector<Type*> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
EltTys.push_back(T);
else
break;
}
if (EltTys.size() != Record.size()-1)
return Error("invalid type in struct type");
ResultTy = StructType::get(Context, EltTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
if (ConvertToString(Record, 0, TypeName))
return Error("Invalid STRUCT_NAME record");
continue;
case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
if (Record.size() < 1)
return Error("Invalid STRUCT type record");
if (NumRecords >= TypeList.size())
return Error("invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
if (Res) {
Res->setName(TypeName);
TypeList[NumRecords] = 0;
} else // Otherwise, create a new struct.
Res = StructType::create(Context, TypeName);
TypeName.clear();
SmallVector<Type*, 8> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
EltTys.push_back(T);
else
break;
}
if (EltTys.size() != Record.size()-1)
return Error("invalid STRUCT type record");
Res->setBody(EltTys, Record[0]);
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
if (Record.size() != 1)
return Error("Invalid OPAQUE type record");
if (NumRecords >= TypeList.size())
return Error("invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
if (Res) {
Res->setName(TypeName);
TypeList[NumRecords] = 0;
} else // Otherwise, create a new struct with no body.
Res = StructType::create(Context, TypeName);
TypeName.clear();
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
if (Record.size() < 2)
return Error("Invalid ARRAY type record");
if ((ResultTy = getTypeByID(Record[1])))
ResultTy = ArrayType::get(ResultTy, Record[0]);
else
return Error("Invalid ARRAY type element");
break;
case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
if (Record.size() < 2)
return Error("Invalid VECTOR type record");
if ((ResultTy = getTypeByID(Record[1])))
ResultTy = VectorType::get(ResultTy, Record[0]);
else
return Error("Invalid ARRAY type element");
break;
}
if (NumRecords >= TypeList.size())
return Error("invalid TYPE table");
assert(ResultTy && "Didn't read a type?");
assert(TypeList[NumRecords] == 0 && "Already read type?");
TypeList[NumRecords++] = ResultTy;
}
}
// FIXME: Remove in LLVM 3.1
bool BitcodeReader::ParseOldTypeTable() {
if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_OLD))
return Error("Malformed block record");
if (!TypeList.empty())
return Error("Multiple TYPE_BLOCKs found!");
// While horrible, we have no good ordering of types in the bc file. Just
// iteratively parse types out of the bc file in multiple passes until we get
// them all. Do this by saving a cursor for the start of the type block.
BitstreamCursor StartOfTypeBlockCursor(Stream);
unsigned NumTypesRead = 0;
SmallVector<uint64_t, 64> Record;
RestartScan:
unsigned NextTypeID = 0;
bool ReadAnyTypes = false;
// Read all the records for this type table.
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (NextTypeID != TypeList.size())
return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
// If we haven't read all of the types yet, iterate again.
if (NumTypesRead != TypeList.size()) {
// If we didn't successfully read any types in this pass, then we must
// have an unhandled forward reference.
if (!ReadAnyTypes)
return Error("Obsolete bitcode contains unhandled recursive type");
Stream = StartOfTypeBlockCursor;
goto RestartScan;
}
if (Stream.ReadBlockEnd())
return Error("Error at end of type table block");
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
Type *ResultTy = 0;
switch (Stream.ReadRecord(Code, Record)) {
default: return Error("unknown type in type table");
case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
// TYPE_CODE_NUMENTRY contains a count of the number of types in the
// type list. This allows us to reserve space.
if (Record.size() < 1)
return Error("Invalid TYPE_CODE_NUMENTRY record");
TypeList.resize(Record[0]);
continue;
case bitc::TYPE_CODE_VOID: // VOID
ResultTy = Type::getVoidTy(Context);
break;
case bitc::TYPE_CODE_FLOAT: // FLOAT
ResultTy = Type::getFloatTy(Context);
break;
case bitc::TYPE_CODE_DOUBLE: // DOUBLE
ResultTy = Type::getDoubleTy(Context);
break;
case bitc::TYPE_CODE_X86_FP80: // X86_FP80
ResultTy = Type::getX86_FP80Ty(Context);
break;
case bitc::TYPE_CODE_FP128: // FP128
ResultTy = Type::getFP128Ty(Context);
break;
case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
ResultTy = Type::getPPC_FP128Ty(Context);
break;
case bitc::TYPE_CODE_LABEL: // LABEL
ResultTy = Type::getLabelTy(Context);
break;
case bitc::TYPE_CODE_METADATA: // METADATA
ResultTy = Type::getMetadataTy(Context);
break;
case bitc::TYPE_CODE_X86_MMX: // X86_MMX
ResultTy = Type::getX86_MMXTy(Context);
break;
case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
if (Record.size() < 1)
return Error("Invalid Integer type record");
ResultTy = IntegerType::get(Context, Record[0]);
break;
case bitc::TYPE_CODE_OPAQUE: // OPAQUE
if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
ResultTy = StructType::create(Context);
break;
case bitc::TYPE_CODE_STRUCT_OLD: {// STRUCT_OLD
if (NextTypeID >= TypeList.size()) break;
// If we already read it, don't reprocess.
if (TypeList[NextTypeID] &&
!cast<StructType>(TypeList[NextTypeID])->isOpaque())
break;
// Set a type.
if (TypeList[NextTypeID] == 0)
TypeList[NextTypeID] = StructType::create(Context);
std::vector<Type*> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *Elt = getTypeByIDOrNull(Record[i]))
EltTys.push_back(Elt);
else
break;
}
if (EltTys.size() != Record.size()-1)
break; // Not all elements are ready.
cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
ResultTy = TypeList[NextTypeID];
TypeList[NextTypeID] = 0;
break;
}
case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
// [pointee type, address space]
if (Record.size() < 1)
return Error("Invalid POINTER type record");
unsigned AddressSpace = 0;
if (Record.size() == 2)
AddressSpace = Record[1];
if ((ResultTy = getTypeByIDOrNull(Record[0])))
ResultTy = PointerType::get(ResultTy, AddressSpace);
break;
}
case bitc::TYPE_CODE_FUNCTION: {
// FIXME: attrid is dead, remove it in LLVM 3.0
// FUNCTION: [vararg, attrid, retty, paramty x N]
if (Record.size() < 3)
return Error("Invalid FUNCTION type record");
std::vector<Type*> ArgTys;
for (unsigned i = 3, e = Record.size(); i != e; ++i) {
if (Type *Elt = getTypeByIDOrNull(Record[i]))
ArgTys.push_back(Elt);
else
break;
}
if (ArgTys.size()+3 != Record.size())
break; // Something was null.
