HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Android 10
|
10.0.0_r6
下载
查看原文件
收藏
根目录
external
swiftshader
third_party
LLVM
lib
CodeGen
SelectionDAG
DAGCombiner.cpp
//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run // both before and after the DAG is legalized. // // This pass is not a substitute for the LLVM IR instcombine pass. This pass is // primarily intended to handle simplification opportunities that are implicit // in the LLVM IR and exposed by the various codegen lowering phases. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dagcombine" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/DerivedTypes.h" #include "llvm/LLVMContext.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include
using namespace llvm; STATISTIC(NodesCombined , "Number of dag nodes combined"); STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); namespace { static cl::opt
CombinerAA("combiner-alias-analysis", cl::Hidden, cl::desc("Turn on alias analysis during testing")); static cl::opt
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, cl::desc("Include global information in alias analysis")); //------------------------------ DAGCombiner ---------------------------------// class DAGCombiner { SelectionDAG &DAG; const TargetLowering &TLI; CombineLevel Level; CodeGenOpt::Level OptLevel; bool LegalOperations; bool LegalTypes; // Worklist of all of the nodes that need to be simplified. std::vector
WorkList; // AA - Used for DAG load/store alias analysis. AliasAnalysis &AA; /// AddUsersToWorkList - When an instruction is simplified, add all users of /// the instruction to the work lists because they might get more simplified /// now. /// void AddUsersToWorkList(SDNode *N) { for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) AddToWorkList(*UI); } /// visit - call the node-specific routine that knows how to fold each /// particular type of node. SDValue visit(SDNode *N); public: /// AddToWorkList - Add to the work list making sure it's instance is at the /// the back (next to be processed.) void AddToWorkList(SDNode *N) { removeFromWorkList(N); WorkList.push_back(N); } /// removeFromWorkList - remove all instances of N from the worklist. /// void removeFromWorkList(SDNode *N) { WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N), WorkList.end()); } SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, bool AddTo = true); SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { return CombineTo(N, &Res, 1, AddTo); } SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true) { SDValue To[] = { Res0, Res1 }; return CombineTo(N, To, 2, AddTo); } void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); private: /// SimplifyDemandedBits - Check the specified integer node value to see if /// it can be simplified or if things it uses can be simplified by bit /// propagation. If so, return true. bool SimplifyDemandedBits(SDValue Op) { unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); APInt Demanded = APInt::getAllOnesValue(BitWidth); return SimplifyDemandedBits(Op, Demanded); } bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); bool CombineToPreIndexedLoadStore(SDNode *N); bool CombineToPostIndexedLoadStore(SDNode *N); void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); SDValue SExtPromoteOperand(SDValue Op, EVT PVT); SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); SDValue PromoteIntBinOp(SDValue Op); SDValue PromoteIntShiftOp(SDValue Op); SDValue PromoteExtend(SDValue Op); bool PromoteLoad(SDValue Op); void ExtendSetCCUses(SmallVector
SetCCs, SDValue Trunc, SDValue ExtLoad, DebugLoc DL, ISD::NodeType ExtType); /// combine - call the node-specific routine that knows how to fold each /// particular type of node. If that doesn't do anything, try the /// target-specific DAG combines. SDValue combine(SDNode *N); // Visitation implementation - Implement dag node combining for different // node types. The semantics are as follows: // Return Value: // SDValue.getNode() == 0 - No change was made // SDValue.getNode() == N - N was replaced, is dead and has been handled. // otherwise - N should be replaced by the returned Operand. // SDValue visitTokenFactor(SDNode *N); SDValue visitMERGE_VALUES(SDNode *N); SDValue visitADD(SDNode *N); SDValue visitSUB(SDNode *N); SDValue visitADDC(SDNode *N); SDValue visitADDE(SDNode *N); SDValue visitMUL(SDNode *N); SDValue visitSDIV(SDNode *N); SDValue visitUDIV(SDNode *N); SDValue visitSREM(SDNode *N); SDValue visitUREM(SDNode *N); SDValue visitMULHU(SDNode *N); SDValue visitMULHS(SDNode *N); SDValue visitSMUL_LOHI(SDNode *N); SDValue visitUMUL_LOHI(SDNode *N); SDValue visitSMULO(SDNode *N); SDValue visitUMULO(SDNode *N); SDValue visitSDIVREM(SDNode *N); SDValue visitUDIVREM(SDNode *N); SDValue visitAND(SDNode *N); SDValue visitOR(SDNode *N); SDValue visitXOR(SDNode *N); SDValue SimplifyVBinOp(SDNode *N); SDValue visitSHL(SDNode *N); SDValue visitSRA(SDNode *N); SDValue visitSRL(SDNode *N); SDValue visitCTLZ(SDNode *N); SDValue visitCTTZ(SDNode *N); SDValue visitCTPOP(SDNode *N); SDValue visitSELECT(SDNode *N); SDValue visitSELECT_CC(SDNode *N); SDValue visitSETCC(SDNode *N); SDValue visitSIGN_EXTEND(SDNode *N); SDValue visitZERO_EXTEND(SDNode *N); SDValue visitANY_EXTEND(SDNode *N); SDValue visitSIGN_EXTEND_INREG(SDNode *N); SDValue visitTRUNCATE(SDNode *N); SDValue visitBITCAST(SDNode *N); SDValue visitBUILD_PAIR(SDNode *N); SDValue visitFADD(SDNode *N); SDValue visitFSUB(SDNode *N); SDValue visitFMUL(SDNode *N); SDValue visitFDIV(SDNode *N); SDValue visitFREM(SDNode *N); SDValue visitFCOPYSIGN(SDNode *N); SDValue visitSINT_TO_FP(SDNode *N); SDValue visitUINT_TO_FP(SDNode *N); SDValue visitFP_TO_SINT(SDNode *N); SDValue visitFP_TO_UINT(SDNode *N); SDValue visitFP_ROUND(SDNode *N); SDValue visitFP_ROUND_INREG(SDNode *N); SDValue visitFP_EXTEND(SDNode *N); SDValue visitFNEG(SDNode *N); SDValue visitFABS(SDNode *N); SDValue visitBRCOND(SDNode *N); SDValue visitBR_CC(SDNode *N); SDValue visitLOAD(SDNode *N); SDValue visitSTORE(SDNode *N); SDValue visitINSERT_VECTOR_ELT(SDNode *N); SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); SDValue visitBUILD_VECTOR(SDNode *N); SDValue visitCONCAT_VECTORS(SDNode *N); SDValue visitEXTRACT_SUBVECTOR(SDNode *N); SDValue visitVECTOR_SHUFFLE(SDNode *N); SDValue visitMEMBARRIER(SDNode *N); SDValue XformToShuffleWithZero(SDNode *N); SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS); SDValue visitShiftByConstant(SDNode *N, unsigned Amt); bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2); SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, ISD::CondCode CC, bool NotExtCompare = false); SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, DebugLoc DL, bool foldBooleans = true); SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, unsigned HiOp); SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); SDValue BuildSDIV(SDNode *N); SDValue BuildUDIV(SDNode *N); SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, bool DemandHighBits = true); SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL); SDValue ReduceLoadWidth(SDNode *N); SDValue ReduceLoadOpStoreWidth(SDNode *N); SDValue TransformFPLoadStorePair(SDNode *N); SDValue GetDemandedBits(SDValue V, const APInt &Mask); /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes, /// looking for aliasing nodes and adding them to the Aliases vector. void GatherAllAliases(SDNode *N, SDValue OriginalChain, SmallVector
&Aliases); /// isAlias - Return true if there is any possibility that the two addresses /// overlap. bool isAlias(SDValue Ptr1, int64_t Size1, const Value *SrcValue1, int SrcValueOffset1, unsigned SrcValueAlign1, const MDNode *TBAAInfo1, SDValue Ptr2, int64_t Size2, const Value *SrcValue2, int SrcValueOffset2, unsigned SrcValueAlign2, const MDNode *TBAAInfo2) const; /// FindAliasInfo - Extracts the relevant alias information from the memory /// node. Returns true if the operand was a load. bool FindAliasInfo(SDNode *N, SDValue &Ptr, int64_t &Size, const Value *&SrcValue, int &SrcValueOffset, unsigned &SrcValueAlignment, const MDNode *&TBAAInfo) const; /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, /// looking for a better chain (aliasing node.) SDValue FindBetterChain(SDNode *N, SDValue Chain); public: DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) : DAG(D), TLI(D.getTargetLoweringInfo()), Level(Unrestricted), OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {} /// Run - runs the dag combiner on all nodes in the work list void Run(CombineLevel AtLevel); SelectionDAG &getDAG() const { return DAG; } /// getShiftAmountTy - Returns a type large enough to hold any valid /// shift amount - before type legalization these can be huge. EVT getShiftAmountTy(EVT LHSTy) { return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy(); } /// isTypeLegal - This method returns true if we are running before type /// legalization or if the specified VT is legal. bool isTypeLegal(const EVT &VT) { if (!LegalTypes) return true; return TLI.isTypeLegal(VT); } }; } namespace { /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted /// nodes from the worklist. class WorkListRemover : public SelectionDAG::DAGUpdateListener { DAGCombiner &DC; public: explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {} virtual void NodeDeleted(SDNode *N, SDNode *E) { DC.removeFromWorkList(N); } virtual void NodeUpdated(SDNode *N) { // Ignore updates. } }; } //===----------------------------------------------------------------------===// // TargetLowering::DAGCombinerInfo implementation //===----------------------------------------------------------------------===// void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { ((DAGCombiner*)DC)->AddToWorkList(N); } void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) { ((DAGCombiner*)DC)->removeFromWorkList(N); } SDValue TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, const std::vector
&To, bool AddTo) { return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); } SDValue TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, SDValue Res, bool AddTo) { return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); } SDValue TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); } void TargetLowering::DAGCombinerInfo:: CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); } //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// /// isNegatibleForFree - Return 1 if we can compute the negated form of the /// specified expression for the same cost as the expression itself, or 2 if we /// can compute the negated form more cheaply than the expression itself. static char isNegatibleForFree(SDValue Op, bool LegalOperations, unsigned Depth = 0) { // No compile time optimizations on this type. if (Op.getValueType() == MVT::ppcf128) return 0; // fneg is removable even if it has multiple uses. if (Op.getOpcode() == ISD::FNEG) return 2; // Don't allow anything with multiple uses. if (!Op.hasOneUse()) return 0; // Don't recurse exponentially. if (Depth > 6) return 0; switch (Op.getOpcode()) { default: return false; case ISD::ConstantFP: // Don't invert constant FP values after legalize. The negated constant // isn't necessarily legal. return LegalOperations ? 0 : 1; case ISD::FADD: // FIXME: determine better conditions for this xform. if (!UnsafeFPMath) return 0; // fold (fsub (fadd A, B)) -> (fsub (fneg A), B) if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1)) return V; // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1); case ISD::FSUB: // We can't turn -(A-B) into B-A when we honor signed zeros. if (!UnsafeFPMath) return 0; // fold (fneg (fsub A, B)) -> (fsub B, A) return 1; case ISD::FMUL: case ISD::FDIV: if (HonorSignDependentRoundingFPMath()) return 0; // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1)) return V; return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1); case ISD::FP_EXTEND: case ISD::FP_ROUND: case ISD::FSIN: return isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1); } } /// GetNegatedExpression - If isNegatibleForFree returns true, this function /// returns the newly negated expression. static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOperations, unsigned Depth = 0) { // fneg is removable even if it has multiple uses. if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); // Don't allow anything with multiple uses. assert(Op.hasOneUse() && "Unknown reuse!"); assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); switch (Op.getOpcode()) { default: llvm_unreachable("Unknown code"); case ISD::ConstantFP: { APFloat V = cast
(Op)->getValueAPF(); V.changeSign(); return DAG.getConstantFP(V, Op.getValueType()); } case ISD::FADD: // FIXME: determine better conditions for this xform. assert(UnsafeFPMath); // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1)) return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, LegalOperations, Depth+1), Op.getOperand(1)); // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), GetNegatedExpression(Op.getOperand(1), DAG, LegalOperations, Depth+1), Op.getOperand(0)); case ISD::FSUB: // We can't turn -(A-B) into B-A when we honor signed zeros. assert(UnsafeFPMath); // fold (fneg (fsub 0, B)) -> B if (ConstantFPSDNode *N0CFP = dyn_cast
(Op.getOperand(0))) if (N0CFP->getValueAPF().isZero()) return Op.getOperand(1); // fold (fneg (fsub A, B)) -> (fsub B, A) return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), Op.getOperand(1), Op.getOperand(0)); case ISD::FMUL: case ISD::FDIV: assert(!HonorSignDependentRoundingFPMath()); // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1)) return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, LegalOperations, Depth+1), Op.getOperand(1)); // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(), Op.getOperand(0), GetNegatedExpression(Op.getOperand(1), DAG, LegalOperations, Depth+1)); case ISD::FP_EXTEND: case ISD::FSIN: return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, LegalOperations, Depth+1)); case ISD::FP_ROUND: return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, LegalOperations, Depth+1), Op.getOperand(1)); } } // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc // that selects between the values 1 and 0, making it equivalent to a setcc. // Also, set the incoming LHS, RHS, and CC references to the appropriate // nodes based on the type of node we are checking. This simplifies life a // bit for the callers. static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, SDValue &CC) { if (N.getOpcode() == ISD::SETCC) { LHS = N.getOperand(0); RHS = N.getOperand(1); CC = N.getOperand(2); return true; } if (N.getOpcode() == ISD::SELECT_CC && N.getOperand(2).getOpcode() == ISD::Constant && N.getOperand(3).getOpcode() == ISD::Constant && cast
(N.getOperand(2))->getAPIntValue() == 1 && cast
(N.getOperand(3))->isNullValue()) { LHS = N.getOperand(0); RHS = N.getOperand(1); CC = N.getOperand(4); return true; } return false; } // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only // one use. If this is true, it allows the users to invert the operation for // free when it is profitable to do so. static bool isOneUseSetCC(SDValue N) { SDValue N0, N1, N2; if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) return true; return false; } SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL, SDValue N0, SDValue N1) { EVT VT = N0.getValueType(); if (N0.getOpcode() == Opc && isa
(N0.getOperand(1))) { if (isa
(N1)) { // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) SDValue OpNode = DAG.FoldConstantArithmetic(Opc, VT, cast
(N0.getOperand(1)), cast
(N1)); return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); } if (N0.hasOneUse()) { // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT, N0.getOperand(0), N1); AddToWorkList(OpNode.getNode()); return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); } } if (N1.getOpcode() == Opc && isa
(N1.getOperand(1))) { if (isa
(N0)) { // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) SDValue OpNode = DAG.FoldConstantArithmetic(Opc, VT, cast
(N1.getOperand(1)), cast
(N0)); return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); } if (N1.hasOneUse()) { // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT, N1.getOperand(0), N0); AddToWorkList(OpNode.getNode()); return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); } } return SDValue(); } SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, bool AddTo) { assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); ++NodesCombined; DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; To[0].getNode()->dump(&DAG); dbgs() << " and " << NumTo-1 << " other values\n"; for (unsigned i = 0, e = NumTo; i != e; ++i) assert((!To[i].getNode() || N->getValueType(i) == To[i].getValueType()) && "Cannot combine value to value of different type!")); WorkListRemover DeadNodes(*this); DAG.ReplaceAllUsesWith(N, To, &DeadNodes); if (AddTo) { // Push the new nodes and any users onto the worklist for (unsigned i = 0, e = NumTo; i != e; ++i) { if (To[i].getNode()) { AddToWorkList(To[i].getNode()); AddUsersToWorkList(To[i].getNode()); } } } // Finally, if the node is now dead, remove it from the graph. The node // may not be dead if the replacement process recursively simplified to // something else needing this node. if (N->use_empty()) { // Nodes can be reintroduced into the worklist. Make sure we do not // process a node that has been replaced. removeFromWorkList(N); // Finally, since the node is now dead, remove it from the graph. DAG.DeleteNode(N); } return SDValue(N, 0); } void DAGCombiner:: CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { // Replace all uses. If any nodes become isomorphic to other nodes and // are deleted, make sure to remove them from our worklist. WorkListRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes); // Push the new node and any (possibly new) users onto the worklist. AddToWorkList(TLO.New.getNode()); AddUsersToWorkList(TLO.New.getNode()); // Finally, if the node is now dead, remove it from the graph. The node // may not be dead if the replacement process recursively simplified to // something else needing this node. if (TLO.Old.getNode()->use_empty()) { removeFromWorkList(TLO.Old.getNode()); // If the operands of this node are only used by the node, they will now // be dead. Make sure to visit them first to delete dead nodes early. for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i) if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse()) AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode()); DAG.DeleteNode(TLO.Old.getNode()); } } /// SimplifyDemandedBits - Check the specified integer node value to see if /// it can be simplified or if things it uses can be simplified by bit /// propagation. If so, return true. bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); APInt KnownZero, KnownOne; if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) return false; // Revisit the node. AddToWorkList(Op.getNode()); // Replace the old value with the new one. ++NodesCombined; DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); dbgs() << '\n'); CommitTargetLoweringOpt(TLO); return true; } void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { DebugLoc dl = Load->getDebugLoc(); EVT VT = Load->getValueType(0); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; Trunc.getNode()->dump(&DAG); dbgs() << '\n'); WorkListRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc, &DeadNodes); DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1), &DeadNodes); removeFromWorkList(Load); DAG.DeleteNode(Load); AddToWorkList(Trunc.getNode()); } SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { Replace = false; DebugLoc dl = Op.getDebugLoc(); if (LoadSDNode *LD = dyn_cast