if ((ResultTy = getTypeByIDOrNull(Record[2])))
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
}
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
if (Record.size() < 2)
return Error("Invalid ARRAY type record");
if ((ResultTy = getTypeByIDOrNull(Record[1])))
ResultTy = ArrayType::get(ResultTy, Record[0]);
break;
case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
if (Record.size() < 2)
return Error("Invalid VECTOR type record");
if ((ResultTy = getTypeByIDOrNull(Record[1])))
ResultTy = VectorType::get(ResultTy, Record[0]);
break;
}
if (NextTypeID >= TypeList.size())
return Error("invalid TYPE table");
if (ResultTy && TypeList[NextTypeID] == 0) {
++NumTypesRead;
ReadAnyTypes = true;
TypeList[NextTypeID] = ResultTy;
}
++NextTypeID;
}
}
bool BitcodeReader::ParseOldTypeSymbolTable() {
if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID_OLD))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this type table.
std::string TypeName;
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of type symbol table block");
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
default: // Default behavior: unknown type.
break;
case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N]
if (ConvertToString(Record, 1, TypeName))
return Error("Invalid TST_ENTRY record");
unsigned TypeID = Record[0];
if (TypeID >= TypeList.size())
return Error("Invalid Type ID in TST_ENTRY record");
// Only apply the type name to a struct type with no name.
if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
if (!STy->isLiteral() && !STy->hasName())
STy->setName(TypeName);
TypeName.clear();
break;
}
}
}
bool BitcodeReader::ParseValueSymbolTable() {
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
SmallString<128> ValueName;
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of value symbol table block");
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
default: // Default behavior: unknown type.
break;
case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
if (ConvertToString(Record, 1, ValueName))
return Error("Invalid VST_ENTRY record");
unsigned ValueID = Record[0];
if (ValueID >= ValueList.size())
return Error("Invalid Value ID in VST_ENTRY record");
Value *V = ValueList[ValueID];
V->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
break;
}
case bitc::VST_CODE_BBENTRY: {
if (ConvertToString(Record, 1, ValueName))
return Error("Invalid VST_BBENTRY record");
BasicBlock *BB = getBasicBlock(Record[0]);
if (BB == 0)
return Error("Invalid BB ID in VST_BBENTRY record");
BB->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
break;
}
}
}
}
bool BitcodeReader::ParseMetadata() {
unsigned NextMDValueNo = MDValueList.size();
if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records.
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of PARAMATTR block");
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
bool IsFunctionLocal = false;
// Read a record.
Record.clear();
Code = Stream.ReadRecord(Code, Record);
switch (Code) {
default: // Default behavior: ignore.
break;
case bitc::METADATA_NAME: {
// Read named of the named metadata.
unsigned NameLength = Record.size();
SmallString<8> Name;
Name.resize(NameLength);
for (unsigned i = 0; i != NameLength; ++i)
Name[i] = Record[i];
Record.clear();
Code = Stream.ReadCode();
// METADATA_NAME is always followed by METADATA_NAMED_NODE.
unsigned NextBitCode = Stream.ReadRecord(Code, Record);
assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
// Read named metadata elements.
unsigned Size = Record.size();
NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
for (unsigned i = 0; i != Size; ++i) {
MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
if (MD == 0)
return Error("Malformed metadata record");
NMD->addOperand(MD);
}
break;
}
case bitc::METADATA_FN_NODE:
IsFunctionLocal = true;
// fall-through
case bitc::METADATA_NODE: {
if (Record.size() % 2 == 1)
return Error("Invalid METADATA_NODE record");
unsigned Size = Record.size();
SmallVector<Value*, 8> Elts;
for (unsigned i = 0; i != Size; i += 2) {
Type *Ty = getTypeByID(Record[i]);
if (!Ty) return Error("Invalid METADATA_NODE record");
if (Ty->isMetadataTy())
Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
else if (!Ty->isVoidTy())
Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
else
Elts.push_back(NULL);
}
Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
IsFunctionLocal = false;
MDValueList.AssignValue(V, NextMDValueNo++);
break;
}
case bitc::METADATA_STRING: {
unsigned MDStringLength = Record.size();
SmallString<8> String;
String.resize(MDStringLength);
for (unsigned i = 0; i != MDStringLength; ++i)
String[i] = Record[i];
Value *V = MDString::get(Context,
StringRef(String.data(), String.size()));
MDValueList.AssignValue(V, NextMDValueNo++);
break;
}
case bitc::METADATA_KIND: {
unsigned RecordLength = Record.size();
if (Record.empty() || RecordLength < 2)
return Error("Invalid METADATA_KIND record");
SmallString<8> Name;
Name.resize(RecordLength-1);
unsigned Kind = Record[0];
for (unsigned i = 1; i != RecordLength; ++i)
Name[i-1] = Record[i];
unsigned NewKind = TheModule->getMDKindID(Name.str());
if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
return Error("Conflicting METADATA_KIND records");
break;
}
}
}
}
/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
/// the LSB for dense VBR encoding.
static uint64_t DecodeSignRotatedValue(uint64_t V) {
if ((V & 1) == 0)
return V >> 1;
if (V != 1)
return -(V >> 1);
// There is no such thing as -0 with integers. "-0" really means MININT.
return 1ULL << 63;
}
/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
/// values and aliases that we can.
bool BitcodeReader::ResolveGlobalAndAliasInits() {
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
GlobalInitWorklist.swap(GlobalInits);
AliasInitWorklist.swap(AliasInits);
while (!GlobalInitWorklist.empty()) {
unsigned ValID = GlobalInitWorklist.back().second;
if (ValID >= ValueList.size()) {
// Not ready to resolve this yet, it requires something later in the file.
GlobalInits.push_back(GlobalInitWorklist.back());
} else {
if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
GlobalInitWorklist.back().first->setInitializer(C);
else
return Error("Global variable initializer is not a constant!");
}
GlobalInitWorklist.pop_back();
}
while (!AliasInitWorklist.empty()) {
unsigned ValID = AliasInitWorklist.back().second;
if (ValID >= ValueList.size()) {
AliasInits.push_back(AliasInitWorklist.back());
} else {
if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
AliasInitWorklist.back().first->setAliasee(C);
else
return Error("Alias initializer is not a constant!");
}
AliasInitWorklist.pop_back();
}
return false;
}
bool BitcodeReader::ParseConstants() {
if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
Type *CurTy = Type::getInt32Ty(Context);
unsigned NextCstNo = ValueList.size();
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK)
break;
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
Value *V = 0;
unsigned BitCode = Stream.ReadRecord(Code, Record);
switch (BitCode) {
default: // Default behavior: unknown constant
case bitc::CST_CODE_UNDEF: // UNDEF
V = UndefValue::get(CurTy);
break;
case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
if (Record.empty())
return Error("Malformed CST_SETTYPE record");
if (Record[0] >= TypeList.size())
return Error("Invalid Type ID in CST_SETTYPE record");
CurTy = TypeList[Record[0]];
continue; // Skip the ValueList manipulation.