(Op)) { EVT MemVT = LD->getMemoryVT(); ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD : ISD::EXTLOAD) : LD->getExtensionType(); Replace = true; return DAG.getExtLoad(ExtType, dl, PVT, LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), MemVT, LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment()); } unsigned Opc = Op.getOpcode(); switch (Opc) { default: break; case ISD::AssertSext: return DAG.getNode(ISD::AssertSext, dl, PVT, SExtPromoteOperand(Op.getOperand(0), PVT), Op.getOperand(1)); case ISD::AssertZext: return DAG.getNode(ISD::AssertZext, dl, PVT, ZExtPromoteOperand(Op.getOperand(0), PVT), Op.getOperand(1)); case ISD::Constant: { unsigned ExtOpc = Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; return DAG.getNode(ExtOpc, dl, PVT, Op); } } if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) return SDValue(); return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); } SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) return SDValue(); EVT OldVT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); bool Replace = false; SDValue NewOp = PromoteOperand(Op, PVT, Replace); if (NewOp.getNode() == 0) return SDValue(); AddToWorkList(NewOp.getNode()); if (Replace) ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, DAG.getValueType(OldVT)); } SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { EVT OldVT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); bool Replace = false; SDValue NewOp = PromoteOperand(Op, PVT, Replace); if (NewOp.getNode() == 0) return SDValue(); AddToWorkList(NewOp.getNode()); if (Replace) ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); return DAG.getZeroExtendInReg(NewOp, dl, OldVT); } /// PromoteIntBinOp - Promote the specified integer binary operation if the /// target indicates it is beneficial. e.g. On x86, it's usually better to /// promote i16 operations to i32 since i16 instructions are longer. SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { if (!LegalOperations) return SDValue(); EVT VT = Op.getValueType(); if (VT.isVector() || !VT.isInteger()) return SDValue(); // If operation type is 'undesirable', e.g. i16 on x86, consider // promoting it. unsigned Opc = Op.getOpcode(); if (TLI.isTypeDesirableForOp(Opc, VT)) return SDValue(); EVT PVT = VT; // Consult target whether it is a good idea to promote this operation and // what's the right type to promote it to. if (TLI.IsDesirableToPromoteOp(Op, PVT)) { assert(PVT != VT && "Don't know what type to promote to!"); bool Replace0 = false; SDValue N0 = Op.getOperand(0); SDValue NN0 = PromoteOperand(N0, PVT, Replace0); if (NN0.getNode() == 0) return SDValue(); bool Replace1 = false; SDValue N1 = Op.getOperand(1); SDValue NN1; if (N0 == N1) NN1 = NN0; else { NN1 = PromoteOperand(N1, PVT, Replace1); if (NN1.getNode() == 0) return SDValue(); } AddToWorkList(NN0.getNode()); if (NN1.getNode()) AddToWorkList(NN1.getNode()); if (Replace0) ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); if (Replace1) ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); DebugLoc dl = Op.getDebugLoc(); return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(Opc, dl, PVT, NN0, NN1)); } return SDValue(); } /// PromoteIntShiftOp - Promote the specified integer shift operation if the /// target indicates it is beneficial. e.g. On x86, it's usually better to /// promote i16 operations to i32 since i16 instructions are longer. SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { if (!LegalOperations) return SDValue(); EVT VT = Op.getValueType(); if (VT.isVector() || !VT.isInteger()) return SDValue(); // If operation type is 'undesirable', e.g. i16 on x86, consider // promoting it. unsigned Opc = Op.getOpcode(); if (TLI.isTypeDesirableForOp(Opc, VT)) return SDValue(); EVT PVT = VT; // Consult target whether it is a good idea to promote this operation and // what's the right type to promote it to. if (TLI.IsDesirableToPromoteOp(Op, PVT)) { assert(PVT != VT && "Don't know what type to promote to!"); bool Replace = false; SDValue N0 = Op.getOperand(0); if (Opc == ISD::SRA) N0 = SExtPromoteOperand(Op.getOperand(0), PVT); else if (Opc == ISD::SRL) N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); else N0 = PromoteOperand(N0, PVT, Replace); if (N0.getNode() == 0) return SDValue(); AddToWorkList(N0.getNode()); if (Replace) ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); DebugLoc dl = Op.getDebugLoc(); return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); } return SDValue(); } SDValue DAGCombiner::PromoteExtend(SDValue Op) { if (!LegalOperations) return SDValue(); EVT VT = Op.getValueType(); if (VT.isVector() || !VT.isInteger()) return SDValue(); // If operation type is 'undesirable', e.g. i16 on x86, consider // promoting it. unsigned Opc = Op.getOpcode(); if (TLI.isTypeDesirableForOp(Opc, VT)) return SDValue(); EVT PVT = VT; // Consult target whether it is a good idea to promote this operation and // what's the right type to promote it to. if (TLI.IsDesirableToPromoteOp(Op, PVT)) { assert(PVT != VT && "Don't know what type to promote to!"); // fold (aext (aext x)) -> (aext x) // fold (aext (zext x)) -> (zext x) // fold (aext (sext x)) -> (sext x) DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0)); } return SDValue(); } bool DAGCombiner::PromoteLoad(SDValue Op) { if (!LegalOperations) return false; EVT VT = Op.getValueType(); if (VT.isVector() || !VT.isInteger()) return false; // If operation type is 'undesirable', e.g. i16 on x86, consider // promoting it. unsigned Opc = Op.getOpcode(); if (TLI.isTypeDesirableForOp(Opc, VT)) return false; EVT PVT = VT; // Consult target whether it is a good idea to promote this operation and // what's the right type to promote it to. if (TLI.IsDesirableToPromoteOp(Op, PVT)) { assert(PVT != VT && "Don't know what type to promote to!"); DebugLoc dl = Op.getDebugLoc(); SDNode *N = Op.getNode(); LoadSDNode *LD = cast
(N); EVT MemVT = LD->getMemoryVT(); ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD : ISD::EXTLOAD) : LD->getExtensionType(); SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT, LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), MemVT, LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment()); SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; Result.getNode()->dump(&DAG); dbgs() << '\n'); WorkListRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result, &DeadNodes); DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1), &DeadNodes); removeFromWorkList(N); DAG.DeleteNode(N); AddToWorkList(Result.getNode()); return true; } return false; } //===----------------------------------------------------------------------===// // Main DAG Combiner implementation //===----------------------------------------------------------------------===// void DAGCombiner::Run(CombineLevel AtLevel) { // set the instance variables, so that the various visit routines may use it. Level = AtLevel; LegalOperations = Level >= NoIllegalOperations; LegalTypes = Level >= NoIllegalTypes; // Add all the dag nodes to the worklist. WorkList.reserve(DAG.allnodes_size()); for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = DAG.allnodes_end(); I != E; ++I) WorkList.push_back(I); // Create a dummy node (which is not added to allnodes), that adds a reference // to the root node, preventing it from being deleted, and tracking any // changes of the root. HandleSDNode Dummy(DAG.getRoot()); // The root of the dag may dangle to deleted nodes until the dag combiner is // done. Set it to null to avoid confusion. DAG.setRoot(SDValue()); // while the worklist isn't empty, inspect the node on the end of it and // try and combine it. while (!WorkList.empty()) { SDNode *N = WorkList.back(); WorkList.pop_back(); // If N has no uses, it is dead. Make sure to revisit all N's operands once // N is deleted from the DAG, since they too may now be dead or may have a // reduced number of uses, allowing other xforms. if (N->use_empty() && N != &Dummy) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) AddToWorkList(N->getOperand(i).getNode()); DAG.DeleteNode(N); continue; } SDValue RV = combine(N); if (RV.getNode() == 0) continue; ++NodesCombined; // If we get back the same node we passed in, rather than a new node or // zero, we know that the node must have defined multiple values and // CombineTo was used. Since CombineTo takes care of the worklist // mechanics for us, we have no work to do in this case. if (RV.getNode() == N) continue; assert(N->getOpcode() != ISD::DELETED_NODE && RV.getNode()->getOpcode() != ISD::DELETED_NODE && "Node was deleted but visit returned new node!"); DEBUG(dbgs() << "\nReplacing.3 "; N->dump(&DAG); dbgs() << "\nWith: "; RV.getNode()->dump(&DAG); dbgs() << '\n'); // Transfer debug value. DAG.TransferDbgValues(SDValue(N, 0), RV); WorkListRemover DeadNodes(*this); if (N->getNumValues() == RV.getNode()->getNumValues()) DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes); else { assert(N->getValueType(0) == RV.getValueType() && N->getNumValues() == 1 && "Type mismatch"); SDValue OpV = RV; DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes); } // Push the new node and any users onto the worklist AddToWorkList(RV.getNode()); AddUsersToWorkList(RV.getNode()); // Add any uses of the old node to the worklist in case this node is the // last one that uses them. They may become dead after this node is // deleted. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) AddToWorkList(N->getOperand(i).getNode()); // Finally, if the node is now dead, remove it from the graph. The node // may not be dead if the replacement process recursively simplified to // something else needing this node. if (N->use_empty()) { // Nodes can be reintroduced into the worklist. Make sure we do not // process a node that has been replaced. removeFromWorkList(N); // Finally, since the node is now dead, remove it from the graph. DAG.DeleteNode(N); } } // If the root changed (e.g. it was a dead load, update the root). DAG.setRoot(Dummy.getValue()); } SDValue DAGCombiner::visit(SDNode *N) { switch (N->getOpcode()) { default: break; case ISD::TokenFactor: return visitTokenFactor(N); case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); case ISD::ADD: return visitADD(N); case ISD::SUB: return visitSUB(N); case ISD::ADDC: return visitADDC(N); case ISD::ADDE: return visitADDE(N); case ISD::MUL: return visitMUL(N); case ISD::SDIV: return visitSDIV(N); case ISD::UDIV: return visitUDIV(N); case ISD::SREM: return visitSREM(N); case ISD::UREM: return visitUREM(N); case ISD::MULHU: return visitMULHU(N); case ISD::MULHS: return visitMULHS(N); case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); case ISD::SMULO: return visitSMULO(N); case ISD::UMULO: return visitUMULO(N); case ISD::SDIVREM: return visitSDIVREM(N); case ISD::UDIVREM: return visitUDIVREM(N); case ISD::AND: return visitAND(N); case ISD::OR: return visitOR(N); case ISD::XOR: return visitXOR(N); case ISD::SHL: return visitSHL(N); case ISD::SRA: return visitSRA(N); case ISD::SRL: return visitSRL(N); case ISD::CTLZ: return visitCTLZ(N); case ISD::CTTZ: return visitCTTZ(N); case ISD::CTPOP: return visitCTPOP(N); case ISD::SELECT: return visitSELECT(N); case ISD::SELECT_CC: return visitSELECT_CC(N); case ISD::SETCC: return visitSETCC(N); case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); case ISD::ANY_EXTEND: return visitANY_EXTEND(N); case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); case ISD::TRUNCATE: return visitTRUNCATE(N); case ISD::BITCAST: return visitBITCAST(N); case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); case ISD::FADD: return visitFADD(N); case ISD::FSUB: return visitFSUB(N); case ISD::FMUL: return visitFMUL(N); case ISD::FDIV: return visitFDIV(N); case ISD::FREM: return visitFREM(N); case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); case ISD::FP_ROUND: return visitFP_ROUND(N); case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); case ISD::FP_EXTEND: return visitFP_EXTEND(N); case ISD::FNEG: return visitFNEG(N); case ISD::FABS: return visitFABS(N); case ISD::BRCOND: return visitBRCOND(N); case ISD::BR_CC: return visitBR_CC(N); case ISD::LOAD: return visitLOAD(N); case ISD::STORE: return visitSTORE(N); case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); case ISD::MEMBARRIER: return visitMEMBARRIER(N); } return SDValue(); } SDValue DAGCombiner::combine(SDNode *N) { SDValue RV = visit(N); // If nothing happened, try a target-specific DAG combine. if (RV.getNode() == 0) { assert(N->getOpcode() != ISD::DELETED_NODE && "Node was deleted but visit returned NULL!"); if (N->getOpcode() >= ISD::BUILTIN_OP_END || TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { // Expose the DAG combiner to the target combiner impls. TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this); RV = TLI.PerformDAGCombine(N, DagCombineInfo); } } // If nothing happened still, try promoting the operation. if (RV.getNode() == 0) { switch (N->getOpcode()) { default: break; case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: RV = PromoteIntBinOp(SDValue(N, 0)); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: RV = PromoteIntShiftOp(SDValue(N, 0)); break; case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: RV = PromoteExtend(SDValue(N, 0)); break; case ISD::LOAD: if (PromoteLoad(SDValue(N, 0))) RV = SDValue(N, 0); break; } } // If N is a commutative binary node, try commuting it to enable more // sdisel CSE. if (RV.getNode() == 0 && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && N->getNumValues() == 1) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // Constant operands are canonicalized to RHS. if (isa
(N0) || !isa
(N1)) { SDValue Ops[] = { N1, N0 }; SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 2); if (CSENode) return SDValue(CSENode, 0); } } return RV; } /// getInputChainForNode - Given a node, return its input chain if it has one, /// otherwise return a null sd operand. static SDValue getInputChainForNode(SDNode *N) { if (unsigned NumOps = N->getNumOperands()) { if (N->getOperand(0).getValueType() == MVT::Other) return N->getOperand(0); else if (N->getOperand(NumOps-1).getValueType() == MVT::Other) return N->getOperand(NumOps-1); for (unsigned i = 1; i < NumOps-1; ++i) if (N->getOperand(i).getValueType() == MVT::Other) return N->getOperand(i); } return SDValue(); } SDValue DAGCombiner::visitTokenFactor(SDNode *N) { // If N has two operands, where one has an input chain equal to the other, // the 'other' chain is redundant. if (N->getNumOperands() == 2) { if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) return N->getOperand(0); if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) return N->getOperand(1); } SmallVector
TFs; // List of token factors to visit. SmallVector
Ops; // Ops for replacing token factor. SmallPtrSet
SeenOps; bool Changed = false; // If we should replace this token factor. // Start out with this token factor. TFs.push_back(N); // Iterate through token factors. The TFs grows when new token factors are // encountered. for (unsigned i = 0; i < TFs.size(); ++i) { SDNode *TF = TFs[i]; // Check each of the operands. for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) { SDValue Op = TF->getOperand(i); switch (Op.getOpcode()) { case ISD::EntryToken: // Entry tokens don't need to be added to the list. They are // rededundant. Changed = true; break; case ISD::TokenFactor: if (Op.hasOneUse() && std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { // Queue up for processing. TFs.push_back(Op.getNode()); // Clean up in case the token factor is removed. AddToWorkList(Op.getNode()); Changed = true; break; } // Fall thru default: // Only add if it isn't already in the list. if (SeenOps.insert(Op.getNode())) Ops.push_back(Op); else Changed = true; break; } } } SDValue Result; // If we've change things around then replace token factor. if (Changed) { if (Ops.empty()) { // The entry token is the only possible outcome. Result = DAG.getEntryNode(); } else { // New and improved token factor. Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other, &Ops[0], Ops.size()); } // Don't add users to work list. return CombineTo(N, Result, false); } return Result; } /// MERGE_VALUES can always be eliminated. SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { WorkListRemover DeadNodes(*this); // Replacing results may cause a different MERGE_VALUES to suddenly // be CSE'd with N, and carry its uses with it. Iterate until no // uses remain, to ensure that the node can be safely deleted. do { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i), &DeadNodes); } while (!N->use_empty()); removeFromWorkList(N); DAG.DeleteNode(N); return SDValue(N, 0); // Return N so it doesn't get rechecked! } static SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1, SelectionDAG &DAG) { EVT VT = N0.getValueType(); SDValue N00 = N0.getOperand(0); SDValue N01 = N0.getOperand(1); ConstantSDNode *N01C = dyn_cast
(N01); if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() && isa
(N00.getOperand(1))) { // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<
getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (add x, undef) -> undef if (N0.getOpcode() == ISD::UNDEF) return N0; if (N1.getOpcode() == ISD::UNDEF) return N1; // fold (add c1, c2) -> c1+c2 if (N0C && N1C) return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0); // fold (add x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold (add Sym, c) -> Sym+c if (GlobalAddressSDNode *GA = dyn_cast
(N0)) if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C && GA->getOpcode() == ISD::GlobalAddress) return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT, GA->getOffset() + (uint64_t)N1C->getSExtValue()); // fold ((c1-A)+c2) -> (c1+c2)-A if (N1C && N0.getOpcode() == ISD::SUB) if (ConstantSDNode *N0C = dyn_cast
(N0.getOperand(0))) return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, DAG.getConstant(N1C->getAPIntValue()+ N0C->getAPIntValue(), VT), N0.getOperand(1)); // reassociate add SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1); if (RADD.getNode() != 0) return RADD; // fold ((0-A) + B) -> B-A if (N0.getOpcode() == ISD::SUB && isa
(N0.getOperand(0)) && cast
(N0.getOperand(0))->isNullValue()) return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1)); // fold (A + (0-B)) -> A-B if (N1.getOpcode() == ISD::SUB && isa
(N1.getOperand(0)) && cast
(N1.getOperand(0))->isNullValue()) return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1)); // fold (A+(B-A)) -> B if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) return N1.getOperand(0); // fold ((B-A)+A) -> B if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) return N0.getOperand(0); // fold (A+(B-(A+C))) to (B-C) if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && N0 == N1.getOperand(1).getOperand(0)) return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0), N1.getOperand(1).getOperand(1)); // fold (A+(B-(C+A))) to (B-C) if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && N0 == N1.getOperand(1).getOperand(1)) return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0), N1.getOperand(1).getOperand(0)); // fold (A+((B-A)+or-C)) to (B+or-C) if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && N1.getOperand(0).getOpcode() == ISD::SUB && N0 == N1.getOperand(0).getOperand(1)) return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT, N1.getOperand(0).getOperand(0), N1.getOperand(1)); // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { SDValue N00 = N0.getOperand(0); SDValue N01 = N0.getOperand(1); SDValue N10 = N1.getOperand(0); SDValue N11 = N1.getOperand(1); if (isa
(N00) || isa
(N10)) return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10), DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11)); } if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); // fold (a+b) -> (a|b) iff a and b share no bits. if (VT.isInteger() && !VT.isVector()) { APInt LHSZero, LHSOne; APInt RHSZero, RHSOne; APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()); DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); if (LHSZero.getBoolValue()) { DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); // If all possibly-set bits on the LHS are clear on the RHS, return an OR. // If all possibly-set bits on the RHS are clear on the LHS, return an OR. if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1); } } // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<