case bitc::CST_CODE_NULL: // NULL
V = Constant::getNullValue(CurTy);
break;
case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
if (!CurTy->isIntegerTy() || Record.empty())
return Error("Invalid CST_INTEGER record");
V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
break;
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
if (!CurTy->isIntegerTy() || Record.empty())
return Error("Invalid WIDE_INTEGER record");
unsigned NumWords = Record.size();
SmallVector<uint64_t, 8> Words;
Words.resize(NumWords);
for (unsigned i = 0; i != NumWords; ++i)
Words[i] = DecodeSignRotatedValue(Record[i]);
V = ConstantInt::get(Context,
APInt(cast<IntegerType>(CurTy)->getBitWidth(),
Words));
break;
}
case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
if (Record.empty())
return Error("Invalid FLOAT record");
if (CurTy->isFloatTy())
V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
else if (CurTy->isDoubleTy())
V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
else if (CurTy->isX86_FP80Ty()) {
// Bits are not stored the same way as a normal i80 APInt, compensate.
uint64_t Rearrange[2];
Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
Rearrange[1] = Record[0] >> 48;
V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
} else if (CurTy->isFP128Ty())
V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
else if (CurTy->isPPC_FP128Ty())
V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
else
V = UndefValue::get(CurTy);
break;
}
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
if (Record.empty())
return Error("Invalid CST_AGGREGATE record");
unsigned Size = Record.size();
std::vector<Constant*> Elts;
if (StructType *STy = dyn_cast<StructType>(CurTy)) {
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i],
STy->getElementType(i)));
V = ConstantStruct::get(STy, Elts);
} else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
Type *EltTy = ATy->getElementType();
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
V = ConstantArray::get(ATy, Elts);
} else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
Type *EltTy = VTy->getElementType();
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
V = ConstantVector::get(Elts);
} else {
V = UndefValue::get(CurTy);
}
break;
}
case bitc::CST_CODE_STRING: { // STRING: [values]
if (Record.empty())
return Error("Invalid CST_AGGREGATE record");
ArrayType *ATy = cast<ArrayType>(CurTy);
Type *EltTy = ATy->getElementType();
unsigned Size = Record.size();
std::vector<Constant*> Elts;
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ConstantInt::get(EltTy, Record[i]));
V = ConstantArray::get(ATy, Elts);
break;
}
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
if (Record.empty())
return Error("Invalid CST_AGGREGATE record");
ArrayType *ATy = cast<ArrayType>(CurTy);
Type *EltTy = ATy->getElementType();
unsigned Size = Record.size();
std::vector<Constant*> Elts;
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ConstantInt::get(EltTy, Record[i]));
Elts.push_back(Constant::getNullValue(EltTy));
V = ConstantArray::get(ATy, Elts);
break;
}
case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
if (Record.size() < 3) return Error("Invalid CE_BINOP record");
int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown binop.
} else {
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
unsigned Flags = 0;
if (Record.size() >= 4) {
if (Opc == Instruction::Add ||
Opc == Instruction::Sub ||
Opc == Instruction::Mul ||
Opc == Instruction::Shl) {
if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoSignedWrap;
if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
} else if (Opc == Instruction::SDiv ||
Opc == Instruction::UDiv ||
Opc == Instruction::LShr ||
Opc == Instruction::AShr) {
if (Record[3] & (1 << bitc::PEO_EXACT))
Flags |= SDivOperator::IsExact;
}
}
V = ConstantExpr::get(Opc, LHS, RHS, Flags);
}
break;
}
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
if (Record.size() < 3) return Error("Invalid CE_CAST record");
int Opc = GetDecodedCastOpcode(Record[0]);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown cast.
} else {
Type *OpTy = getTypeByID(Record[1]);
if (!OpTy) return Error("Invalid CE_CAST record");
Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
V = ConstantExpr::getCast(Opc, Op, CurTy);
}
break;
}
case bitc::CST_CODE_CE_INBOUNDS_GEP:
case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
if (Record.size() & 1) return Error("Invalid CE_GEP record");
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
Type *ElTy = getTypeByID(Record[i]);
if (!ElTy) return Error("Invalid CE_GEP record");
Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
}
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
BitCode ==
bitc::CST_CODE_CE_INBOUNDS_GEP);
break;
}
case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
if (Record.size() < 3) return Error("Invalid CE_SELECT record");
V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
Type::getInt1Ty(Context)),
ValueList.getConstantFwdRef(Record[1],CurTy),
ValueList.getConstantFwdRef(Record[2],CurTy));
break;
case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
V = ConstantExpr::getExtractElement(Op0, Op1);
break;
}
case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || OpTy == 0)
return Error("Invalid CE_INSERTELT record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
OpTy->getElementType());
Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || OpTy == 0)
return Error("Invalid CE_SHUFFLEVEC record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
OpTy->getNumElements());
Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
VectorType *RTy = dyn_cast<VectorType>(CurTy);
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (Record.size() < 4 || RTy == 0 || OpTy == 0)
return Error("Invalid CE_SHUFVEC_EX record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
RTy->getNumElements());
Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
if (Record.size() < 4) return Error("Invalid CE_CMP record");
Type *OpTy = getTypeByID(Record[0]);
if (OpTy == 0) return Error("Invalid CE_CMP record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
if (OpTy->isFPOrFPVectorTy())
V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
else
V = ConstantExpr::getICmp(Record[3], Op0, Op1);
break;
}
case bitc::CST_CODE_INLINEASM: {
if (Record.size() < 2) return Error("Invalid INLINEASM record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0] & 1;
bool IsAlignStack = Record[0] >> 1;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
return Error("Invalid INLINEASM record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return Error("Invalid INLINEASM record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[3+AsmStrSize+i];
PointerType *PTy = cast<PointerType>(CurTy);
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
break;
}
case bitc::CST_CODE_BLOCKADDRESS:{
if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
Type *FnTy = getTypeByID(Record[0]);
if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
Function *Fn =
dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
Type::getInt8Ty(Context),
false, GlobalValue::InternalLinkage,
0, "");
BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
V = FwdRef;
break;
}
}
ValueList.AssignValue(V, NextCstNo);
++NextCstNo;
}
if (NextCstNo != ValueList.size())
return Error("Invalid constant reference!");
if (Stream.ReadBlockEnd())
return Error("Error at end of constants block");
// Once all the constants have been read, go through and resolve forward
// references.
ValueList.ResolveConstantForwardRefs();
return false;
}
/// RememberAndSkipFunctionBody - When we see the block for a function body,
/// remember where it is and then skip it. This lets us lazily deserialize the
/// functions.
bool BitcodeReader::RememberAndSkipFunctionBody() {
// Get the function we are talking about.
if (FunctionsWithBodies.empty())
return Error("Insufficient function protos");
Function *Fn = FunctionsWithBodies.back();
FunctionsWithBodies.pop_back();
// Save the current stream state.
uint64_t CurBit = Stream.GetCurrentBitNo();
DeferredFunctionInfo[Fn] = CurBit;
// Skip over the function block for now.
if (Stream.SkipBlock())
return Error("Malformed block record");
return false;
}
bool BitcodeReader::ParseModule() {
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
std::vector<std::string> SectionTable;
std::vector<std::string> GCTable;
// Read all the records for this module.
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of module block");
// Patch the initializers for globals and aliases up.
ResolveGlobalAndAliasInits();
if (!GlobalInits.empty() || !AliasInits.empty())
return Error("Malformed global initializer set");
if (!FunctionsWithBodies.empty())
return Error("Too few function bodies found");
// Look for intrinsic functions which need to be upgraded at some point
for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
Function* NewFn;
if (UpgradeIntrinsicFunction(FI, NewFn))
UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
}
// Look for global variables which need to be renamed.
for (Module::global_iterator
GI = TheModule->global_begin(), GE = TheModule->global_end();
GI != GE; ++GI)
UpgradeGlobalVariable(GI);
// Force deallocation of memory for these vectors to favor the client that
// want lazy deserialization.
std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
std::vector<Function*>().swap(FunctionsWithBodies);
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
default: // Skip unknown content.
if (Stream.SkipBlock())
return Error("Malformed block record");
break;
case bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock())
return Error("Malformed BlockInfoBlock");
break;
case bitc::PARAMATTR_BLOCK_ID:
if (ParseAttributeBlock())
return true;
break;
case bitc::TYPE_BLOCK_ID_NEW:
if (ParseTypeTable())
return true;
break;
case bitc::TYPE_BLOCK_ID_OLD:
if (ParseOldTypeTable())
return true;
break;
case bitc::TYPE_SYMTAB_BLOCK_ID_OLD:
if (ParseOldTypeSymbolTable())
return true;
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (ParseValueSymbolTable())
return true;
break;
case bitc::CONSTANTS_BLOCK_ID:
if (ParseConstants() || ResolveGlobalAndAliasInits())
return true;
break;
case bitc::METADATA_BLOCK_ID:
if (ParseMetadata())
return true;
break;
case bitc::FUNCTION_BLOCK_ID:
// If this is the first function body we've seen, reverse the
// FunctionsWithBodies list.
if (!HasReversedFunctionsWithBodies) {
std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
HasReversedFunctionsWithBodies = true;
}
if (RememberAndSkipFunctionBody())
return true;
break;
}
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
switch (Stream.ReadRecord(Code, Record)) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
if (Record.size() < 1)
return Error("Malformed MODULE_CODE_VERSION");
// Only version #0 is supported so far.
if (Record[0] != 0)
return Error("Unknown bitstream version!");
break;
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_TRIPLE record");
TheModule->setTargetTriple(S);
break;
}
case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_DATALAYOUT record");
TheModule->setDataLayout(S);
break;
}
case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_ASM record");
TheModule->setModuleInlineAsm(S);
break;
}
case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_DEPLIB record");
TheModule->addLibrary(S);
break;
}
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_SECTIONNAME record");
SectionTable.push_back(S);
break;
}
case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_GCNAME record");
GCTable.push_back(S);
break;
}
// GLOBALVAR: [pointer type, isconst, initid,
// linkage, alignment, section, visibility, threadlocal,
// unnamed_addr]
case bitc::MODULE_CODE_GLOBALVAR: {
if (Record.size() < 6)
return Error("Invalid MODULE_CODE_GLOBALVAR record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
if (!Ty->isPointerTy())
return Error("Global not a pointer type!");
unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
Ty = cast<PointerType>(Ty)->getElementType();
bool isConstant = Record[1];
GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
unsigned Alignment = (1 << Record[4]) >> 1;
std::string Section;
if (Record[5]) {
if (Record[5]-1 >= SectionTable.size())
return Error("Invalid section ID");
Section = SectionTable[Record[5]-1];
}
GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
if (Record.size() > 6)
Visibility = GetDecodedVisibility(Record[6]);
bool isThreadLocal = false;
if (Record.size() > 7)
isThreadLocal = Record[7];
bool UnnamedAddr = false;
if (Record.size() > 8)
UnnamedAddr = Record[8];
GlobalVariable *NewGV =
new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
isThreadLocal, AddressSpace);
NewGV->setAlignment(Alignment);
if (!Section.empty())
NewGV->setSection(Section);
NewGV->setVisibility(Visibility);
NewGV->setThreadLocal(isThreadLocal);
NewGV->setUnnamedAddr(UnnamedAddr);
ValueList.push_back(NewGV);
// Remember which value to use for the global initializer.
if (unsigned InitID = Record[2])
GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
break;
}
// FUNCTION: [type, callingconv, isproto, linkage, paramattr,
// alignment, section, visibility, gc, unnamed_addr]
case bitc::MODULE_CODE_FUNCTION: {
if (Record.size() < 8)
return Error("Invalid MODULE_CODE_FUNCTION record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
if (!Ty->isPointerTy())
return Error("Function not a pointer type!");
FunctionType *FTy =
dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
if (!FTy)
return Error("Function not a pointer to function type!");
Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
"", TheModule);
Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
bool isProto = Record[2];
Func->setLinkage(GetDecodedLinkage(Record[3]));
Func->setAttributes(getAttributes(Record[4]));
Func->setAlignment((1 << Record[5]) >> 1);
if (Record[6]) {
if (Record[6]-1 >= SectionTable.size())
return Error("Invalid section ID");
Func->setSection(SectionTable[Record[6]-1]);
}
Func->setVisibility(GetDecodedVisibility(Record[7]));
if (Record.size() > 8 && Record[8]) {
if (Record[8]-1 > GCTable.size())
return Error("Invalid GC ID");
Func->setGC(GCTable[Record[8]-1].c_str());
}
bool UnnamedAddr = false;
if (Record.size() > 9)
UnnamedAddr = Record[9];
Func->setUnnamedAddr(UnnamedAddr);
ValueList.push_back(Func);
// If this is a function with a body, remember the prototype we are
// creating now, so that we can match up the body with them later.
if (!isProto)
FunctionsWithBodies.push_back(Func);
break;
}
// ALIAS: [alias type, aliasee val#, linkage]
// ALIAS: [alias type, aliasee val#, linkage, visibility]
case bitc::MODULE_CODE_ALIAS: {
if (Record.size() < 3)
return Error("Invalid MODULE_ALIAS record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty) return Error("Invalid MODULE_ALIAS record");
if (!Ty->isPointerTy())
return Error("Function not a pointer type!");
GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
"", 0, TheModule);
// Old bitcode files didn't have visibility field.
if (Record.size() > 3)
NewGA->setVisibility(GetDecodedVisibility(Record[3]));
ValueList.push_back(NewGA);
AliasInits.push_back(std::make_pair(NewGA, Record[1]));
break;
}
/// MODULE_CODE_PURGEVALS: [numvals]
case bitc::MODULE_CODE_PURGEVALS:
// Trim down the value list to the specified size.
if (Record.size() < 1 || Record[0] > ValueList.size())
return Error("Invalid MODULE_PURGEVALS record");
ValueList.shrinkTo(Record[0]);
break;
}
Record.clear();
}
return Error("Premature end of bitstream");
}
bool BitcodeReader::ParseBitcodeInto(Module *M) {
TheModule = 0;
unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
if (Buffer->getBufferSize() & 3) {
if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
return Error("Invalid bitcode signature");
else
return Error("Bitcode stream should be a multiple of 4 bytes in length");
}
// If we have a wrapper header, parse it and ignore the non-bc file contents.