hasOneUse()) { SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG); if (Result.getNode()) return Result; } if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) { SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG); if (Result.getNode()) return Result; } // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB) if (ConstantSDNode *C = dyn_cast
(N1.getOperand(0).getOperand(0))) if (C->getAPIntValue() == 0) return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N1.getOperand(0).getOperand(1), N1.getOperand(1))); if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB) if (ConstantSDNode *C = dyn_cast
(N0.getOperand(0).getOperand(0))) if (C->getAPIntValue() == 0) return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0).getOperand(1), N0.getOperand(1))); if (N1.getOpcode() == ISD::AND) { SDValue AndOp0 = N1.getOperand(0); ConstantSDNode *AndOp1 = dyn_cast
(N1->getOperand(1)); unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); unsigned DestBits = VT.getScalarType().getSizeInBits(); // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) // and similar xforms where the inner op is either ~0 or 0. if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) { DebugLoc DL = N->getDebugLoc(); return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); } } // add (sext i1), X -> sub X, (zext i1) if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.getOperand(0).getValueType() == MVT::i1 && !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { DebugLoc DL = N->getDebugLoc(); SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); } return SDValue(); } SDValue DAGCombiner::visitADDC(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N0.getValueType(); // If the flag result is dead, turn this into an ADD. if (N->hasNUsesOfValue(0, 1)) return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0), DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(), MVT::Glue)); // canonicalize constant to RHS. if (N0C && !N1C) return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0); // fold (addc x, 0) -> x + no carry out if (N1C && N1C->isNullValue()) return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(), MVT::Glue)); // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. APInt LHSZero, LHSOne; APInt RHSZero, RHSOne; APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()); DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); if (LHSZero.getBoolValue()) { DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); // If all possibly-set bits on the LHS are clear on the RHS, return an OR. // If all possibly-set bits on the RHS are clear on the LHS, return an OR. if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1), DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(), MVT::Glue)); } return SDValue(); } SDValue DAGCombiner::visitADDE(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue CarryIn = N->getOperand(2); ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(), N1, N0, CarryIn); // fold (adde x, y, false) -> (addc x, y) if (CarryIn.getOpcode() == ISD::CARRY_FALSE) return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0); return SDValue(); } // Since it may not be valid to emit a fold to zero for vector initializers // check if we can before folding. static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT, SelectionDAG &DAG, bool LegalOperations) { if (!VT.isVector()) { return DAG.getConstant(0, VT); } if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) { // Produce a vector of zeros. SDValue El = DAG.getConstant(0, VT.getVectorElementType()); std::vector
Ops(VT.getVectorNumElements(), El); return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, &Ops[0], Ops.size()); } return SDValue(); } SDValue DAGCombiner::visitSUB(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast
(N0.getNode()); ConstantSDNode *N1C = dyn_cast
(N1.getNode()); ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 : dyn_cast
(N1.getOperand(1).getNode()); EVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (sub x, x) -> 0 // FIXME: Refactor this and xor and other similar operations together. if (N0 == N1) return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations); // fold (sub c1, c2) -> c1-c2 if (N0C && N1C) return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C); // fold (sub x, c) -> (add x, -c) if (N1C) return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, DAG.getConstant(-N1C->getAPIntValue(), VT)); // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) if (N0C && N0C->isAllOnesValue()) return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0); // fold A-(A-B) -> B if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) return N1.getOperand(1); // fold (A+B)-A -> B if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) return N0.getOperand(1); // fold (A+B)-B -> A if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) return N0.getOperand(0); // fold C2-(A+C1) -> (C2-C1)-A if (N1.getOpcode() == ISD::ADD && N0C && N1C1) { SDValue NewC = DAG.getConstant((N0C->getAPIntValue() - N1C1->getAPIntValue()), VT); return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC, N1.getOperand(0)); } // fold ((A+(B+or-C))-B) -> A+or-C if (N0.getOpcode() == ISD::ADD && (N0.getOperand(1).getOpcode() == ISD::SUB || N0.getOperand(1).getOpcode() == ISD::ADD) && N0.getOperand(1).getOperand(0) == N1) return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0), N0.getOperand(1).getOperand(1)); // fold ((A+(C+B))-B) -> A+C if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && N0.getOperand(1).getOperand(1) == N1) return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0.getOperand(0), N0.getOperand(1).getOperand(0)); // fold ((A-(B-C))-C) -> A-B if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && N0.getOperand(1).getOperand(1) == N1) return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0.getOperand(0), N0.getOperand(1).getOperand(0)); // If either operand of a sub is undef, the result is undef if (N0.getOpcode() == ISD::UNDEF) return N0; if (N1.getOpcode() == ISD::UNDEF) return N1; // If the relocation model supports it, consider symbol offsets. if (GlobalAddressSDNode *GA = dyn_cast
(N0)) if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { // fold (sub Sym, c) -> Sym-c if (N1C && GA->getOpcode() == ISD::GlobalAddress) return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT, GA->getOffset() - (uint64_t)N1C->getSExtValue()); // fold (sub Sym+c1, Sym+c2) -> c1-c2 if (GlobalAddressSDNode *GB = dyn_cast
(N1)) if (GA->getGlobal() == GB->getGlobal()) return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), VT); } return SDValue(); } SDValue DAGCombiner::visitMUL(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (mul x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // fold (mul c1, c2) -> c1*c2 if (N0C && N1C) return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0); // fold (mul x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mul x, -1) -> 0-x if (N1C && N1C->isAllOnesValue()) return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, DAG.getConstant(0, VT), N0); // fold (mul x, (1 << c)) -> x << c if (N1C && N1C->getAPIntValue().isPowerOf2()) return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0, DAG.getConstant(N1C->getAPIntValue().logBase2(), getShiftAmountTy(N0.getValueType()))); // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) { unsigned Log2Val = (-N1C->getAPIntValue()).logBase2(); // FIXME: If the input is something that is easily negated (e.g. a // single-use add), we should put the negate there. return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, DAG.getConstant(0, VT), DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0, DAG.getConstant(Log2Val, getShiftAmountTy(N0.getValueType())))); } // (mul (shl X, c1), c2) -> (mul X, c2 << c1) if (N1C && N0.getOpcode() == ISD::SHL && isa
(N0.getOperand(1))) { SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N1, N0.getOperand(1)); AddToWorkList(C3.getNode()); return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N0.getOperand(0), C3); } // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one // use. { SDValue Sh(0,0), Y(0,0); // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). if (N0.getOpcode() == ISD::SHL && isa
(N0.getOperand(1)) && N0.getNode()->hasOneUse()) { Sh = N0; Y = N1; } else if (N1.getOpcode() == ISD::SHL && isa
(N1.getOperand(1)) && N1.getNode()->hasOneUse()) { Sh = N1; Y = N0; } if (Sh.getNode()) { SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, Sh.getOperand(0), Y); return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, Mul, Sh.getOperand(1)); } } // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && isa
(N0.getOperand(1))) return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT, N0.getOperand(0), N1), DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT, N0.getOperand(1), N1)); // reassociate mul SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1); if (RMUL.getNode() != 0) return RMUL; return SDValue(); } SDValue DAGCombiner::visitSDIV(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast
(N0.getNode()); ConstantSDNode *N1C = dyn_cast
(N1.getNode()); EVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (sdiv c1, c2) -> c1/c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C); // fold (sdiv X, 1) -> X if (N1C && N1C->getSExtValue() == 1LL) return N0; // fold (sdiv X, -1) -> 0-X if (N1C && N1C->isAllOnesValue()) return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, DAG.getConstant(0, VT), N0); // If we know the sign bits of both operands are zero, strength reduce to a // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 if (!VT.isVector()) { if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(), N0, N1); } // fold (sdiv X, pow2) -> simple ops after legalize if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() && (isPowerOf2_64(N1C->getSExtValue()) || isPowerOf2_64(-N1C->getSExtValue()))) { // If dividing by powers of two is cheap, then don't perform the following // fold. if (TLI.isPow2DivCheap()) return SDValue(); int64_t pow2 = N1C->getSExtValue(); int64_t abs2 = pow2 > 0 ? pow2 : -pow2; unsigned lg2 = Log2_64(abs2); // Splat the sign bit into the register SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0, DAG.getConstant(VT.getSizeInBits()-1, getShiftAmountTy(N0.getValueType()))); AddToWorkList(SGN.getNode()); // Add (N0 < 0) ? abs2 - 1 : 0; SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN, DAG.getConstant(VT.getSizeInBits() - lg2, getShiftAmountTy(SGN.getValueType()))); SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL); AddToWorkList(SRL.getNode()); AddToWorkList(ADD.getNode()); // Divide by pow2 SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD, DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType()))); // If we're dividing by a positive value, we're done. Otherwise, we must // negate the result. if (pow2 > 0) return SRA; AddToWorkList(SRA.getNode()); return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, DAG.getConstant(0, VT), SRA); } // if integer divide is expensive and we satisfy the requirements, emit an // alternate sequence. if (N1C && (N1C->getSExtValue() < -1 || N1C->getSExtValue() > 1) && !TLI.isIntDivCheap()) { SDValue Op = BuildSDIV(N); if (Op.getNode()) return Op; } // undef / X -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // X / undef -> undef if (N1.getOpcode() == ISD::UNDEF) return N1; return SDValue(); } SDValue DAGCombiner::visitUDIV(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast
(N0.getNode()); ConstantSDNode *N1C = dyn_cast
(N1.getNode()); EVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (udiv c1, c2) -> c1/c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C); // fold (udiv x, (1 << c)) -> x >>u c if (N1C && N1C->getAPIntValue().isPowerOf2()) return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, DAG.getConstant(N1C->getAPIntValue().logBase2(), getShiftAmountTy(N0.getValueType()))); // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 if (N1.getOpcode() == ISD::SHL) { if (ConstantSDNode *SHC = dyn_cast
(N1.getOperand(0))) { if (SHC->getAPIntValue().isPowerOf2()) { EVT ADDVT = N1.getOperand(1).getValueType(); SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT, N1.getOperand(1), DAG.getConstant(SHC->getAPIntValue() .logBase2(), ADDVT)); AddToWorkList(Add.getNode()); return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add); } } } // fold (udiv x, c) -> alternate if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) { SDValue Op = BuildUDIV(N); if (Op.getNode()) return Op; } // undef / X -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // X / undef -> undef if (N1.getOpcode() == ISD::UNDEF) return N1; return SDValue(); } SDValue DAGCombiner::visitSREM(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N->getValueType(0); // fold (srem c1, c2) -> c1%c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C); // If we know the sign bits of both operands are zero, strength reduce to a // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 if (!VT.isVector()) { if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1); } // If X/C can be simplified by the division-by-constant logic, lower // X%C to the equivalent of X-X/C*C. if (N1C && !N1C->isNullValue()) { SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1); AddToWorkList(Div.getNode()); SDValue OptimizedDiv = combine(Div.getNode()); if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, OptimizedDiv, N1); SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul); AddToWorkList(Mul.getNode()); return Sub; } } // undef % X -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // X % undef -> undef if (N1.getOpcode() == ISD::UNDEF) return N1; return SDValue(); } SDValue DAGCombiner::visitUREM(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N->getValueType(0); // fold (urem c1, c2) -> c1%c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C); // fold (urem x, pow2) -> (and x, pow2-1) if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2()) return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, DAG.getConstant(N1C->getAPIntValue()-1,VT)); // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) if (N1.getOpcode() == ISD::SHL) { if (ConstantSDNode *SHC = dyn_cast
(N1.getOperand(0))) { if (SHC->getAPIntValue().isPowerOf2()) { SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); AddToWorkList(Add.getNode()); return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add); } } } // If X/C can be simplified by the division-by-constant logic, lower // X%C to the equivalent of X-X/C*C. if (N1C && !N1C->isNullValue()) { SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1); AddToWorkList(Div.getNode()); SDValue OptimizedDiv = combine(Div.getNode()); if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, OptimizedDiv, N1); SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul); AddToWorkList(Mul.getNode()); return Sub; } } // undef % X -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // X % undef -> undef if (N1.getOpcode() == ISD::UNDEF) return N1; return SDValue(); } SDValue DAGCombiner::visitMULHS(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N->getValueType(0); DebugLoc DL = N->getDebugLoc(); // fold (mulhs x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mulhs x, 1) -> (sra x, size(x)-1) if (N1C && N1C->getAPIntValue() == 1) return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0, DAG.getConstant(N0.getValueType().getSizeInBits() - 1, getShiftAmountTy(N0.getValueType()))); // fold (mulhs x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // If the type twice as wide is legal, transform the mulhs to a wider multiply // plus a shift. if (VT.isSimple() && !VT.isVector()) { MVT Simple = VT.getSimpleVT(); unsigned SimpleSize = Simple.getSizeInBits(); EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); if (TLI.isOperationLegal(ISD::MUL, NewVT)) { N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType()))); return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); } } return SDValue(); } SDValue DAGCombiner::visitMULHU(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N->getValueType(0); DebugLoc DL = N->getDebugLoc(); // fold (mulhu x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mulhu x, 1) -> 0 if (N1C && N1C->getAPIntValue() == 1) return DAG.getConstant(0, N0.getValueType()); // fold (mulhu x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // If the type twice as wide is legal, transform the mulhu to a wider multiply // plus a shift. if (VT.isSimple() && !VT.isVector()) { MVT Simple = VT.getSimpleVT(); unsigned SimpleSize = Simple.getSizeInBits(); EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); if (TLI.isOperationLegal(ISD::MUL, NewVT)) { N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType()))); return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); } } return SDValue(); } /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that /// compute two values. LoOp and HiOp give the opcodes for the two computations /// that are being performed. Return true if a simplification was made. /// SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, unsigned HiOp) { // If the high half is not needed, just compute the low half. bool HiExists = N->hasAnyUseOfValue(1); if (!HiExists && (!LegalOperations || TLI.isOperationLegal(LoOp, N->getValueType(0)))) { SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0), N->op_begin(), N->getNumOperands()); return CombineTo(N, Res, Res); } // If the low half is not needed, just compute the high half. bool LoExists = N->hasAnyUseOfValue(0); if (!LoExists && (!LegalOperations || TLI.isOperationLegal(HiOp, N->getValueType(1)))) { SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1), N->op_begin(), N->getNumOperands()); return CombineTo(N, Res, Res); } // If both halves are used, return as it is. if (LoExists && HiExists) return SDValue(); // If the two computed results can be simplified separately, separate them. if (LoExists) { SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0), N->op_begin(), N->getNumOperands()); AddToWorkList(Lo.getNode()); SDValue LoOpt = combine(Lo.getNode()); if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && (!LegalOperations || TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) return CombineTo(N, LoOpt, LoOpt); } if (HiExists) { SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1), N->op_begin(), N->getNumOperands()); AddToWorkList(Hi.getNode()); SDValue HiOpt = combine(Hi.getNode()); if (HiOpt.getNode() && HiOpt != Hi && (!LegalOperations || TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) return CombineTo(N, HiOpt, HiOpt); } return SDValue(); } SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS); if (Res.getNode()) return Res; EVT VT = N->getValueType(0); DebugLoc DL = N->getDebugLoc(); // If the type twice as wide is legal, transform the mulhu to a wider multiply // plus a shift. if (VT.isSimple() && !VT.isVector()) { MVT Simple = VT.getSimpleVT(); unsigned SimpleSize = Simple.getSizeInBits(); EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); if (TLI.isOperationLegal(ISD::MUL, NewVT)) { SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); // Compute the high part as N1. Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType()))); Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); // Compute the low part as N0. Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); return CombineTo(N, Lo, Hi); } } return SDValue(); } SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU); if (Res.getNode()) return Res; EVT VT = N->getValueType(0); DebugLoc DL = N->getDebugLoc(); // If the type twice as wide is legal, transform the mulhu to a wider multiply // plus a shift. if (VT.isSimple() && !VT.isVector()) { MVT Simple = VT.getSimpleVT(); unsigned SimpleSize = Simple.getSizeInBits(); EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); if (TLI.isOperationLegal(ISD::MUL, NewVT)) { SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); // Compute the high part as N1. Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType()))); Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); // Compute the low part as N0. Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); return CombineTo(N, Lo, Hi); } } return SDValue(); } SDValue DAGCombiner::visitSMULO(SDNode *N) { // (smulo x, 2) -> (saddo x, x) if (ConstantSDNode *C2 = dyn_cast
(N->getOperand(1))) if (C2->getAPIntValue() == 2) return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(), N->getOperand(0), N->getOperand(0)); return SDValue(); } SDValue DAGCombiner::visitUMULO(SDNode *N) { // (umulo x, 2) -> (uaddo x, x) if (ConstantSDNode *C2 = dyn_cast
(N->getOperand(1))) if (C2->getAPIntValue() == 2) return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(), N->getOperand(0), N->getOperand(0)); return SDValue(); } SDValue DAGCombiner::visitSDIVREM(SDNode *N) { SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM); if (Res.getNode()) return Res; return SDValue(); } SDValue DAGCombiner::visitUDIVREM(SDNode *N) { SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM); if (Res.getNode()) return Res; return SDValue(); } /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with /// two operands of the same opcode, try to simplify it. SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); EVT VT = N0.getValueType(); assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); // Bail early if none of these transforms apply. if (N0.getNode()->getNumOperands() == 0) return SDValue(); // For each of OP in AND/OR/XOR: // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) // // do not sink logical op inside of a vector extend, since it may combine // into a vsetcc. EVT Op0VT = N0.getOperand(0).getValueType(); if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND || // Avoid infinite looping with PromoteIntBinOp. (N0.getOpcode() == ISD::ANY_EXTEND && (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || (N0.getOpcode() == ISD::TRUNCATE && (!TLI.isZExtFree(VT, Op0VT) || !TLI.isTruncateFree(Op0VT, VT)) && TLI.isTypeLegal(Op0VT))) && !VT.isVector() && Op0VT == N1.getOperand(0).getValueType() && (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorkList(ORNode.getNode()); return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode); } // For each of OP in SHL/SRL/SRA/AND... // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && N0.getOperand(1) == N1.getOperand(1)) { SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorkList(ORNode.getNode()); return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode, N0.getOperand(1)); } return SDValue(); } SDValue DAGCombiner::visitAND(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue LL, LR, RL, RR, CC0, CC1; ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N1.getValueType(); unsigned BitWidth = VT.getScalarType().getSizeInBits(); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (and x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // fold (and c1, c2) -> c1&c2 if (N0C && N1C) return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0); // fold (and x, -1) -> x if (N1C && N1C->isAllOnesValue()) return N0; // if (and x, c) is known to be zero, return 0 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnesValue(BitWidth))) return DAG.getConstant(0, VT); // reassociate and SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1); if (RAND.getNode() != 0) return RAND; // fold (and (or x, C), D) -> D if (C & D) == D if (N1C && N0.getOpcode() == ISD::OR) if (ConstantSDNode *ORI = dyn_cast
(N0.getOperand(1))) if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) return N1; // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { SDValue N0Op0 = N0.getOperand(0); APInt Mask = ~N1C->getAPIntValue(); Mask = Mask.trunc(N0Op0.getValueSizeInBits()); if (DAG.MaskedValueIsZero(N0Op0, Mask)) { SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), N0.getValueType(), N0Op0); // Replace uses of the AND with uses of the Zero extend node. CombineTo(N, Zext); // We actually want to replace all uses of the any_extend with the // zero_extend, to avoid duplicating things. This will later cause this // AND to be folded. CombineTo(N0.getNode(), Zext); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ ISD::CondCode Op0 = cast
(CC0)->get(); ISD::CondCode Op1 = cast
(CC1)->get(); if (LR == RR && isa
(LR) && Op0 == Op1 && LL.getValueType().isInteger()) { // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) if (cast
(LR)->isNullValue() && Op1 == ISD::SETEQ) { SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(), LR.getValueType(), LL, RL); AddToWorkList(ORNode.getNode()); return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1); } // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) if (cast
(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) { SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(), LR.getValueType(), LL, RL); AddToWorkList(ANDNode.getNode()); return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1); } // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) if (cast
(LR)->isAllOnesValue() && Op1 == ISD::SETGT) { SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(), LR.getValueType(), LL, RL); AddToWorkList(ORNode.getNode()); return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1); } } // canonicalize equivalent to ll == rl if (LL == RR && LR == RL) { Op1 = ISD::getSetCCSwappedOperands(Op1); std::swap(RL, RR); } if (LL == RL && LR == RR) { bool isInteger = LL.getValueType().isInteger(); ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); if (Result != ISD::SETCC_INVALID && (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType()))) return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(), LL, LR, Result); } } // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) if (N0.getOpcode() == N1.getOpcode()) { SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); if (Tmp.getNode()) return Tmp; } // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) // fold (and (sra)) -> (and (srl)) when possible. if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); // fold (zext_inreg (extload x)) -> (zextload x) if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { LoadSDNode *LN0 = cast
(N0); EVT MemVT = LN0->getMemoryVT(); // If we zero all the possible extended bits, then we can turn this into // a zextload if we are running before legalize or the operation is legal. unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, BitWidth - MemVT.getScalarType().getSizeInBits())) && ((!LegalOperations && !LN0->isVolatile()) || TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) { SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), MemVT, LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); AddToWorkList(N); CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { LoadSDNode *LN0 = cast
(N0); EVT MemVT = LN0->getMemoryVT(); // If we zero all the possible extended bits, then we can turn this into // a zextload if we are running before legalize or the operation is legal. unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, BitWidth - MemVT.getScalarType().getSizeInBits())) && ((!LegalOperations && !LN0->isVolatile()) || TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) { SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), MemVT, LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); AddToWorkList(N); CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (and (load x), 255) -> (zextload x, i8) // fold (and (extload x, i16), 255) -> (zextload x, i8) // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) if (N1C && (N0.getOpcode() == ISD::LOAD || (N0.getOpcode() == ISD::ANY_EXTEND && N0.getOperand(0).getOpcode() == ISD::LOAD))) { bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; LoadSDNode *LN0 = HasAnyExt ? cast
(N0.getOperand(0)) : cast
(N0); if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) { uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits(); if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){ EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); EVT LoadedVT = LN0->getMemoryVT(); if (ExtVT == LoadedVT && (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) { EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); AddToWorkList(N); CombineTo(LN0, NewLoad, NewLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } // Do not change the width of a volatile load. // Do not generate loads of non-round integer types since these can // be expensive (and would be wrong if the type is not byte sized). if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() && (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) { EVT PtrType = LN0->getOperand(1).getValueType(); unsigned Alignment = LN0->getAlignment(); SDValue NewPtr = LN0->getBasePtr(); // For big endian targets, we need to add an offset to the pointer // to load the correct bytes. For little endian systems, we merely // need to read fewer bytes from the same pointer. if (TLI.isBigEndian()) { unsigned LVTStoreBytes = LoadedVT.getStoreSize(); unsigned EVTStoreBytes = ExtVT.getStoreSize(); unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType, NewPtr, DAG.getConstant(PtrOff, PtrType)); Alignment = MinAlign(Alignment, PtrOff); } AddToWorkList(NewPtr.getNode()); EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; SDValue Load = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy, LN0->getChain(), NewPtr, LN0->getPointerInfo(), ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), Alignment); AddToWorkList(N); CombineTo(LN0, Load, Load.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } } } return SDValue(); } /// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16 /// SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, bool DemandHighBits) { if (!LegalOperations) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) return SDValue(); if (!TLI.isOperationLegal(ISD::BSWAP, VT)) return SDValue(); // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) bool LookPassAnd0 = false; bool LookPassAnd1 = false; if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) std::swap(N0, N1); if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) std::swap(N0, N1); if (N0.getOpcode() == ISD::AND) { if (!N0.getNode()->hasOneUse()) return SDValue(); ConstantSDNode *N01C = dyn_cast
(N0.getOperand(1)); if (!N01C || N01C->getZExtValue() != 0xFF00) return SDValue(); N0 = N0.getOperand(0); LookPassAnd0 = true; } if (N1.getOpcode() == ISD::AND) { if (!N1.getNode()->hasOneUse()) return SDValue(); ConstantSDNode *N11C = dyn_cast
(N1.getOperand(1)); if (!N11C || N11C->getZExtValue() != 0xFF) return SDValue(); N1 = N1.getOperand(0); LookPassAnd1 = true; } if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) std::swap(N0, N1); if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) return SDValue(); if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) return SDValue(); ConstantSDNode *N01C = dyn_cast
(N0.getOperand(1)); ConstantSDNode *N11C = dyn_cast
(N1.getOperand(1)); if (!N01C || !N11C) return SDValue(); if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) return SDValue(); // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) SDValue N00 = N0->getOperand(0); if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { if (!N00.getNode()->hasOneUse()) return SDValue(); ConstantSDNode *N001C = dyn_cast
(N00.getOperand(1)); if (!N001C || N001C->getZExtValue() != 0xFF) return SDValue(); N00 = N00.getOperand(0); LookPassAnd0 = true; } SDValue N10 = N1->getOperand(0); if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { if (!N10.getNode()->hasOneUse()) return SDValue(); ConstantSDNode *N101C = dyn_cast
(N10.getOperand(1)); if (!N101C || N101C->getZExtValue() != 0xFF00) return SDValue(); N10 = N10.getOperand(0); LookPassAnd1 = true; } if (N00 != N10) return SDValue(); // Make sure everything beyond the low halfword is zero since the SRL 16 // will clear the top bits. unsigned OpSizeInBits = VT.getSizeInBits(); if (DemandHighBits && OpSizeInBits > 16 && (!LookPassAnd0 || !LookPassAnd1) && !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16))) return SDValue(); SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00); if (OpSizeInBits > 16) Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res, DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT))); return Res; } /// isBSwapHWordElement - Return true if the specified node is an element /// that makes up a 32-bit packed halfword byteswap. i.e. /// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8) static bool isBSwapHWordElement(SDValue N, SmallVector
&Parts) { if (!N.getNode()->hasOneUse()) return false; unsigned Opc = N.getOpcode(); if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) return false; ConstantSDNode *N1C = dyn_cast
(N.getOperand(1)); if (!N1C) return false; unsigned Num; switch (N1C->getZExtValue()) { default: return false; case 0xFF: Num = 0; break; case 0xFF00: Num = 1; break; case 0xFF0000: Num = 2; break; case 0xFF000000: Num = 3; break; } // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). SDValue N0 = N.getOperand(0); if (Opc == ISD::AND) { if (Num == 0 || Num == 2) { // (x >> 8) & 0xff // (x >> 8) & 0xff0000 if (N0.getOpcode() != ISD::SRL) return false; ConstantSDNode *C = dyn_cast
(N0.getOperand(1)); if (!C || C->getZExtValue() != 8) return false; } else { // (x << 8) & 0xff00 // (x << 8) & 0xff000000 if (N0.getOpcode() != ISD::SHL) return false; ConstantSDNode *C = dyn_cast
(N0.getOperand(1)); if (!C || C->getZExtValue() != 8) return false; } } else if (Opc == ISD::SHL) { // (x & 0xff) << 8 // (x & 0xff0000) << 8 if (Num != 0 && Num != 2) return false; ConstantSDNode *C = dyn_cast
(N.getOperand(1)); if (!C || C->getZExtValue() != 8) return false; } else { // Opc == ISD::SRL // (x & 0xff00) >> 8 // (x & 0xff000000) >> 8 if (Num != 1 && Num != 3) return false; ConstantSDNode *C = dyn_cast
(N.getOperand(1)); if (!C || C->getZExtValue() != 8) return false; } if (Parts[Num]) return false; Parts[Num] = N0.getOperand(0).getNode(); return true; } /// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is /// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8) /// => (rotl (bswap x), 16) SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { if (!LegalOperations) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::i32) return SDValue(); if (!TLI.isOperationLegal(ISD::BSWAP, VT)) return SDValue(); SmallVector
Parts(4, (SDNode*)0); // Look for either // (or (or (and), (and)), (or (and), (and))) // (or (or (or (and), (and)), (and)), (and)) if (N0.getOpcode() != ISD::OR) return SDValue(); SDValue N00 = N0.getOperand(0); SDValue N01 = N0.getOperand(1); if (N1.getOpcode() == ISD::OR) { // (or (or (and), (and)), (or (and), (and))) SDValue N000 = N00.getOperand(0); if (!isBSwapHWordElement(N000, Parts)) return SDValue(); SDValue N001 = N00.getOperand(1); if (!isBSwapHWordElement(N001, Parts)) return SDValue(); SDValue N010 = N01.getOperand(0); if (!isBSwapHWordElement(N010, Parts)) return SDValue(); SDValue N011 = N01.getOperand(1); if (!isBSwapHWordElement(N011, Parts)) return SDValue(); } else { // (or (or (or (and), (and)), (and)), (and)) if (!isBSwapHWordElement(N1, Parts)) return SDValue(); if (!isBSwapHWordElement(N01, Parts)) return SDValue(); if (N00.getOpcode() != ISD::OR) return SDValue(); SDValue N000 = N00.getOperand(0); if (!isBSwapHWordElement(N000, Parts)) return SDValue(); SDValue N001 = N00.getOperand(1); if (!isBSwapHWordElement(N001, Parts)) return SDValue(); } // Make sure the parts are all coming from the same node. if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) return SDValue(); SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, SDValue(Parts[0],0)); // Result of the bswap should be rotated by 16. If it's not legal, than // do (x << 16) | (x >> 16). SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT)); if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt); else if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt); return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt), DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt)); } SDValue DAGCombiner::visitOR(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue LL, LR, RL, RR, CC0, CC1; ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N1.getValueType(); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (or x, undef) -> -1 if (!LegalOperations && (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) { EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT); } // fold (or c1, c2) -> c1|c2 if (N0C && N1C) return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0); // fold (or x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold (or x, -1) -> -1 if (N1C && N1C->isAllOnesValue()) return N1; // fold (or x, c) -> c iff (x & ~c) == 0 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) return N1; // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) SDValue BSwap = MatchBSwapHWord(N, N0, N1); if (BSwap.getNode() != 0) return BSwap; BSwap = MatchBSwapHWordLow(N, N0, N1); if (BSwap.getNode() != 0) return BSwap; // reassociate or SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1); if (ROR.getNode() != 0) return ROR; // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) // iff (c1 & c2) == 0. if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && isa
(N0.getOperand(1))) { ConstantSDNode *C1 = cast
(N0.getOperand(1)); if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, DAG.getNode(ISD::OR, N0.getDebugLoc(), VT, N0.getOperand(0), N1), DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1)); } // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ ISD::CondCode Op0 = cast
(CC0)->get(); ISD::CondCode Op1 = cast
(CC1)->get(); if (LR == RR && isa
(LR) && Op0 == Op1 && LL.getValueType().isInteger()) { // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) if (cast
(LR)->isNullValue() && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(), LR.getValueType(), LL, RL); AddToWorkList(ORNode.getNode()); return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1); } // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1) if (cast
(LR)->isAllOnesValue() && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(), LR.getValueType(), LL, RL); AddToWorkList(ANDNode.getNode()); return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1); } } // canonicalize equivalent to ll == rl if (LL == RR && LR == RL) { Op1 = ISD::getSetCCSwappedOperands(Op1); std::swap(RL, RR); } if (LL == RL && LR == RR) { bool isInteger = LL.getValueType().isInteger(); ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); if (Result != ISD::SETCC_INVALID && (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType()))) return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(), LL, LR, Result); } } // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) if (N0.getOpcode() == N1.getOpcode()) { SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); if (Tmp.getNode()) return Tmp; } // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && N0.getOperand(1).getOpcode() == ISD::Constant && N1.getOperand(1).getOpcode() == ISD::Constant && // Don't increase # computations. (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { // We can only do this xform if we know that bits from X that are set in C2 // but not in C1 are already zero. Likewise for Y. const APInt &LHSMask = cast
(N0.getOperand(1))->getAPIntValue(); const APInt &RHSMask = cast