// The magic number is 0x0B17C0DE stored in little endian.
if (isBitcodeWrapper(BufPtr, BufEnd))
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
return Error("Invalid bitcode wrapper header");
StreamFile.init(BufPtr, BufEnd);
Stream.init(StreamFile);
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
Stream.Read(4) != 0x0 ||
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return Error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code != bitc::ENTER_SUBBLOCK) {
// The ranlib in xcode 4 will align archive members by appending newlines
// to the end of them. If this file size is a multiple of 4 but not 8, we
// have to read and ignore these final 4 bytes :-(
if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
Stream.AtEndOfStream())
return false;
return Error("Invalid record at top-level");
}
unsigned BlockID = Stream.ReadSubBlockID();
// We only know the MODULE subblock ID.
switch (BlockID) {
case bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock())
return Error("Malformed BlockInfoBlock");
break;
case bitc::MODULE_BLOCK_ID:
// Reject multiple MODULE_BLOCK's in a single bitstream.
if (TheModule)
return Error("Multiple MODULE_BLOCKs in same stream");
TheModule = M;
if (ParseModule())
return true;
break;
default:
if (Stream.SkipBlock())
return Error("Malformed block record");
break;
}
}
return false;
}
bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this module.
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of module block");
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
default: // Skip unknown content.
if (Stream.SkipBlock())
return Error("Malformed block record");
break;
}
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
switch (Stream.ReadRecord(Code, Record)) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
if (Record.size() < 1)
return Error("Malformed MODULE_CODE_VERSION");
// Only version #0 is supported so far.
if (Record[0] != 0)
return Error("Unknown bitstream version!");
break;
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_TRIPLE record");
Triple = S;
break;
}
}
Record.clear();
}
return Error("Premature end of bitstream");
}
bool BitcodeReader::ParseTriple(std::string &Triple) {
if (Buffer->getBufferSize() & 3)
return Error("Bitcode stream should be a multiple of 4 bytes in length");
unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
// If we have a wrapper header, parse it and ignore the non-bc file contents.
// The magic number is 0x0B17C0DE stored in little endian.
if (isBitcodeWrapper(BufPtr, BufEnd))
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
return Error("Invalid bitcode wrapper header");
StreamFile.init(BufPtr, BufEnd);
Stream.init(StreamFile);
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
Stream.Read(4) != 0x0 ||
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return Error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code != bitc::ENTER_SUBBLOCK)
return Error("Invalid record at top-level");
unsigned BlockID = Stream.ReadSubBlockID();
// We only know the MODULE subblock ID.
switch (BlockID) {
case bitc::MODULE_BLOCK_ID:
if (ParseModuleTriple(Triple))
return true;
break;
default:
if (Stream.SkipBlock())
return Error("Malformed block record");
break;
}
}
return false;
}
/// ParseMetadataAttachment - Parse metadata attachments.
bool BitcodeReader::ParseMetadataAttachment() {
if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
while(1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of PARAMATTR block");
break;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a metadata attachment record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
default: // Default behavior: ignore.
break;
case bitc::METADATA_ATTACHMENT: {
unsigned RecordLength = Record.size();
if (Record.empty() || (RecordLength - 1) % 2 == 1)
return Error ("Invalid METADATA_ATTACHMENT reader!");
Instruction *Inst = InstructionList[Record[0]];
for (unsigned i = 1; i != RecordLength; i = i+2) {
unsigned Kind = Record[i];
DenseMap<unsigned, unsigned>::iterator I =
MDKindMap.find(Kind);
if (I == MDKindMap.end())
return Error("Invalid metadata kind ID");
Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
Inst->setMetadata(I->second, cast<MDNode>(Node));
}
break;
}
}
}
return false;
}
/// ParseFunctionBody - Lazily parse the specified function body block.
bool BitcodeReader::ParseFunctionBody(Function *F) {
if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
return Error("Malformed block record");
InstructionList.clear();
unsigned ModuleValueListSize = ValueList.size();
unsigned ModuleMDValueListSize = MDValueList.size();
// Add all the function arguments to the value table.
for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
ValueList.push_back(I);
unsigned NextValueNo = ValueList.size();
BasicBlock *CurBB = 0;
unsigned CurBBNo = 0;
DebugLoc LastLoc;
// Read all the records.
SmallVector<uint64_t, 64> Record;
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of function block");
break;
}
if (Code == bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
default: // Skip unknown content.
if (Stream.SkipBlock())
return Error("Malformed block record");
break;
case bitc::CONSTANTS_BLOCK_ID:
if (ParseConstants()) return true;
NextValueNo = ValueList.size();
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (ParseValueSymbolTable()) return true;
break;
case bitc::METADATA_ATTACHMENT_ID:
if (ParseMetadataAttachment()) return true;
break;
case bitc::METADATA_BLOCK_ID:
if (ParseMetadata()) return true;
break;
}
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
Instruction *I = 0;
unsigned BitCode = Stream.ReadRecord(Code, Record);
switch (BitCode) {
default: // Default behavior: reject
return Error("Unknown instruction");
case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
if (Record.size() < 1 || Record[0] == 0)
return Error("Invalid DECLAREBLOCKS record");
// Create all the basic blocks for the function.
FunctionBBs.resize(Record[0]);
for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
FunctionBBs[i] = BasicBlock::Create(Context, "", F);
CurBB = FunctionBBs[0];
continue;
case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
// This record indicates that the last instruction is at the same
// location as the previous instruction with a location.