(N1.getOperand(1))->getAPIntValue(); if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT, N0.getOperand(0), N1.getOperand(0)); return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X, DAG.getConstant(LHSMask | RHSMask, VT)); } } // See if this is some rotate idiom. if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc())) return SDValue(Rot, 0); // Simplify the operands using demanded-bits information. if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); return SDValue(); } /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present. static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { if (Op.getOpcode() == ISD::AND) { if (isa
(Op.getOperand(1))) { Mask = Op.getOperand(1); Op = Op.getOperand(0); } else { return false; } } if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { Shift = Op; return true; } return false; } // MatchRotate - Handle an 'or' of two operands. If this is one of the many // idioms for rotate, and if the target supports rotation instructions, generate // a rot[lr]. SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) { // Must be a legal type. Expanded 'n promoted things won't work with rotates. EVT VT = LHS.getValueType(); if (!TLI.isTypeLegal(VT)) return 0; // The target must have at least one rotate flavor. bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); if (!HasROTL && !HasROTR) return 0; // Match "(X shl/srl V1) & V2" where V2 may not be present. SDValue LHSShift; // The shift. SDValue LHSMask; // AND value if any. if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) return 0; // Not part of a rotate. SDValue RHSShift; // The shift. SDValue RHSMask; // AND value if any. if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) return 0; // Not part of a rotate. if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) return 0; // Not shifting the same value. if (LHSShift.getOpcode() == RHSShift.getOpcode()) return 0; // Shifts must disagree. // Canonicalize shl to left side in a shl/srl pair. if (RHSShift.getOpcode() == ISD::SHL) { std::swap(LHS, RHS); std::swap(LHSShift, RHSShift); std::swap(LHSMask , RHSMask ); } unsigned OpSizeInBits = VT.getSizeInBits(); SDValue LHSShiftArg = LHSShift.getOperand(0); SDValue LHSShiftAmt = LHSShift.getOperand(1); SDValue RHSShiftAmt = RHSShift.getOperand(1); // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) if (LHSShiftAmt.getOpcode() == ISD::Constant && RHSShiftAmt.getOpcode() == ISD::Constant) { uint64_t LShVal = cast
(LHSShiftAmt)->getZExtValue(); uint64_t RShVal = cast
(RHSShiftAmt)->getZExtValue(); if ((LShVal + RShVal) != OpSizeInBits) return 0; SDValue Rot; if (HasROTL) Rot = DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt); else Rot = DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt); // If there is an AND of either shifted operand, apply it to the result. if (LHSMask.getNode() || RHSMask.getNode()) { APInt Mask = APInt::getAllOnesValue(OpSizeInBits); if (LHSMask.getNode()) { APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal); Mask &= cast
(LHSMask)->getAPIntValue() | RHSBits; } if (RHSMask.getNode()) { APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal); Mask &= cast
(RHSMask)->getAPIntValue() | LHSBits; } Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT)); } return Rot.getNode(); } // If there is a mask here, and we have a variable shift, we can't be sure // that we're masking out the right stuff. if (LHSMask.getNode() || RHSMask.getNode()) return 0; // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y) // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y)) if (RHSShiftAmt.getOpcode() == ISD::SUB && LHSShiftAmt == RHSShiftAmt.getOperand(1)) { if (ConstantSDNode *SUBC = dyn_cast
(RHSShiftAmt.getOperand(0))) { if (SUBC->getAPIntValue() == OpSizeInBits) { if (HasROTL) return DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt).getNode(); else return DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt).getNode(); } } } // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y) // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y)) if (LHSShiftAmt.getOpcode() == ISD::SUB && RHSShiftAmt == LHSShiftAmt.getOperand(1)) { if (ConstantSDNode *SUBC = dyn_cast
(LHSShiftAmt.getOperand(0))) { if (SUBC->getAPIntValue() == OpSizeInBits) { if (HasROTR) return DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt).getNode(); else return DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt).getNode(); } } } // Look for sign/zext/any-extended or truncate cases: if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { SDValue LExtOp0 = LHSShiftAmt.getOperand(0); SDValue RExtOp0 = RHSShiftAmt.getOperand(0); if (RExtOp0.getOpcode() == ISD::SUB && RExtOp0.getOperand(1) == LExtOp0) { // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> // (rotl x, y) // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> // (rotr x, (sub 32, y)) if (ConstantSDNode *SUBC = dyn_cast
(RExtOp0.getOperand(0))) { if (SUBC->getAPIntValue() == OpSizeInBits) { return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode(); } } } else if (LExtOp0.getOpcode() == ISD::SUB && RExtOp0 == LExtOp0.getOperand(1)) { // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) -> // (rotr x, y) // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) -> // (rotl x, (sub 32, y)) if (ConstantSDNode *SUBC = dyn_cast
(LExtOp0.getOperand(0))) { if (SUBC->getAPIntValue() == OpSizeInBits) { return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg, HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode(); } } } } return 0; } SDValue DAGCombiner::visitXOR(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue LHS, RHS, CC; ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (xor undef, undef) -> 0. This is a common idiom (misuse). if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // fold (xor x, undef) -> undef if (N0.getOpcode() == ISD::UNDEF) return N0; if (N1.getOpcode() == ISD::UNDEF) return N1; // fold (xor c1, c2) -> c1^c2 if (N0C && N1C) return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0); // fold (xor x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // reassociate xor SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1); if (RXOR.getNode() != 0) return RXOR; // fold !(x cc y) -> (x !cc y) if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) { bool isInt = LHS.getValueType().isInteger(); ISD::CondCode NotCC = ISD::getSetCCInverse(cast
(CC)->get(), isInt); if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) { switch (N0.getOpcode()) { default: llvm_unreachable("Unhandled SetCC Equivalent!"); case ISD::SETCC: return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC); case ISD::SELECT_CC: return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2), N0.getOperand(3), NotCC); } } } // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND && N0.getNode()->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ SDValue V = N0.getOperand(0); V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V, DAG.getConstant(1, V.getValueType())); AddToWorkList(V.getNode()); return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V); } // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 && (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode()); return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS); } } // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants if (N1C && N1C->isAllOnesValue() && (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isa
(RHS) || isa
(LHS)) { unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode()); return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS); } } // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) if (N1C && N0.getOpcode() == ISD::XOR) { ConstantSDNode *N00C = dyn_cast
(N0.getOperand(0)); ConstantSDNode *N01C = dyn_cast
(N0.getOperand(1)); if (N00C) return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1), DAG.getConstant(N1C->getAPIntValue() ^ N00C->getAPIntValue(), VT)); if (N01C) return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0), DAG.getConstant(N1C->getAPIntValue() ^ N01C->getAPIntValue(), VT)); } // fold (xor x, x) -> 0 if (N0 == N1) return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations); // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) if (N0.getOpcode() == N1.getOpcode()) { SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); if (Tmp.getNode()) return Tmp; } // Simplify the expression using non-local knowledge. if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); return SDValue(); } /// visitShiftByConstant - Handle transforms common to the three shifts, when /// the shift amount is a constant. SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) { SDNode *LHS = N->getOperand(0).getNode(); if (!LHS->hasOneUse()) return SDValue(); // We want to pull some binops through shifts, so that we have (and (shift)) // instead of (shift (and)), likewise for add, or, xor, etc. This sort of // thing happens with address calculations, so it's important to canonicalize // it. bool HighBitSet = false; // Can we transform this if the high bit is set? switch (LHS->getOpcode()) { default: return SDValue(); case ISD::OR: case ISD::XOR: HighBitSet = false; // We can only transform sra if the high bit is clear. break; case ISD::AND: HighBitSet = true; // We can only transform sra if the high bit is set. break; case ISD::ADD: if (N->getOpcode() != ISD::SHL) return SDValue(); // only shl(add) not sr[al](add). HighBitSet = false; // We can only transform sra if the high bit is clear. break; } // We require the RHS of the binop to be a constant as well. ConstantSDNode *BinOpCst = dyn_cast
(LHS->getOperand(1)); if (!BinOpCst) return SDValue(); // FIXME: disable this unless the input to the binop is a shift by a constant. // If it is not a shift, it pessimizes some common cases like: // // void foo(int *X, int i) { X[i & 1235] = 1; } // int bar(int *X, int i) { return X[i & 255]; } SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); if ((BinOpLHSVal->getOpcode() != ISD::SHL && BinOpLHSVal->getOpcode() != ISD::SRA && BinOpLHSVal->getOpcode() != ISD::SRL) || !isa
(BinOpLHSVal->getOperand(1))) return SDValue(); EVT VT = N->getValueType(0); // If this is a signed shift right, and the high bit is modified by the // logical operation, do not perform the transformation. The highBitSet // boolean indicates the value of the high bit of the constant which would // cause it to be modified for this operation. if (N->getOpcode() == ISD::SRA) { bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); if (BinOpRHSSignSet != HighBitSet) return SDValue(); } // Fold the constants, shifting the binop RHS by the shift amount. SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(), N->getValueType(0), LHS->getOperand(1), N->getOperand(1)); // Create the new shift. SDValue NewShift = DAG.getNode(N->getOpcode(), LHS->getOperand(0).getDebugLoc(), VT, LHS->getOperand(0), N->getOperand(1)); // Create the new binop. return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS); } SDValue DAGCombiner::visitSHL(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N0.getValueType(); unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); // fold (shl c1, c2) -> c1<
0 if (N0C && N0C->isNullValue()) return N0; // fold (shl x, c >= size(x)) -> undef if (N1C && N1C->getZExtValue() >= OpSizeInBits) return DAG.getUNDEF(VT); // fold (shl x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold (shl undef, x) -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // if (shl x, c) is known to be zero, return 0 if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnesValue(OpSizeInBits))) return DAG.getConstant(0, VT); // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). if (N1.getOpcode() == ISD::TRUNCATE && N1.getOperand(0).getOpcode() == ISD::AND && N1.hasOneUse() && N1.getOperand(0).hasOneUse()) { SDValue N101 = N1.getOperand(0).getOperand(1); if (ConstantSDNode *N101C = dyn_cast
(N101)) { EVT TruncVT = N1.getValueType(); SDValue N100 = N1.getOperand(0).getOperand(0); APInt TruncC = N101C->getAPIntValue(); TruncC = TruncC.trunc(TruncVT.getSizeInBits()); return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0, DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT, DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), TruncVT, N100), DAG.getConstant(TruncC, TruncVT))); } } if (N1C && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast
(N0.getOperand(1))->getZExtValue(); uint64_t c2 = N1C->getZExtValue(); if (c1 + c2 >= OpSizeInBits) return DAG.getConstant(0, VT); return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0), DAG.getConstant(c1 + c2, N1.getValueType())); } // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) // For this to be valid, the second form must not preserve any of the bits // that are shifted out by the inner shift in the first form. This means // the outer shift size must be >= the number of bits added by the ext. // As a corollary, we don't care what kind of ext it is. if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND) && N0.getOperand(0).getOpcode() == ISD::SHL && isa
(N0.getOperand(0)->getOperand(1))) { uint64_t c1 = cast
(N0.getOperand(0)->getOperand(1))->getZExtValue(); uint64_t c2 = N1C->getZExtValue(); EVT InnerShiftVT = N0.getOperand(0).getValueType(); uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); if (c2 >= OpSizeInBits - InnerShiftSize) { if (c1 + c2 >= OpSizeInBits) return DAG.getConstant(0, VT); return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT, DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT, N0.getOperand(0)->getOperand(0)), DAG.getConstant(c1 + c2, N1.getValueType())); } } // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or // (and (srl x, (sub c1, c2), MASK) if (N1C && N0.getOpcode() == ISD::SRL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast
(N0.getOperand(1))->getZExtValue(); if (c1 < VT.getSizeInBits()) { uint64_t c2 = N1C->getZExtValue(); APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), VT.getSizeInBits() - c1); SDValue Shift; if (c2 > c1) { Mask = Mask.shl(c2-c1); Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0), DAG.getConstant(c2-c1, N1.getValueType())); } else { Mask = Mask.lshr(c1-c2); Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), DAG.getConstant(c1-c2, N1.getValueType())); } return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift, DAG.getConstant(Mask, VT)); } } // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { SDValue HiBitsMask = DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(), VT.getSizeInBits() - N1C->getZExtValue()), VT); return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0), HiBitsMask); } if (N1C) { SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue()); if (NewSHL.getNode()) return NewSHL; } return SDValue(); } SDValue DAGCombiner::visitSRA(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N0.getValueType(); unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); // fold (sra c1, c2) -> (sra c1, c2) if (N0C && N1C) return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C); // fold (sra 0, x) -> 0 if (N0C && N0C->isNullValue()) return N0; // fold (sra -1, x) -> -1 if (N0C && N0C->isAllOnesValue()) return N0; // fold (sra x, (setge c, size(x))) -> undef if (N1C && N1C->getZExtValue() >= OpSizeInBits) return DAG.getUNDEF(VT); // fold (sra x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports // sext_inreg. if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); if (VT.isVector()) ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, VT.getVectorNumElements()); if ((!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0.getOperand(0), DAG.getValueType(ExtVT)); } // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) if (N1C && N0.getOpcode() == ISD::SRA) { if (ConstantSDNode *C1 = dyn_cast
(N0.getOperand(1))) { unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1; return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0), DAG.getConstant(Sum, N1C->getValueType(0))); } } // fold (sra (shl X, m), (sub result_size, n)) // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for // result_size - n != m. // If truncate is free for the target sext(shl) is likely to result in better // code. if (N0.getOpcode() == ISD::SHL) { // Get the two constanst of the shifts, CN0 = m, CN = n. const ConstantSDNode *N01C = dyn_cast
(N0.getOperand(1)); if (N01C && N1C) { // Determine what the truncate's result bitsize and type would be. EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), OpSizeInBits - N1C->getZExtValue()); // Determine the residual right-shift amount. signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); // If the shift is not a no-op (in which case this should be just a sign // extend already), the truncated to type is legal, sign_extend is legal // on that type, and the truncate to that type is both legal and free, // perform the transform. if ((ShiftAmt > 0) && TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && TLI.isTruncateFree(VT, TruncVT)) { SDValue Amt = DAG.getConstant(ShiftAmt, getShiftAmountTy(N0.getOperand(0).getValueType())); SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, N0.getOperand(0), Amt); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT, Shift); return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), N->getValueType(0), Trunc); } } } // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). if (N1.getOpcode() == ISD::TRUNCATE && N1.getOperand(0).getOpcode() == ISD::AND && N1.hasOneUse() && N1.getOperand(0).hasOneUse()) { SDValue N101 = N1.getOperand(0).getOperand(1); if (ConstantSDNode *N101C = dyn_cast
(N101)) { EVT TruncVT = N1.getValueType(); SDValue N100 = N1.getOperand(0).getOperand(0); APInt TruncC = N101C->getAPIntValue(); TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits()); return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0, DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT, DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), TruncVT, N100), DAG.getConstant(TruncC, TruncVT))); } } // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2)) // if c1 is equal to the number of bits the trunc removes if (N0.getOpcode() == ISD::TRUNCATE && (N0.getOperand(0).getOpcode() == ISD::SRL || N0.getOperand(0).getOpcode() == ISD::SRA) && N0.getOperand(0).hasOneUse() && N0.getOperand(0).getOperand(1).hasOneUse() && N1C && isa
(N0.getOperand(0).getOperand(1))) { EVT LargeVT = N0.getOperand(0).getValueType(); ConstantSDNode *LargeShiftAmt = cast
(N0.getOperand(0).getOperand(1)); if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits == LargeShiftAmt->getZExtValue()) { SDValue Amt = DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(), getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType())); SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT, N0.getOperand(0).getOperand(0), Amt); return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA); } } // Simplify, based on bits shifted out of the LHS. if (N1C && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); // If the sign bit is known to be zero, switch this to a SRL. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1); if (N1C) { SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue()); if (NewSRA.getNode()) return NewSRA; } return SDValue(); } SDValue DAGCombiner::visitSRL(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); EVT VT = N0.getValueType(); unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); // fold (srl c1, c2) -> c1 >>u c2 if (N0C && N1C) return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C); // fold (srl 0, x) -> 0 if (N0C && N0C->isNullValue()) return N0; // fold (srl x, c >= size(x)) -> undef if (N1C && N1C->getZExtValue() >= OpSizeInBits) return DAG.getUNDEF(VT); // fold (srl x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // if (srl x, c) is known to be zero, return 0 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnesValue(OpSizeInBits))) return DAG.getConstant(0, VT); // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) if (N1C && N0.getOpcode() == ISD::SRL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast
(N0.getOperand(1))->getZExtValue(); uint64_t c2 = N1C->getZExtValue(); if (c1 + c2 >= OpSizeInBits) return DAG.getConstant(0, VT); return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), DAG.getConstant(c1 + c2, N1.getValueType())); } // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) if (N1C && N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getOpcode() == ISD::SRL && isa
(N0.getOperand(0)->getOperand(1))) { uint64_t c1 = cast
(N0.getOperand(0)->getOperand(1))->getZExtValue(); uint64_t c2 = N1C->getZExtValue(); EVT InnerShiftVT = N0.getOperand(0).getValueType(); EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); // This is only valid if the OpSizeInBits + c1 = size of inner shift. if (c1 + OpSizeInBits == InnerShiftSize) { if (c1 + c2 >= InnerShiftSize) return DAG.getConstant(0, VT); return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT, DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT, N0.getOperand(0)->getOperand(0), DAG.getConstant(c1 + c2, ShiftCountVT))); } } // fold (srl (shl x, c), c) -> (and x, cst2) if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && N0.getValueSizeInBits() <= 64) { uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits(); return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0), DAG.getConstant(~0ULL >> ShAmt, VT)); } // fold (srl (anyextend x), c) -> (anyextend (srl x, c)) if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { // Shifting in all undef bits? EVT SmallVT = N0.getOperand(0).getValueType(); if (N1C->getZExtValue() >= SmallVT.getSizeInBits()) return DAG.getUNDEF(VT); if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { uint64_t ShiftAmt = N1C->getZExtValue(); SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT, N0.getOperand(0), DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT))); AddToWorkList(SmallShift.getNode()); return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift); } } // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign // bit, which is unmodified by sra. if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) { if (N0.getOpcode() == ISD::SRA) return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1); } // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). if (N1C && N0.getOpcode() == ISD::CTLZ && N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) { APInt KnownZero, KnownOne; APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()); DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne); // If any of the input bits are KnownOne, then the input couldn't be all // zeros, thus the result of the srl will always be zero. if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT); // If all of the bits input the to ctlz node are known to be zero, then // the result of the ctlz is "32" and the result of the shift is one. APInt UnknownBits = ~KnownZero & Mask; if (UnknownBits == 0) return DAG.getConstant(1, VT); // Otherwise, check to see if there is exactly one bit input to the ctlz. if ((UnknownBits & (UnknownBits - 1)) == 0) { // Okay, we know that only that the single bit specified by UnknownBits // could be set on input to the CTLZ node. If this bit is set, the SRL // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair // to an SRL/XOR pair, which is likely to simplify more. unsigned ShAmt = UnknownBits.countTrailingZeros(); SDValue Op = N0.getOperand(0); if (ShAmt) { Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op, DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType()))); AddToWorkList(Op.getNode()); } return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, Op, DAG.getConstant(1, VT)); } } // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). if (N1.getOpcode() == ISD::TRUNCATE && N1.getOperand(0).getOpcode() == ISD::AND && N1.hasOneUse() && N1.getOperand(0).hasOneUse()) { SDValue N101 = N1.getOperand(0).getOperand(1); if (ConstantSDNode *N101C = dyn_cast
(N101)) { EVT TruncVT = N1.getValueType(); SDValue N100 = N1.getOperand(0).getOperand(0); APInt TruncC = N101C->getAPIntValue(); TruncC = TruncC.trunc(TruncVT.getSizeInBits()); return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT, DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), TruncVT, N100), DAG.getConstant(TruncC, TruncVT))); } } // fold operands of srl based on knowledge that the low bits are not // demanded. if (N1C && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); if (N1C) { SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue()); if (NewSRL.getNode()) return NewSRL; } // Attempt to convert a srl of a load into a narrower zero-extending load. SDValue NarrowLoad = ReduceLoadWidth(N); if (NarrowLoad.getNode()) return NarrowLoad; // Here is a common situation. We want to optimize: // // %a = ... // %b = and i32 %a, 2 // %c = srl i32 %b, 1 // brcond i32 %c ... // // into // // %a = ... // %b = and %a, 2 // %c = setcc eq %b, 0 // brcond %c ... // // However when after the source operand of SRL is optimized into AND, the SRL // itself may not be optimized further. Look for it and add the BRCOND into // the worklist. if (N->hasOneUse()) { SDNode *Use = *N->use_begin(); if (Use->getOpcode() == ISD::BRCOND) AddToWorkList(Use); else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { // Also look pass the truncate. Use = *Use->use_begin(); if (Use->getOpcode() == ISD::BRCOND) AddToWorkList(Use); } } return SDValue(); } SDValue DAGCombiner::visitCTLZ(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (ctlz c1) -> c2 if (isa
(N0)) return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0); return SDValue(); } SDValue DAGCombiner::visitCTTZ(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (cttz c1) -> c2 if (isa
(N0)) return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0); return SDValue(); } SDValue DAGCombiner::visitCTPOP(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (ctpop c1) -> c2 if (isa
(N0)) return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0); return SDValue(); } SDValue DAGCombiner::visitSELECT(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); ConstantSDNode *N2C = dyn_cast
(N2); EVT VT = N->getValueType(0); EVT VT0 = N0.getValueType(); // fold (select C, X, X) -> X if (N1 == N2) return N1; // fold (select true, X, Y) -> X if (N0C && !N0C->isNullValue()) return N1; // fold (select false, X, Y) -> Y if (N0C && N0C->isNullValue()) return N2; // fold (select C, 1, X) -> (or C, X) if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1) return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2); // fold (select C, 0, 1) -> (xor C, 1) if (VT.isInteger() && (VT0 == MVT::i1 || (VT0.isInteger() && TLI.getBooleanContents(false) == TargetLowering::ZeroOrOneBooleanContent)) && N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) { SDValue XORNode; if (VT == VT0) return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0, N0, DAG.getConstant(1, VT0)); XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0, N0, DAG.getConstant(1, VT0)); AddToWorkList(XORNode.getNode()); if (VT.bitsGT(VT0)) return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode); return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode); } // fold (select C, 0, X) -> (and (not C), X) if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) { SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT); AddToWorkList(NOTNode.getNode()); return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2); } // fold (select C, X, 1) -> (or (not C), X) if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) { SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT); AddToWorkList(NOTNode.getNode()); return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1); } // fold (select C, X, 0) -> (and C, X) if (VT == MVT::i1 && N2C && N2C->isNullValue()) return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1); // fold (select X, X, Y) -> (or X, Y) // fold (select X, 1, Y) -> (or X, Y) if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1))) return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2); // fold (select X, Y, X) -> (and X, Y) // fold (select X, Y, 0) -> (and X, Y) if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0))) return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1); // If we can fold this based on the true/false value, do so. if (SimplifySelectOps(N, N1, N2)) return SDValue(N, 0); // Don't revisit N. // fold selects based on a setcc into other things, such as min/max/abs if (N0.getOpcode() == ISD::SETCC) { // FIXME: // Check against MVT::Other for SELECT_CC, which is a workaround for targets // having to say they don't support SELECT_CC on every type the DAG knows // about, since there is no way to mark an opcode illegal at all value types if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) && TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, N0.getOperand(0), N0.getOperand(1), N1, N2, N0.getOperand(2)); return SimplifySelect(N->getDebugLoc(), N0, N1, N2); } return SDValue(); } SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); SDValue N3 = N->getOperand(3); SDValue N4 = N->getOperand(4); ISD::CondCode CC = cast
(N4)->get(); // fold select_cc lhs, rhs, x, x, cc -> x if (N2 == N3) return N2; // Determine if the condition we're dealing with is constant SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()), N0, N1, CC, N->getDebugLoc(), false); if (SCC.getNode()) AddToWorkList(SCC.getNode()); if (ConstantSDNode *SCCC = dyn_cast_or_null
(SCC.getNode())) { if (!SCCC->isNullValue()) return N2; // cond always true -> true val else return N3; // cond always false -> false val } // Fold to a simpler select_cc if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC) return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(), SCC.getOperand(0), SCC.getOperand(1), N2, N3, SCC.getOperand(2)); // If we can fold this based on the true/false value, do so. if (SimplifySelectOps(N, N2, N3)) return SDValue(N, 0); // Don't revisit N. // fold select_cc into other things, such as min/max/abs return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC); } SDValue DAGCombiner::visitSETCC(SDNode *N) { return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), cast
(N->getOperand(2))->get(), N->getDebugLoc()); } // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" // transformation. Returns true if extension are possible and the above // mentioned transformation is profitable. static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, unsigned ExtOpc, SmallVector
&ExtendNodes, const TargetLowering &TLI) { bool HasCopyToRegUses = false; bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); for (SDNode::use_iterator UI = N0.getNode()->use_begin(), UE = N0.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User == N) continue; if (UI.getUse().getResNo() != N0.getResNo()) continue; // FIXME: Only extend SETCC N, N and SETCC N, c for now. if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { ISD::CondCode CC = cast
(User->getOperand(2))->get(); if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) // Sign bits will be lost after a zext. return false; bool Add = false; for (unsigned i = 0; i != 2; ++i) { SDValue UseOp = User->getOperand(i); if (UseOp == N0) continue; if (!isa
(UseOp)) return false; Add = true; } if (Add) ExtendNodes.push_back(User); continue; } // If truncates aren't free and there are users we can't // extend, it isn't worthwhile. if (!isTruncFree) return false; // Remember if this value is live-out. if (User->getOpcode() == ISD::CopyToReg) HasCopyToRegUses = true; } if (HasCopyToRegUses) { bool BothLiveOut = false; for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { SDUse &Use = UI.getUse(); if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { BothLiveOut = true; break; } } if (BothLiveOut) // Both unextended and extended values are live out. There had better be // a good reason for the transformation. return ExtendNodes.size(); } return true; } void DAGCombiner::ExtendSetCCUses(SmallVector
SetCCs, SDValue Trunc, SDValue ExtLoad, DebugLoc DL, ISD::NodeType ExtType) { // Extend SetCC uses if necessary. for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { SDNode *SetCC = SetCCs[i]; SmallVector
Ops; for (unsigned j = 0; j != 2; ++j) { SDValue SOp = SetCC->getOperand(j); if (SOp == Trunc) Ops.push_back(ExtLoad); else Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); } Ops.push_back(SetCC->getOperand(2)); CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), &Ops[0], Ops.size())); } } SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (sext c1) -> c1 if (isa
(N0)) return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0); // fold (sext (sext x)) -> (sext x) // fold (sext (aext x)) -> (sext x) if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0.getOperand(0)); if (N0.getOpcode() == ISD::TRUNCATE) { // fold (sext (truncate (load x))) -> (sext (smaller load x)) // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); if (NarrowLoad.getNode()) { SDNode* oye = N0.getNode()->getOperand(0).getNode(); if (NarrowLoad.getNode() != N0.getNode()) { CombineTo(N0.getNode(), NarrowLoad); // CombineTo deleted the truncate, if needed, but not what's under it. AddToWorkList(oye); } return SDValue(N, 0); // Return N so it doesn't get rechecked! } // See if the value being truncated is already sign extended. If so, just // eliminate the trunc/sext pair. SDValue Op = N0.getOperand(0); unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits(); unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits(); unsigned DestBits = VT.getScalarType().getSizeInBits(); unsigned NumSignBits = DAG.ComputeNumSignBits(Op); if (OpBits == DestBits) { // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign // bits, it is already ready. if (NumSignBits > DestBits-MidBits) return Op; } else if (OpBits < DestBits) { // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign // bits, just sext from i32. if (NumSignBits > OpBits-MidBits) return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op); } else { // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign // bits, just truncate to i32. if (NumSignBits > OpBits-MidBits) return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op); } // fold (sext (truncate x)) -> (sextinreg x). if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, N0.getValueType())) { if (OpBits < DestBits) Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op); else if (OpBits > DestBits) Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op); return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op, DAG.getValueType(N0.getValueType())); } } // fold (sext (load x)) -> (sext (truncate (sextload x))) // None of the supported targets knows how to perform load and sign extend // on vectors in one instruction. We only perform this transformation on // scalars. if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && ((!LegalOperations && !cast
(N0)->isVolatile()) || TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) { bool DoXform = true; SmallVector
SetCCs; if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); if (DoXform) { LoadSDNode *LN0 = cast
(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), N0.getValueType(), LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); CombineTo(N, ExtLoad); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(), ExtLoad); CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(), ISD::SIGN_EXTEND); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (sext (sextload x)) -> (sext (truncate (sextload x))) // fold (sext ( extload x)) -> (sext (truncate (sextload x))) if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { LoadSDNode *LN0 = cast
(N0); EVT MemVT = LN0->getMemoryVT(); if ((!LegalOperations && !LN0->isVolatile()) || TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) { SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), MemVT, LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.getNode(), DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (sext (and/or/xor (load x), cst)) -> // (and/or/xor (sextload x), (sext cst)) if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::XOR) && isa
(N0.getOperand(0)) && N0.getOperand(1).getOpcode() == ISD::Constant && TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) && (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { LoadSDNode *LN0 = cast
(N0.getOperand(0)); if (LN0->getExtensionType() != ISD::ZEXTLOAD) { bool DoXform = true; SmallVector
SetCCs; if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, SetCCs, TLI); if (DoXform) { SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), LN0->getMemoryVT(), LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); APInt Mask = cast
(N0.getOperand(1))->getAPIntValue(); Mask = Mask.sext(VT.getSizeInBits()); SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ExtLoad, DAG.getConstant(Mask, VT)); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getOperand(0).getDebugLoc(), N0.getOperand(0).getValueType(), ExtLoad); CombineTo(N, And); CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(), ISD::SIGN_EXTEND); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } } if (N0.getOpcode() == ISD::SETCC) { // sext(setcc) -> sext_in_reg(vsetcc) for vectors. // Only do this before legalize for now. if (VT.isVector() && !LegalOperations) { EVT N0VT = N0.getOperand(0).getValueType(); // We know that the # elements of the results is the same as the // # elements of the compare (and the # elements of the compare result // for that matter). Check to see that they are the same size. If so, // we know that the element size of the sext'd result matches the // element size of the compare operands. if (VT.getSizeInBits() == N0VT.getSizeInBits()) return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()); // If the desired elements are smaller or larger than the source // elements we can use a matching integer vector type and then // truncate/sign extend else { EVT MatchingElementType = EVT::getIntegerVT(*DAG.getContext(), N0VT.getScalarType().getSizeInBits()); EVT MatchingVectorType = EVT::getVectorVT(*DAG.getContext(), MatchingElementType, N0VT.getVectorNumElements()); SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()); return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT); } } // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc) unsigned ElementWidth = VT.getScalarType().getSizeInBits(); SDValue NegOne = DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT); SDValue SCC = SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1), NegOne, DAG.getConstant(0, VT), cast
(N0.getOperand(2))->get(), true); if (SCC.getNode()) return SCC; if (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT))) return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT, DAG.getSetCC(N->getDebugLoc(), TLI.getSetCCResultType(VT), N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()), NegOne, DAG.getConstant(0, VT)); } // fold (sext x) -> (zext x) if the sign bit is known zero. if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0); return SDValue(); } SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (zext c1) -> c1 if (isa
(N0)) return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0); // fold (zext (zext x)) -> (zext x) // fold (zext (aext x)) -> (zext x) if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0.getOperand(0)); // fold (zext (truncate (load x))) -> (zext (smaller load x)) // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) if (N0.getOpcode() == ISD::TRUNCATE) { SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); if (NarrowLoad.getNode()) { SDNode* oye = N0.getNode()->getOperand(0).getNode(); if (NarrowLoad.getNode() != N0.getNode()) { CombineTo(N0.getNode(), NarrowLoad); // CombineTo deleted the truncate, if needed, but not what's under it. AddToWorkList(oye); } return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (zext (truncate x)) -> (and x, mask) if (N0.getOpcode() == ISD::TRUNCATE && (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) { // fold (zext (truncate (load x))) -> (zext (smaller load x)) // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); if (NarrowLoad.getNode()) { SDNode* oye = N0.getNode()->getOperand(0).getNode(); if (NarrowLoad.getNode() != N0.getNode()) { CombineTo(N0.getNode(), NarrowLoad); // CombineTo deleted the truncate, if needed, but not what's under it. AddToWorkList(oye); } return SDValue(N, 0); // Return N so it doesn't get rechecked! } SDValue Op = N0.getOperand(0); if (Op.getValueType().bitsLT(VT)) { Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op); } else if (Op.getValueType().bitsGT(VT)) { Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op); } return DAG.getZeroExtendInReg(Op, N->getDebugLoc(), N0.getValueType().getScalarType()); } // Fold (zext (and (trunc x), cst)) -> (and x, cst), // if either of the casts is not free. if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::TRUNCATE && N0.getOperand(1).getOpcode() == ISD::Constant && (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), N0.getValueType()) || !TLI.isZExtFree(N0.getValueType(), VT))) { SDValue X = N0.getOperand(0).getOperand(0); if (X.getValueType().bitsLT(VT)) { X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X); } else if (X.getValueType().bitsGT(VT)) { X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X); } APInt Mask = cast
(N0.getOperand(1))->getAPIntValue(); Mask = Mask.zext(VT.getSizeInBits()); return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X, DAG.getConstant(Mask, VT)); } // fold (zext (load x)) -> (zext (truncate (zextload x))) // None of the supported targets knows how to perform load and vector_zext // on vectors in one instruction. We only perform this transformation on // scalars. if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && ((!LegalOperations && !cast
(N0)->isVolatile()) || TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) { bool DoXform = true; SmallVector
SetCCs; if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); if (DoXform) { LoadSDNode *LN0 = cast
(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), N0.getValueType(), LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); CombineTo(N, ExtLoad); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(), ExtLoad); CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(), ISD::ZERO_EXTEND); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (zext (and/or/xor (load x), cst)) -> // (and/or/xor (zextload x), (zext cst)) if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::XOR) && isa
(N0.getOperand(0)) && N0.getOperand(1).getOpcode() == ISD::Constant && TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) && (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { LoadSDNode *LN0 = cast
(N0.getOperand(0)); if (LN0->getExtensionType() != ISD::SEXTLOAD) { bool DoXform = true; SmallVector
SetCCs; if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND, SetCCs, TLI); if (DoXform) { SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), LN0->getMemoryVT(), LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); APInt Mask = cast
(N0.getOperand(1))->getAPIntValue(); Mask = Mask.zext(VT.getSizeInBits()); SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ExtLoad, DAG.getConstant(Mask, VT)); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getOperand(0).getDebugLoc(), N0.getOperand(0).getValueType(), ExtLoad); CombineTo(N, And); CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(), ISD::ZERO_EXTEND); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } } // fold (zext (zextload x)) -> (zext (truncate (zextload x))) // fold (zext ( extload x)) -> (zext (truncate (zextload x))) if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { LoadSDNode *LN0 = cast
(N0); EVT MemVT = LN0->getMemoryVT(); if ((!LegalOperations && !LN0->isVolatile()) || TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) { SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), MemVT, LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.getNode(), DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } if (N0.getOpcode() == ISD::SETCC) { if (!LegalOperations && VT.isVector()) { // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. // Only do this before legalize for now. EVT N0VT = N0.getOperand(0).getValueType(); EVT EltVT = VT.getVectorElementType(); SmallVector
OneOps(VT.getVectorNumElements(), DAG.getConstant(1, EltVT)); if (VT.getSizeInBits() == N0VT.getSizeInBits()) // We know that the # elements of the results is the same as the // # elements of the compare (and the # elements of the compare result // for that matter). Check to see that they are the same size. If so, // we know that the element size of the sext'd result matches the // element size of the compare operands. return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()), DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT, &OneOps[0], OneOps.size())); // If the desired elements are smaller or larger than the source // elements we can use a matching integer vector type and then // truncate/sign extend EVT MatchingElementType = EVT::getIntegerVT(*DAG.getContext(), N0VT.getScalarType().getSizeInBits()); EVT MatchingVectorType = EVT::getVectorVT(*DAG.getContext(), MatchingElementType, N0VT.getVectorNumElements()); SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()); return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT), DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT, &OneOps[0], OneOps.size())); } // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc SDValue SCC = SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, VT), DAG.getConstant(0, VT), cast
(N0.getOperand(2))->get(), true); if (SCC.getNode()) return SCC; } // (zext (shl (zext x), cst)) -> (shl (zext x), cst) if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && isa
(N0.getOperand(1)) && N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse()) { SDValue ShAmt = N0.getOperand(1); unsigned ShAmtVal = cast
(ShAmt)->getZExtValue(); if (N0.getOpcode() == ISD::SHL) { SDValue InnerZExt = N0.getOperand(0); // If the original shl may be shifting out bits, do not perform this // transformation. unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() - InnerZExt.getOperand(0).getValueType().getSizeInBits(); if (ShAmtVal > KnownZeroBits) return SDValue(); } DebugLoc DL = N->getDebugLoc(); // Ensure that the shift amount is wide enough for the shifted value. if (VT.getSizeInBits() >= 256) ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); return DAG.getNode(N0.getOpcode(), DL, VT, DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), ShAmt); } return SDValue(); } SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (aext c1) -> c1 if (isa
(N0)) return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0); // fold (aext (aext x)) -> (aext x) // fold (aext (zext x)) -> (zext x) // fold (aext (sext x)) -> (sext x) if (N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND) return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0)); // fold (aext (truncate (load x))) -> (aext (smaller load x)) // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) if (N0.getOpcode() == ISD::TRUNCATE) { SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); if (NarrowLoad.getNode()) { SDNode* oye = N0.getNode()->getOperand(0).getNode(); if (NarrowLoad.getNode() != N0.getNode()) { CombineTo(N0.getNode(), NarrowLoad); // CombineTo deleted the truncate, if needed, but not what's under it. AddToWorkList(oye); } return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (aext (truncate x)) if (N0.getOpcode() == ISD::TRUNCATE) { SDValue TruncOp = N0.getOperand(0); if (TruncOp.getValueType() == VT) return TruncOp; // x iff x size == zext size. if (TruncOp.getValueType().bitsGT(VT)) return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp); return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp); } // Fold (aext (and (trunc x), cst)) -> (and x, cst) // if the trunc is not free. if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::TRUNCATE && N0.getOperand(1).getOpcode() == ISD::Constant && !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), N0.getValueType())) { SDValue X = N0.getOperand(0).getOperand(0); if (X.getValueType().bitsLT(VT)) { X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X); } else if (X.getValueType().bitsGT(VT)) { X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X); } APInt Mask = cast
(N0.getOperand(1))->getAPIntValue(); Mask = Mask.zext(VT.getSizeInBits()); return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X, DAG.getConstant(Mask, VT)); } // fold (aext (load x)) -> (aext (truncate (extload x))) // None of the supported targets knows how to perform load and any_ext // on vectors in one instruction. We only perform this transformation on // scalars. if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && ((!LegalOperations && !cast
(N0)->isVolatile()) || TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) { bool DoXform = true; SmallVector
SetCCs; if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); if (DoXform) { LoadSDNode *LN0 = cast
(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), N0.getValueType(), LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); CombineTo(N, ExtLoad); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(), ExtLoad); CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(), ISD::ANY_EXTEND); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (aext (zextload x)) -> (aext (truncate (zextload x))) // fold (aext (sextload x)) -> (aext (truncate (sextload x))) // fold (aext ( extload x)) -> (aext (truncate (extload x))) if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { LoadSDNode *LN0 = cast
(N0); EVT MemVT = LN0->getMemoryVT(); SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), MemVT, LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.getNode(), DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } if (N0.getOpcode() == ISD::SETCC) { // aext(setcc) -> sext_in_reg(vsetcc) for vectors. // Only do this before legalize for now. if (VT.isVector() && !LegalOperations) { EVT N0VT = N0.getOperand(0).getValueType(); // We know that the # elements of the results is the same as the // # elements of the compare (and the # elements of the compare result // for that matter). Check to see that they are the same size. If so, // we know that the element size of the sext'd result matches the // element size of the compare operands. if (VT.getSizeInBits() == N0VT.getSizeInBits()) return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()); // If the desired elements are smaller or larger than the source // elements we can use a matching integer vector type and then // truncate/sign extend else { EVT MatchingElementType = EVT::getIntegerVT(*DAG.getContext(), N0VT.getScalarType().getSizeInBits()); EVT MatchingVectorType = EVT::getVectorVT(*DAG.getContext(), MatchingElementType, N0VT.getVectorNumElements()); SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()); return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT); } } // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc SDValue SCC = SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, VT), DAG.getConstant(0, VT), cast
(N0.getOperand(2))->get(), true); if (SCC.getNode()) return SCC; } return SDValue(); } /// GetDemandedBits - See if the specified operand can be simplified with the /// knowledge that only the bits specified by Mask are used. If so, return the /// simpler operand, otherwise return a null SDValue. SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { switch (V.getOpcode()) { default: break; case ISD::OR: case ISD::XOR: // If the LHS or RHS don't contribute bits to the or, drop them. if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) return V.getOperand(1); if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) return V.getOperand(0); break; case ISD::SRL: // Only look at single-use SRLs. if (!V.getNode()->hasOneUse()) break; if (ConstantSDNode *RHSC = dyn_cast
(V.getOperand(1))) { // See if we can recursively simplify the LHS. unsigned Amt = RHSC->getZExtValue(); // Watch out for shift count overflow though. if (Amt >= Mask.getBitWidth()) break; APInt NewMask = Mask << Amt; SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask); if (SimplifyLHS.getNode()) return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(), SimplifyLHS, V.getOperand(1)); } } return SDValue(); } /// ReduceLoadWidth - If the result of a wider load is shifted to right of N /// bits and then truncated to a narrower type and where N is a multiple /// of number of bits of the narrower type, transform it to a narrower load /// from address + N / num of bits of new type. If the result is to be /// extended, also fold the extension to form a extending load. SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { unsigned Opc = N->getOpcode(); ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); EVT ExtVT = VT; // This transformation isn't valid for vector loads. if (VT.isVector()) return SDValue(); // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then // extended to VT. if (Opc == ISD::SIGN_EXTEND_INREG) { ExtType = ISD::SEXTLOAD; ExtVT = cast
(N->getOperand(1))->getVT(); } else if (Opc == ISD::SRL) { // Another special-case: SRL is basically zero-extending a narrower value. ExtType = ISD::ZEXTLOAD; N0 = SDValue(N, 0); ConstantSDNode *N01 = dyn_cast
(N0.getOperand(1)); if (!N01) return SDValue(); ExtVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() - N01->getZExtValue()); } if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT)) return SDValue(); unsigned EVTBits = ExtVT.getSizeInBits(); // Do not generate loads of non-round integer types since these can // be expensive (and would be wrong if the type is not byte sized). if (!ExtVT.isRound()) return SDValue(); unsigned ShAmt = 0; if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { if (ConstantSDNode *N01 = dyn_cast
(N0.getOperand(1))) { ShAmt = N01->getZExtValue(); // Is the shift amount a multiple of size of VT? if ((ShAmt & (EVTBits-1)) == 0) { N0 = N0.getOperand(0); // Is the load width a multiple of size of VT? if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) return SDValue(); } // At this point, we must have a load or else we can't do the transform. if (!isa
(N0)) return SDValue(); // If the shift amount is larger than the input type then we're not // accessing any of the loaded bytes. If the load was a zextload/extload // then the result of the shift+trunc is zero/undef (handled elsewhere). // If the load was a sextload then the result is a splat of the sign bit // of the extended byte. This is not worth optimizing for. if (ShAmt >= cast
(N0)->getMemoryVT().getSizeInBits()) return SDValue(); } } // If the load is shifted left (and the result isn't shifted back right), // we can fold the truncate through the shift. unsigned ShLeftAmt = 0; if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { if (ConstantSDNode *N01 = dyn_cast
(N0.getOperand(1))) { ShLeftAmt = N01->getZExtValue(); N0 = N0.getOperand(0); } } // If we haven't found a load, we can't narrow it. Don't transform one with // multiple uses, this would require adding a new load. if (!isa
(N0) || !N0.hasOneUse() || // Don't change the width of a volatile load. cast
(N0)->isVolatile()) return SDValue(); // Verify that we are actually reducing a load width here. if (cast
(N0)->getMemoryVT().getSizeInBits() < EVTBits) return SDValue(); LoadSDNode *LN0 = cast
(N0); EVT PtrType = N0.getOperand(1).getValueType(); // For big endian targets, we need to adjust the offset to the pointer to // load the correct bytes. if (TLI.isBigEndian()) { unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; } uint64_t PtrOff = ShAmt / 8; unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType, LN0->getBasePtr(), DAG.getConstant(PtrOff, PtrType)); AddToWorkList(NewPtr.getNode()); SDValue Load; if (ExtType == ISD::NON_EXTLOAD) Load = DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff), LN0->isVolatile(), LN0->isNonTemporal(), NewAlign); else Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), NewAlign); // Replace the old load's chain with the new load's chain. WorkListRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1), &DeadNodes); // Shift the result left, if we've swallowed a left shift. SDValue Result = Load; if (ShLeftAmt != 0) { EVT ShImmTy = getShiftAmountTy(Result.getValueType()); if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) ShImmTy = VT; Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, Result, DAG.getConstant(ShLeftAmt, ShImmTy)); } // Return the new loaded value. return Result; } SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); EVT EVT = cast
(N1)->getVT(); unsigned VTBits = VT.getScalarType().getSizeInBits(); unsigned EVTBits = EVT.getScalarType().getSizeInBits(); // fold (sext_in_reg c1) -> c1 if (isa
(N0) || N0.getOpcode() == ISD::UNDEF) return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1); // If the input is already sign extended, just drop the extension. if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) return N0; // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && EVT.bitsLT(cast
(N0.getOperand(1))->getVT())) { return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0.getOperand(0), N1); } // fold (sext_in_reg (sext x)) -> (sext x) // fold (sext_in_reg (aext x)) -> (sext x) // if x is small enough. if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { SDValue N00 = N0.getOperand(0); if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1); } // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT); // fold operands of sext_in_reg based on knowledge that the top bits are not // demanded. if (SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); // fold (sext_in_reg (load x)) -> (smaller sextload x) // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) SDValue NarrowLoad = ReduceLoadWidth(N); if (NarrowLoad.getNode()) return NarrowLoad; // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. if (N0.getOpcode() == ISD::SRL) { if (ConstantSDNode *ShAmt = dyn_cast
(N0.getOperand(1))) if (ShAmt->getZExtValue()+EVTBits <= VTBits) { // We can turn this into an SRA iff the input to the SRL is already sign // extended enough. unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0), N0.getOperand(1)); } } // fold (sext_inreg (extload x)) -> (sextload x) if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && EVT == cast
(N0)->getMemoryVT() && ((!LegalOperations && !cast
(N0)->isVolatile()) || TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) { LoadSDNode *LN0 = cast
(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), EVT, LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse() && EVT == cast
(N0)->getMemoryVT() && ((!LegalOperations && !cast
(N0)->isVolatile()) || TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) { LoadSDNode *LN0 = cast
(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), EVT, LN0->isVolatile(), LN0->isNonTemporal(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), N0.getOperand(1), false); if (BSwap.getNode() != 0) return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, BSwap, N1); } return SDValue(); } SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // noop truncate if (N0.getValueType() == N->getValueType(0)) return N0; // fold (truncate c1) -> c1 if (isa