I = 0;
// Get the last instruction emitted.
if (CurBB && !CurBB->empty())
I = &CurBB->back();
else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
!FunctionBBs[CurBBNo-1]->empty())
I = &FunctionBBs[CurBBNo-1]->back();
if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
I->setDebugLoc(LastLoc);
I = 0;
continue;
case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
I = 0; // Get the last instruction emitted.
if (CurBB && !CurBB->empty())
I = &CurBB->back();
else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
!FunctionBBs[CurBBNo-1]->empty())
I = &FunctionBBs[CurBBNo-1]->back();
if (I == 0 || Record.size() < 4)
return Error("Invalid FUNC_CODE_DEBUG_LOC record");
unsigned Line = Record[0], Col = Record[1];
unsigned ScopeID = Record[2], IAID = Record[3];
MDNode *Scope = 0, *IA = 0;
if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
LastLoc = DebugLoc::get(Line, Col, Scope, IA);
I->setDebugLoc(LastLoc);
I = 0;
continue;
}
case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
unsigned OpNum = 0;
Value *LHS, *RHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
getValue(Record, OpNum, LHS->getType(), RHS) ||
OpNum+1 > Record.size())
return Error("Invalid BINOP record");
int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
if (Opc == -1) return Error("Invalid BINOP record");
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
InstructionList.push_back(I);
if (OpNum < Record.size()) {
if (Opc == Instruction::Add ||
Opc == Instruction::Sub ||
Opc == Instruction::Mul ||
Opc == Instruction::Shl) {
if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
} else if (Opc == Instruction::SDiv ||
Opc == Instruction::UDiv ||
Opc == Instruction::LShr ||
Opc == Instruction::AShr) {
if (Record[OpNum] & (1 << bitc::PEO_EXACT))
cast<BinaryOperator>(I)->setIsExact(true);
}
}
break;
}
case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
return Error("Invalid CAST record");
Type *ResTy = getTypeByID(Record[OpNum]);
int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
if (Opc == -1 || ResTy == 0)
return Error("Invalid CAST record");
I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
unsigned OpNum = 0;
Value *BasePtr;
if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
return Error("Invalid GEP record");
SmallVector<Value*, 16> GEPIdx;
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid GEP record");
GEPIdx.push_back(Op);
}
I = GetElementPtrInst::Create(BasePtr, GEPIdx);
InstructionList.push_back(I);
if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
cast<GetElementPtrInst>(I)->setIsInBounds(true);
break;
}
case bitc::FUNC_CODE_INST_EXTRACTVAL: {
// EXTRACTVAL: [opty, opval, n x indices]
unsigned OpNum = 0;
Value *Agg;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
return Error("Invalid EXTRACTVAL record");
SmallVector<unsigned, 4> EXTRACTVALIdx;
for (unsigned RecSize = Record.size();
OpNum != RecSize; ++OpNum) {
uint64_t Index = Record[OpNum];
if ((unsigned)Index != Index)
return Error("Invalid EXTRACTVAL index");
EXTRACTVALIdx.push_back((unsigned)Index);
}
I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INSERTVAL: {
// INSERTVAL: [opty, opval, opty, opval, n x indices]
unsigned OpNum = 0;
Value *Agg;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
return Error("Invalid INSERTVAL record");
Value *Val;
if (getValueTypePair(Record, OpNum, NextValueNo, Val))
return Error("Invalid INSERTVAL record");
SmallVector<unsigned, 4> INSERTVALIdx;
for (unsigned RecSize = Record.size();
OpNum != RecSize; ++OpNum) {
uint64_t Index = Record[OpNum];
if ((unsigned)Index != Index)
return Error("Invalid INSERTVAL index");
INSERTVALIdx.push_back((unsigned)Index);
}
I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
// obsolete form of select
// handles select i1 ... in old bitcode
unsigned OpNum = 0;
Value *TrueVal, *FalseVal, *Cond;
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
return Error("Invalid SELECT record");
I = SelectInst::Create(Cond, TrueVal, FalseVal);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
// new form of select
// handles select i1 or select [N x i1]
unsigned OpNum = 0;
Value *TrueVal, *FalseVal, *Cond;
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
getValueTypePair(Record, OpNum, NextValueNo, Cond))
return Error("Invalid SELECT record");
// select condition can be either i1 or [N x i1]
if (VectorType* vector_type =
dyn_cast<VectorType>(Cond->getType())) {
// expect <n x i1>
if (vector_type->getElementType() != Type::getInt1Ty(Context))
return Error("Invalid SELECT condition type");
} else {
// expect i1
if (Cond->getType() != Type::getInt1Ty(Context))
return Error("Invalid SELECT condition type");
}
I = SelectInst::Create(Cond, TrueVal, FalseVal);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
unsigned OpNum = 0;
Value *Vec, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
return Error("Invalid EXTRACTELT record");
I = ExtractElementInst::Create(Vec, Idx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
unsigned OpNum = 0;
Value *Vec, *Elt, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
getValue(Record, OpNum,
cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
return Error("Invalid INSERTELT record");
I = InsertElementInst::Create(Vec, Elt, Idx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
unsigned OpNum = 0;
Value *Vec1, *Vec2, *Mask;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
getValue(Record, OpNum, Vec1->getType(), Vec2))
return Error("Invalid SHUFFLEVEC record");
if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
return Error("Invalid SHUFFLEVEC record");
I = new ShuffleVectorInst(Vec1, Vec2, Mask);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
// Old form of ICmp/FCmp returning bool
// Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
// both legal on vectors but had different behaviour.
case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
// FCmp/ICmp returning bool or vector of bool
unsigned OpNum = 0;
Value *LHS, *RHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
getValue(Record, OpNum, LHS->getType(), RHS) ||
OpNum+1 != Record.size())
return Error("Invalid CMP record");
if (LHS->getType()->isFPOrFPVectorTy())
I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
else
I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
{
unsigned Size = Record.size();
if (Size == 0) {
I = ReturnInst::Create(Context);
InstructionList.push_back(I);
break;
}
unsigned OpNum = 0;
Value *Op = NULL;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid RET record");
if (OpNum != Record.size())
return Error("Invalid RET record");
I = ReturnInst::Create(Context, Op);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
if (Record.size() != 1 && Record.size() != 3)
return Error("Invalid BR record");
BasicBlock *TrueDest = getBasicBlock(Record[0]);
if (TrueDest == 0)
return Error("Invalid BR record");
if (Record.size() == 1) {
I = BranchInst::Create(TrueDest);
InstructionList.push_back(I);
}
else {
BasicBlock *FalseDest = getBasicBlock(Record[1]);
Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
if (FalseDest == 0 || Cond == 0)
return Error("Invalid BR record");
I = BranchInst::Create(TrueDest, FalseDest, Cond);
InstructionList.push_back(I);
}
break;
}
case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
if (Record.size() < 3 || (Record.size() & 1) == 0)
return Error("Invalid SWITCH record");
Type *OpTy = getTypeByID(Record[0]);
Value *Cond = getFnValueByID(Record[1], OpTy);
BasicBlock *Default = getBasicBlock(Record[2]);
if (OpTy == 0 || Cond == 0 || Default == 0)
return Error("Invalid SWITCH record");
unsigned NumCases = (Record.size()-3)/2;
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
InstructionList.push_back(SI);
for (unsigned i = 0, e = NumCases; i != e; ++i) {
ConstantInt *CaseVal =
dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
if (CaseVal == 0 || DestBB == 0) {
delete SI;
return Error("Invalid SWITCH record!");
}
SI->addCase(CaseVal, DestBB);
}
I = SI;
break;
}
case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
if (Record.size() < 2)
return Error("Invalid INDIRECTBR record");
Type *OpTy = getTypeByID(Record[0]);
Value *Address = getFnValueByID(Record[1], OpTy);
if (OpTy == 0 || Address == 0)
return Error("Invalid INDIRECTBR record");
unsigned NumDests = Record.size()-2;
IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
InstructionList.push_back(IBI);
for (unsigned i = 0, e = NumDests; i != e; ++i) {
if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
IBI->addDestination(DestBB);
} else {
delete IBI;
return Error("Invalid INDIRECTBR record!");
}
}
I = IBI;
break;
}
case bitc::FUNC_CODE_INST_INVOKE: {
// INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
if (Record.size() < 4) return Error("Invalid INVOKE record");
AttrListPtr PAL = getAttributes(Record[0]);
unsigned CCInfo = Record[1];
BasicBlock *NormalBB = getBasicBlock(Record[2]);
BasicBlock *UnwindBB = getBasicBlock(Record[3]);
unsigned OpNum = 4;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
return Error("Invalid INVOKE record");
PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
FunctionType *FTy = !CalleeTy ? 0 :
dyn_cast<FunctionType>(CalleeTy->getElementType());
// Check that the right number of fixed parameters are here.
if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
Record.size() < OpNum+FTy->getNumParams())
return Error("Invalid INVOKE record");
SmallVector<Value*, 16> Ops;
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
if (Ops.back() == 0) return Error("Invalid INVOKE record");
}
if (!FTy->isVarArg()) {
if (Record.size() != OpNum)
return Error("Invalid INVOKE record");
} else {
// Read type/value pairs for varargs params.
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid INVOKE record");
Ops.push_back(Op);
}
}
I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
InstructionList.push_back(I);
cast<InvokeInst>(I)->setCallingConv(
static_cast<CallingConv::ID>(CCInfo));
cast<InvokeInst>(I)->setAttributes(PAL);
break;
}
case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
unsigned Idx = 0;
Value *Val = 0;
if (getValueTypePair(Record, Idx, NextValueNo, Val))
return Error("Invalid RESUME record");
I = ResumeInst::Create(Val);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
I = new UnwindInst(Context);
InstructionList.push_back(I);
break;
case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
I = new UnreachableInst(Context);
InstructionList.push_back(I);
break;
case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
if (Record.size() < 1 || ((Record.size()-1)&1))
return Error("Invalid PHI record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty) return Error("Invalid PHI record");
PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
InstructionList.push_back(PN);
for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
Value *V = getFnValueByID(Record[1+i], Ty);
BasicBlock *BB = getBasicBlock(Record[2+i]);
if (!V || !BB) return Error("Invalid PHI record");
PN->addIncoming(V, BB);
}
I = PN;
break;
}
case bitc::FUNC_CODE_INST_LANDINGPAD: {
// LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
unsigned Idx = 0;
if (Record.size() < 4)
return Error("Invalid LANDINGPAD record");
Type *Ty = getTypeByID(Record[Idx++]);
if (!Ty) return Error("Invalid LANDINGPAD record");
Value *PersFn = 0;
if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
return Error("Invalid LANDINGPAD record");
bool IsCleanup = !!Record[Idx++];
unsigned NumClauses = Record[Idx++];
LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
LP->setCleanup(IsCleanup);
for (unsigned J = 0; J != NumClauses; ++J) {
LandingPadInst::ClauseType CT =
LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
Value *Val;
if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
delete LP;
return Error("Invalid LANDINGPAD record");
}
assert((CT != LandingPadInst::Catch ||
!isa<ArrayType>(Val->getType())) &&
"Catch clause has a invalid type!");
assert((CT != LandingPadInst::Filter ||
isa<ArrayType>(Val->getType())) &&
"Filter clause has invalid type!");
LP->addClause(Val);
}
I = LP;
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
if (Record.size() != 4)
return Error("Invalid ALLOCA record");
PointerType *Ty =
dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
Type *OpTy = getTypeByID(Record[1]);
Value *Size = getFnValueByID(Record[2], OpTy);
unsigned Align = Record[3];
if (!Ty || !Size) return Error("Invalid ALLOCA record");
I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
return Error("Invalid LOAD record");
I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_LOADATOMIC: {
// LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+4 != Record.size())
return Error("Invalid LOADATOMIC record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
if (Ordering == NotAtomic || Ordering == Release ||
Ordering == AcquireRelease)
return Error("Invalid LOADATOMIC record");
if (Ordering != NotAtomic && Record[OpNum] == 0)
return Error("Invalid LOADATOMIC record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
Ordering, SynchScope);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
unsigned OpNum = 0;
Value *Val, *Ptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
getValue(Record, OpNum,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+2 != Record.size())
return Error("Invalid STORE record");
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_STOREATOMIC: {
// STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
unsigned OpNum = 0;
Value *Val, *Ptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
getValue(Record, OpNum,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+4 != Record.size())
return Error("Invalid STOREATOMIC record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
if (Ordering == NotAtomic || Ordering == Acquire ||
Ordering == AcquireRelease)
return Error("Invalid STOREATOMIC record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
if (Ordering != NotAtomic && Record[OpNum] == 0)
return Error("Invalid STOREATOMIC record");
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
Ordering, SynchScope);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CMPXCHG: {
// CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
unsigned OpNum = 0;
Value *Ptr, *Cmp, *New;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
getValue(Record, OpNum,
cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
getValue(Record, OpNum,
cast<PointerType>(Ptr->getType())->getElementType(), New) ||
OpNum+3 != Record.size())
return Error("Invalid CMPXCHG record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
if (Ordering == NotAtomic || Ordering == Unordered)
return Error("Invalid CMPXCHG record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_ATOMICRMW: {
// ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
unsigned OpNum = 0;
Value *Ptr, *Val;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
getValue(Record, OpNum,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+4 != Record.size())
return Error("Invalid ATOMICRMW record");
AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
if (Operation < AtomicRMWInst::FIRST_BINOP ||
Operation > AtomicRMWInst::LAST_BINOP)
return Error("Invalid ATOMICRMW record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
if (Ordering == NotAtomic || Ordering == Unordered)
return Error("Invalid ATOMICRMW record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
if (2 != Record.size())
return Error("Invalid FENCE record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
if (Ordering == NotAtomic || Ordering == Unordered ||
Ordering == Monotonic)
return Error("Invalid FENCE record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
I = new FenceInst(Context, Ordering, SynchScope);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CALL: {
// CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
if (Record.size() < 3)
return Error("Invalid CALL record");
AttrListPtr PAL = getAttributes(Record[0]);
unsigned CCInfo = Record[1];
unsigned OpNum = 2;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
return Error("Invalid CALL record");
PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
FunctionType *FTy = 0;
if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
return Error("Invalid CALL record");
SmallVector<Value*, 16> Args;
// Read the fixed params.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
if (FTy->getParamType(i)->isLabelTy())
Args.push_back(getBasicBlock(Record[OpNum]));
else
Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
if (Args.back() == 0) return Error("Invalid CALL record");
}
// Read type/value pairs for varargs params.
if (!FTy->isVarArg()) {
if (OpNum != Record.size())
return Error("Invalid CALL record");
} else {
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid CALL record");
Args.push_back(Op);
}
}
I = CallInst::Create(Callee, Args);
InstructionList.push_back(I);
cast<CallInst>(I)->setCallingConv(
static_cast<CallingConv::ID>(CCInfo>>1));
cast<CallInst>(I)->setTailCall(CCInfo & 1);
cast<CallInst>(I)->setAttributes(PAL);
break;
}
case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
if (Record.size() < 3)
return Error("Invalid VAARG record");
Type *OpTy = getTypeByID(Record[0]);
Value *Op = getFnValueByID(Record[1], OpTy);
Type *ResTy = getTypeByID(Record[2]);
if (!OpTy || !Op || !ResTy)
return Error("Invalid VAARG record");
I = new VAArgInst(Op, ResTy);
InstructionList.push_back(I);
break;
}
}
// Add instruction to end of current BB. If there is no current BB, reject
// this file.
if (CurBB == 0) {
delete I;
return Error("Invalid instruction with no BB");
}
CurBB->getInstList().push_back(I);
// If this was a terminator instruction, move to the next block.
if (isa<TerminatorInst>(I)) {
++CurBBNo;
CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
}
// Non-void values get registered in the value table for future use.
if (I && !I->getType()->isVoidTy())
ValueList.AssignValue(I, NextValueNo++);
}
// Check the function list for unresolved values.
if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
if (A->getParent() == 0) {
// We found at least one unresolved value. Nuke them all to avoid leaks.
for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
A->replaceAllUsesWith(UndefValue::get(A->getType()));
delete A;
}
}
return Error("Never resolved value found in function!");
}
}
// FIXME: Check for unresolved forward-declared metadata references
// and clean up leaks.
// See if anything took the address of blocks in this function. If so,
// resolve them now.
DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
BlockAddrFwdRefs.find(F);
if (BAFRI != BlockAddrFwdRefs.end()) {
std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
unsigned BlockIdx = RefList[i].first;
if (BlockIdx >= FunctionBBs.size())
return Error("Invalid blockaddress block #");
GlobalVariable *FwdRef = RefList[i].second;
FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
FwdRef->eraseFromParent();
}
BlockAddrFwdRefs.erase(BAFRI);
}
// Trim the value list down to the size it was before we parsed this function.
ValueList.shrinkTo(ModuleValueListSize);
MDValueList.shrinkTo(ModuleMDValueListSize);
std::vector<BasicBlock*>().swap(FunctionBBs);
return false;
}
//===----------------------------------------------------------------------===//
// GVMaterializer implementation
//===----------------------------------------------------------------------===//
bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
if (const Function *F = dyn_cast<Function>(GV)) {
return F->isDeclaration() &&
DeferredFunctionInfo.count(const_cast<Function*>(F));
}
return false;
}
bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
Function *F = dyn_cast<Function>(GV);
// If it's not a function or is already material, ignore the request.
if (!F || !F->isMaterializable()) return false;
DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
// Move the bit stream to the saved position of the deferred function body.
Stream.JumpToBit(DFII->second);
if (ParseFunctionBody(F)) {
if (ErrInfo) *ErrInfo = ErrorString;
return true;
}
// Upgrade any old intrinsic calls in the function.
for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
E = UpgradedIntrinsics.end(); I != E; ++I) {
if (I->first != I->second) {
for (Value::use_iterator UI = I->first->use_begin(),
UE = I->first->use_end(); UI != UE; ) {
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
UpgradeIntrinsicCall(CI, I->second);
}
}
}
return false;
}
bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
const Function *F = dyn_cast<Function>(GV);
if (!F || F->isDeclaration())
return false;
return DeferredFunctionInfo.count(const_cast<Function*>(F));
}
void BitcodeReader::Dematerialize(GlobalValue *GV) {
Function *F = dyn_cast<Function>(GV);
// If this function isn't dematerializable, this is a noop.
if (!F || !isDematerializable(F))
return;
assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
// Just forget the function body, we can remat it later.
F->deleteBody();
}
bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
assert(M == TheModule &&
"Can only Materialize the Module this BitcodeReader is attached to.");
// Iterate over the module, deserializing any functions that are still on
// disk.
for (Module::iterator F = TheModule->begin(), E = TheModule->end();
F != E; ++F)
if (F->isMaterializable() &&
Materialize(F, ErrInfo))
return true;
// Upgrade any intrinsic calls that slipped through (should not happen!) and
// delete the old functions to clean up. We can't do this unless the entire
// module is materialized because there could always be another function body
// with calls to the old function.
for (std::vector<std::pair<Function*, Function*> >::iterator I =
UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
if (I->first != I->second) {
for (Value::use_iterator UI = I->first->use_begin(),
UE = I->first->use_end(); UI != UE; ) {
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
UpgradeIntrinsicCall(CI, I->second);
}
if (!I->first->use_empty())
I->first->replaceAllUsesWith(I->second);
I->first->eraseFromParent();
}
}
std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
// Upgrade to new EH scheme. N.B. This will go away in 3.1.
UpgradeExceptionHandling(M);
// Check debug info intrinsics.
CheckDebugInfoIntrinsics(TheModule);
return false;
}
//===----------------------------------------------------------------------===//
// External interface
//===----------------------------------------------------------------------===//
/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
///
Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
LLVMContext& Context,
std::string *ErrMsg) {
Module *M = new Module(Buffer->getBufferIdentifier(), Context);
BitcodeReader *R = new BitcodeReader(Buffer, Context);
M->setMaterializer(R);
if (R->ParseBitcodeInto(M)) {
if (ErrMsg)
*ErrMsg = R->getErrorString();
delete M; // Also deletes R.
return 0;
}
// Have the BitcodeReader dtor delete 'Buffer'.
R->setBufferOwned(true);
return M;
}
/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
/// If an error occurs, return null and fill in *ErrMsg if non-null.
Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
std::string *ErrMsg){
Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
if (!M) return 0;
// Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
// there was an error.
static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
// Read in the entire module, and destroy the BitcodeReader.
if (M->MaterializeAllPermanently(ErrMsg)) {
delete M;
return 0;
}
return M;
}
std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
LLVMContext& Context,
std::string *ErrMsg) {
BitcodeReader *R = new BitcodeReader(Buffer, Context);
// Don't let the BitcodeReader dtor delete 'Buffer'.
R->setBufferOwned(false);
std::string Triple("");
if (R->ParseTriple(Triple))
if (ErrMsg)
*ErrMsg = R->getErrorString();
delete R;
return Triple;
}