(N0)) return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0); // fold (truncate (truncate x)) -> (truncate x) if (N0.getOpcode() == ISD::TRUNCATE) return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0)); // fold (truncate (ext x)) -> (ext x) or (truncate x) or x if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { if (N0.getOperand(0).getValueType().bitsLT(VT)) // if the source is smaller than the dest, we still need an extend return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0)); else if (N0.getOperand(0).getValueType().bitsGT(VT)) // if the source is larger than the dest, than we just need the truncate return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0)); else // if the source and dest are the same type, we can drop both the extend // and the truncate. return N0.getOperand(0); } // See if we can simplify the input to this truncate through knowledge that // only the low bits are being used. // For example "trunc (or (shl x, 8), y)" // -> trunc y // Currently we only perform this optimization on scalars because vectors // may have different active low bits. if (!VT.isVector()) { SDValue Shorter = GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits())); if (Shorter.getNode()) return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter); } // fold (truncate (load x)) -> (smaller load x) // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { SDValue Reduced = ReduceLoadWidth(N); if (Reduced.getNode()) return Reduced; } // Simplify the operands using demanded-bits information. if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); return SDValue(); } static SDNode *getBuildPairElt(SDNode *N, unsigned i) { SDValue Elt = N->getOperand(i); if (Elt.getOpcode() != ISD::MERGE_VALUES) return Elt.getNode(); return Elt.getOperand(Elt.getResNo()).getNode(); } /// CombineConsecutiveLoads - build_pair (load, load) -> load /// if load locations are consecutive. SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { assert(N->getOpcode() == ISD::BUILD_PAIR); LoadSDNode *LD1 = dyn_cast
(getBuildPairElt(N, 0)); LoadSDNode *LD2 = dyn_cast
(getBuildPairElt(N, 1)); if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || LD1->getPointerInfo().getAddrSpace() != LD2->getPointerInfo().getAddrSpace()) return SDValue(); EVT LD1VT = LD1->getValueType(0); if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && // If both are volatile this would reduce the number of volatile loads. // If one is volatile it might be ok, but play conservative and bail out. !LD1->isVolatile() && !LD2->isVolatile() && DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) { unsigned Align = LD1->getAlignment(); unsigned NewAlign = TLI.getTargetData()-> getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); if (NewAlign <= Align && (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(), LD1->getBasePtr(), LD1->getPointerInfo(), false, false, Align); } return SDValue(); } SDValue DAGCombiner::visitBITCAST(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // If the input is a BUILD_VECTOR with all constant elements, fold this now. // Only do this before legalize, since afterward the target may be depending // on the bitconvert. // First check to see if this is all constant. if (!LegalTypes && N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && VT.isVector()) { bool isSimple = true; for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) if (N0.getOperand(i).getOpcode() != ISD::UNDEF && N0.getOperand(i).getOpcode() != ISD::Constant && N0.getOperand(i).getOpcode() != ISD::ConstantFP) { isSimple = false; break; } EVT DestEltVT = N->getValueType(0).getVectorElementType(); assert(!DestEltVT.isVector() && "Element type of vector ValueType must not be vector!"); if (isSimple) return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); } // If the input is a constant, let getNode fold it. if (isa
(N0) || isa
(N0)) { SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0); if (Res.getNode() != N) { if (!LegalOperations || TLI.isOperationLegal(Res.getNode()->getOpcode(), VT)) return Res; // Folding it resulted in an illegal node, and it's too late to // do that. Clean up the old node and forego the transformation. // Ideally this won't happen very often, because instcombine // and the earlier dagcombine runs (where illegal nodes are // permitted) should have folded most of them already. DAG.DeleteNode(Res.getNode()); } } // (conv (conv x, t1), t2) -> (conv x, t2) if (N0.getOpcode() == ISD::BITCAST) return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0.getOperand(0)); // fold (conv (load x)) -> (load (conv*)x) // If the resultant load doesn't need a higher alignment than the original! if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && // Do not change the width of a volatile load. !cast
(N0)->isVolatile() && (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) { LoadSDNode *LN0 = cast
(N0); unsigned Align = TLI.getTargetData()-> getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); unsigned OrigAlign = LN0->getAlignment(); if (Align <= OrigAlign) { SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), LN0->isVolatile(), LN0->isNonTemporal(), OrigAlign); AddToWorkList(N); CombineTo(N0.getNode(), DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), N0.getValueType(), Load), Load.getValue(1)); return Load; } } // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) // This often reduces constant pool loads. if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) && N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) { SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT, N0.getOperand(0)); AddToWorkList(NewConv.getNode()); APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); if (N0.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, NewConv, DAG.getConstant(SignBit, VT)); assert(N0.getOpcode() == ISD::FABS); return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NewConv, DAG.getConstant(~SignBit, VT)); } // fold (bitconvert (fcopysign cst, x)) -> // (or (and (bitconvert x), sign), (and cst, (not sign))) // Note that we don't handle (copysign x, cst) because this can always be // folded to an fneg or fabs. if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && isa
(N0.getOperand(0)) && VT.isInteger() && !VT.isVector()) { unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); if (isTypeLegal(IntXVT)) { SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), IntXVT, N0.getOperand(1)); AddToWorkList(X.getNode()); // If X has a different width than the result/lhs, sext it or truncate it. unsigned VTWidth = VT.getSizeInBits(); if (OrigXWidth < VTWidth) { X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X); AddToWorkList(X.getNode()); } else if (OrigXWidth > VTWidth) { // To get the sign bit in the right place, we have to shift it right // before truncating. X = DAG.getNode(ISD::SRL, X.getDebugLoc(), X.getValueType(), X, DAG.getConstant(OrigXWidth-VTWidth, X.getValueType())); AddToWorkList(X.getNode()); X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X); AddToWorkList(X.getNode()); } APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT, X, DAG.getConstant(SignBit, VT)); AddToWorkList(X.getNode()); SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT, N0.getOperand(0)); Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT, Cst, DAG.getConstant(~SignBit, VT)); AddToWorkList(Cst.getNode()); return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst); } } // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. if (N0.getOpcode() == ISD::BUILD_PAIR) { SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT); if (CombineLD.getNode()) return CombineLD; } return SDValue(); } SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { EVT VT = N->getValueType(0); return CombineConsecutiveLoads(N, VT); } /// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the /// destination element value type. SDValue DAGCombiner:: ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); // If this is already the right type, we're done. if (SrcEltVT == DstEltVT) return SDValue(BV, 0); unsigned SrcBitSize = SrcEltVT.getSizeInBits(); unsigned DstBitSize = DstEltVT.getSizeInBits(); // If this is a conversion of N elements of one type to N elements of another // type, convert each element. This handles FP<->INT cases. if (SrcBitSize == DstBitSize) { EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, BV->getValueType(0).getVectorNumElements()); // Due to the FP element handling below calling this routine recursively, // we can end up with a scalar-to-vector node here. if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT, DAG.getNode(ISD::BITCAST, BV->getDebugLoc(), DstEltVT, BV->getOperand(0))); SmallVector
Ops; for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { SDValue Op = BV->getOperand(i); // If the vector element type is not legal, the BUILD_VECTOR operands // are promoted and implicitly truncated. Make that explicit here. if (Op.getValueType() != SrcEltVT) Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op); Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(), DstEltVT, Op)); AddToWorkList(Ops.back().getNode()); } return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT, &Ops[0], Ops.size()); } // Otherwise, we're growing or shrinking the elements. To avoid having to // handle annoying details of growing/shrinking FP values, we convert them to // int first. if (SrcEltVT.isFloatingPoint()) { // Convert the input float vector to a int vector where the elements are the // same sizes. assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!"); EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); SrcEltVT = IntVT; } // Now we know the input is an integer vector. If the output is a FP type, // convert to integer first, then to FP of the right size. if (DstEltVT.isFloatingPoint()) { assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!"); EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); // Next, convert to FP elements of the same size. return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); } // Okay, we know the src/dst types are both integers of differing types. // Handling growing first. assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); if (SrcBitSize < DstBitSize) { unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; SmallVector
Ops; for (unsigned i = 0, e = BV->getNumOperands(); i != e; i += NumInputsPerOutput) { bool isLE = TLI.isLittleEndian(); APInt NewBits = APInt(DstBitSize, 0); bool EltIsUndef = true; for (unsigned j = 0; j != NumInputsPerOutput; ++j) { // Shift the previously computed bits over. NewBits <<= SrcBitSize; SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); if (Op.getOpcode() == ISD::UNDEF) continue; EltIsUndef = false; NewBits |= cast
(Op)->getAPIntValue(). zextOrTrunc(SrcBitSize).zext(DstBitSize); } if (EltIsUndef) Ops.push_back(DAG.getUNDEF(DstEltVT)); else Ops.push_back(DAG.getConstant(NewBits, DstEltVT)); } EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT, &Ops[0], Ops.size()); } // Finally, this must be the case where we are shrinking elements: each input // turns into multiple outputs. bool isS2V = ISD::isScalarToVector(BV); unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, NumOutputsPerInput*BV->getNumOperands()); SmallVector
Ops; for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { if (BV->getOperand(i).getOpcode() == ISD::UNDEF) { for (unsigned j = 0; j != NumOutputsPerInput; ++j) Ops.push_back(DAG.getUNDEF(DstEltVT)); continue; } APInt OpVal = cast
(BV->getOperand(i))-> getAPIntValue().zextOrTrunc(SrcBitSize); for (unsigned j = 0; j != NumOutputsPerInput; ++j) { APInt ThisVal = OpVal.trunc(DstBitSize); Ops.push_back(DAG.getConstant(ThisVal, DstEltVT)); if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal) // Simply turn this into a SCALAR_TO_VECTOR of the new type. return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT, Ops[0]); OpVal = OpVal.lshr(DstBitSize); } // For big endian targets, swap the order of the pieces of each element. if (TLI.isBigEndian()) std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); } return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT, &Ops[0], Ops.size()); } SDValue DAGCombiner::visitFADD(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast
(N0); ConstantFPSDNode *N1CFP = dyn_cast
(N1); EVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (fadd c1, c2) -> (fadd c1, c2) if (N0CFP && N1CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1); // canonicalize constant to RHS if (N0CFP && !N1CFP) return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0); // fold (fadd A, 0) -> A if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero()) return N0; // fold (fadd A, (fneg B)) -> (fsub A, B) if (isNegatibleForFree(N1, LegalOperations) == 2) return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, GetNegatedExpression(N1, DAG, LegalOperations)); // fold (fadd (fneg A), B) -> (fsub B, A) if (isNegatibleForFree(N0, LegalOperations) == 2) return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1, GetNegatedExpression(N0, DAG, LegalOperations)); // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && isa
(N0.getOperand(1))) return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0), DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(1), N1)); return SDValue(); } SDValue DAGCombiner::visitFSUB(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast
(N0); ConstantFPSDNode *N1CFP = dyn_cast
(N1); EVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (fsub c1, c2) -> c1-c2 if (N0CFP && N1CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1); // fold (fsub A, 0) -> A if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero()) return N0; // fold (fsub 0, B) -> -B if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) { if (isNegatibleForFree(N1, LegalOperations)) return GetNegatedExpression(N1, DAG, LegalOperations); if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N1); } // fold (fsub A, (fneg B)) -> (fadd A, B) if (isNegatibleForFree(N1, LegalOperations)) return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, GetNegatedExpression(N1, DAG, LegalOperations)); return SDValue(); } SDValue DAGCombiner::visitFMUL(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast
(N0); ConstantFPSDNode *N1CFP = dyn_cast
(N1); EVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (fmul c1, c2) -> c1*c2 if (N0CFP && N1CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1); // canonicalize constant to RHS if (N0CFP && !N1CFP) return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0); // fold (fmul A, 0) -> 0 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero()) return N1; // fold (fmul A, 0) -> 0, vector edition. if (UnsafeFPMath && ISD::isBuildVectorAllZeros(N1.getNode())) return N1; // fold (fmul X, 2.0) -> (fadd X, X) if (N1CFP && N1CFP->isExactlyValue(+2.0)) return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0); // fold (fmul X, -1.0) -> (fneg X) if (N1CFP && N1CFP->isExactlyValue(-1.0)) if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0); // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) { if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) { // Both can be negated for free, check to see if at least one is cheaper // negated. if (LHSNeg == 2 || RHSNeg == 2) return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, GetNegatedExpression(N0, DAG, LegalOperations), GetNegatedExpression(N1, DAG, LegalOperations)); } } // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL && N0.getNode()->hasOneUse() && isa
(N0.getOperand(1))) return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0), DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(1), N1)); return SDValue(); } SDValue DAGCombiner::visitFDIV(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast
(N0); ConstantFPSDNode *N1CFP = dyn_cast
(N1); EVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDValue FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.getNode()) return FoldedVOp; } // fold (fdiv c1, c2) -> c1/c2 if (N0CFP && N1CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1); // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) { if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) { // Both can be negated for free, check to see if at least one is cheaper // negated. if (LHSNeg == 2 || RHSNeg == 2) return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, GetNegatedExpression(N0, DAG, LegalOperations), GetNegatedExpression(N1, DAG, LegalOperations)); } } return SDValue(); } SDValue DAGCombiner::visitFREM(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast
(N0); ConstantFPSDNode *N1CFP = dyn_cast
(N1); EVT VT = N->getValueType(0); // fold (frem c1, c2) -> fmod(c1,c2) if (N0CFP && N1CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1); return SDValue(); } SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast
(N0); ConstantFPSDNode *N1CFP = dyn_cast
(N1); EVT VT = N->getValueType(0); if (N0CFP && N1CFP && VT != MVT::ppcf128) // Constant fold return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1); if (N1CFP) { const APFloat& V = N1CFP->getValueAPF(); // copysign(x, c1) -> fabs(x) iff ispos(c1) // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) if (!V.isNegative()) { if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0); } else { if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0)); } } // copysign(fabs(x), y) -> copysign(x, y) // copysign(fneg(x), y) -> copysign(x, y) // copysign(copysign(x,z), y) -> copysign(x, y) if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0.getOperand(0), N1); // copysign(x, abs(y)) -> abs(x) if (N1.getOpcode() == ISD::FABS) return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0); // copysign(x, copysign(y,z)) -> copysign(x, z) if (N1.getOpcode() == ISD::FCOPYSIGN) return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1.getOperand(1)); // copysign(x, fp_extend(y)) -> copysign(x, y) // copysign(x, fp_round(y)) -> copysign(x, y) if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1.getOperand(0)); return SDValue(); } SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { SDValue N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast
(N0); EVT VT = N->getValueType(0); EVT OpVT = N0.getValueType(); // fold (sint_to_fp c1) -> c1fp if (N0C && OpVT != MVT::ppcf128 && // ...but only if the target supports immediate floating-point values (Level == llvm::Unrestricted || TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0); // If the input is a legal type, and SINT_TO_FP is not legal on this target, // but UINT_TO_FP is legal on this target, try to convert. if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { // If the sign bit is known to be zero, we can change this to UINT_TO_FP. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0); } return SDValue(); } SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { SDValue N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast
(N0); EVT VT = N->getValueType(0); EVT OpVT = N0.getValueType(); // fold (uint_to_fp c1) -> c1fp if (N0C && OpVT != MVT::ppcf128 && // ...but only if the target supports immediate floating-point values (Level == llvm::Unrestricted || TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0); // If the input is a legal type, and UINT_TO_FP is not legal on this target, // but SINT_TO_FP is legal on this target, try to convert. if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { // If the sign bit is known to be zero, we can change this to SINT_TO_FP. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0); } return SDValue(); } SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { SDValue N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast
(N0); EVT VT = N->getValueType(0); // fold (fp_to_sint c1fp) -> c1 if (N0CFP) return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0); return SDValue(); } SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { SDValue N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast
(N0); EVT VT = N->getValueType(0); // fold (fp_to_uint c1fp) -> c1 if (N0CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0); return SDValue(); } SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast