//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef X86ISELLOWERING_H
#define X86ISELLOWERING_H
#include "X86Subtarget.h"
#include "X86RegisterInfo.h"
#include "X86MachineFunctionInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/CallingConvLower.h"
namespace llvm {
namespace X86ISD {
// X86 Specific DAG Nodes
enum NodeType {
// Start the numbering where the builtin ops leave off.
FIRST_NUMBER = ISD::BUILTIN_OP_END,
/// BSF - Bit scan forward.
/// BSR - Bit scan reverse.
BSF,
BSR,
/// SHLD, SHRD - Double shift instructions. These correspond to
/// X86::SHLDxx and X86::SHRDxx instructions.
SHLD,
SHRD,
/// FAND - Bitwise logical AND of floating point values. This corresponds
/// to X86::ANDPS or X86::ANDPD.
FAND,
/// FOR - Bitwise logical OR of floating point values. This corresponds
/// to X86::ORPS or X86::ORPD.
FOR,
/// FXOR - Bitwise logical XOR of floating point values. This corresponds
/// to X86::XORPS or X86::XORPD.
FXOR,
/// FSRL - Bitwise logical right shift of floating point values. These
/// corresponds to X86::PSRLDQ.
FSRL,
/// CALL - These operations represent an abstract X86 call
/// instruction, which includes a bunch of information. In particular the
/// operands of these node are:
///
/// #0 - The incoming token chain
/// #1 - The callee
/// #2 - The number of arg bytes the caller pushes on the stack.
/// #3 - The number of arg bytes the callee pops off the stack.
/// #4 - The value to pass in AL/AX/EAX (optional)
/// #5 - The value to pass in DL/DX/EDX (optional)
///
/// The result values of these nodes are:
///
/// #0 - The outgoing token chain
/// #1 - The first register result value (optional)
/// #2 - The second register result value (optional)
///
CALL,
/// RDTSC_DAG - This operation implements the lowering for
/// readcyclecounter
RDTSC_DAG,
/// X86 compare and logical compare instructions.
CMP, COMI, UCOMI,
/// X86 bit-test instructions.
BT,
/// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
/// operand, usually produced by a CMP instruction.
SETCC,
// Same as SETCC except it's materialized with a sbb and the value is all
// one's or all zero's.
SETCC_CARRY, // R = carry_bit ? ~0 : 0
/// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
/// Operands are two FP values to compare; result is a mask of
/// 0s or 1s. Generally DTRT for C/C++ with NaNs.
FSETCCss, FSETCCsd,
/// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
/// result in an integer GPR. Needs masking for scalar result.
FGETSIGNx86,
/// X86 conditional moves. Operand 0 and operand 1 are the two values
/// to select from. Operand 2 is the condition code, and operand 3 is the
/// flag operand produced by a CMP or TEST instruction. It also writes a
/// flag result.
CMOV,
/// X86 conditional branches. Operand 0 is the chain operand, operand 1
/// is the block to branch if condition is true, operand 2 is the
/// condition code, and operand 3 is the flag operand produced by a CMP
/// or TEST instruction.
BRCOND,
/// Return with a flag operand. Operand 0 is the chain operand, operand
/// 1 is the number of bytes of stack to pop.
RET_FLAG,
/// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
REP_STOS,
/// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
REP_MOVS,
/// GlobalBaseReg - On Darwin, this node represents the result of the popl
/// at function entry, used for PIC code.
GlobalBaseReg,
/// Wrapper - A wrapper node for TargetConstantPool,
/// TargetExternalSymbol, and TargetGlobalAddress.
Wrapper,
/// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
/// relative displacements.
WrapperRIP,
/// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
/// of an XMM vector, with the high word zero filled.
MOVQ2DQ,
/// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
/// to an MMX vector. If you think this is too close to the previous
/// mnemonic, so do I; blame Intel.
MOVDQ2Q,
/// vector to a GPR.
MMX_MOVD2W,
/// MMX_MOVW2D - Copies a GPR into the low 32-bit word of a MMX vector
/// and zero out the high word.
MMX_MOVW2D,
/// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
/// i32, corresponds to X86::PEXTRB.
PEXTRB,
/// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
/// i32, corresponds to X86::PEXTRW.
PEXTRW,
/// INSERTPS - Insert any element of a 4 x float vector into any element
/// of a destination 4 x floatvector.
INSERTPS,
/// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
/// corresponds to X86::PINSRB.
PINSRB,
/// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
/// corresponds to X86::PINSRW.
PINSRW, MMX_PINSRW,
/// PSHUFB - Shuffle 16 8-bit values within a vector.
PSHUFB,
/// ANDNP - Bitwise Logical AND NOT of Packed FP values.
ANDNP,
/// PSIGNB/W/D - Copy integer sign.
PSIGNB, PSIGNW, PSIGND,
/// BLEND family of opcodes
BLENDV,
/// FHADD - Floating point horizontal add.
FHADD,
/// FHSUB - Floating point horizontal sub.
FHSUB,
/// FMAX, FMIN - Floating point max and min.
///
FMAX, FMIN,
/// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
/// approximation. Note that these typically require refinement
/// in order to obtain suitable precision.
FRSQRT, FRCP,
// TLSADDR - Thread Local Storage.
TLSADDR,
// TLSCALL - Thread Local Storage. When calling to an OS provided
// thunk at the address from an earlier relocation.
TLSCALL,
// EH_RETURN - Exception Handling helpers.
EH_RETURN,
/// TC_RETURN - Tail call return.
/// operand #0 chain
/// operand #1 callee (register or absolute)
/// operand #2 stack adjustment
/// operand #3 optional in flag
TC_RETURN,
// VZEXT_MOVL - Vector move low and zero extend.
VZEXT_MOVL,
// VSHL, VSRL - Vector logical left / right shift.
VSHL, VSRL,
// CMPPD, CMPPS - Vector double/float comparison.
// CMPPD, CMPPS - Vector double/float comparison.
CMPPD, CMPPS,
// PCMP* - Vector integer comparisons.
PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
// ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
ADD, SUB, ADC, SBB, SMUL,
INC, DEC, OR, XOR, AND,
ANDN, // ANDN - Bitwise AND NOT with FLAGS results.
UMUL, // LOW, HI, FLAGS = umul LHS, RHS
// MUL_IMM - X86 specific multiply by immediate.
MUL_IMM,
// PTEST - Vector bitwise comparisons
PTEST,
// TESTP - Vector packed fp sign bitwise comparisons
TESTP,
// Several flavors of instructions with vector shuffle behaviors.
PALIGN,
PSHUFD,
PSHUFHW,
PSHUFLW,
PSHUFHW_LD,
PSHUFLW_LD,
SHUFPD,
SHUFPS,
MOVDDUP,
MOVSHDUP,
MOVSLDUP,
MOVSHDUP_LD,
MOVSLDUP_LD,
MOVLHPS,
MOVLHPD,
MOVHLPS,
MOVHLPD,
MOVLPS,
MOVLPD,
MOVSD,
MOVSS,
UNPCKLPS,
UNPCKLPD,
VUNPCKLPSY,
VUNPCKLPDY,
UNPCKHPS,
UNPCKHPD,
VUNPCKHPSY,
VUNPCKHPDY,
PUNPCKLBW,
PUNPCKLWD,
PUNPCKLDQ,
PUNPCKLQDQ,
PUNPCKHBW,
PUNPCKHWD,
PUNPCKHDQ,
PUNPCKHQDQ,
VPERMILPS,
VPERMILPSY,
VPERMILPD,
VPERMILPDY,
VPERM2F128,
VBROADCAST,
// VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
// according to %al. An operator is needed so that this can be expanded
// with control flow.
VASTART_SAVE_XMM_REGS,
// WIN_ALLOCA - Windows's _chkstk call to do stack probing.
WIN_ALLOCA,
// SEG_ALLOCA - For allocating variable amounts of stack space when using
// segmented stacks. Check if the current stacklet has enough space, and
// falls back to heap allocation if not.
SEG_ALLOCA,
// Memory barrier
MEMBARRIER,
MFENCE,
SFENCE,
LFENCE,
// ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
// ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
// Atomic 64-bit binary operations.
ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
ATOMSUB64_DAG,
ATOMOR64_DAG,
ATOMXOR64_DAG,
ATOMAND64_DAG,
ATOMNAND64_DAG,
ATOMSWAP64_DAG,
// LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
LCMPXCHG_DAG,
LCMPXCHG8_DAG,
LCMPXCHG16_DAG,
// VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
VZEXT_LOAD,
// FNSTCW16m - Store FP control world into i16 memory.
FNSTCW16m,
/// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
/// integer destination in memory and a FP reg source. This corresponds
/// to the X86::FIST*m instructions and the rounding mode change stuff. It
/// has two inputs (token chain and address) and two outputs (int value
/// and token chain).
FP_TO_INT16_IN_MEM,
FP_TO_INT32_IN_MEM,
FP_TO_INT64_IN_MEM,
/// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
/// integer source in memory and FP reg result. This corresponds to the
/// X86::FILD*m instructions. It has three inputs (token chain, address,
/// and source type) and two outputs (FP value and token chain). FILD_FLAG
/// also produces a flag).
FILD,
FILD_FLAG,
/// FLD - This instruction implements an extending load to FP stack slots.
/// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
/// operand, ptr to load from, and a ValueType node indicating the type
/// to load to.
FLD,
/// FST - This instruction implements a truncating store to FP stack
/// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
/// chain operand, value to store, address, and a ValueType to store it
/// as.
FST,
/// VAARG_64 - This instruction grabs the address of the next argument
/// from a va_list. (reads and modifies the va_list in memory)
VAARG_64
// WARNING: Do not add anything in the end unless you want the node to
// have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
// thought as target memory ops!
};
}
/// Define some predicates that are used for node matching.
namespace X86 {
/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
bool isPSHUFDMask(ShuffleVectorSDNode *N);
/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
bool isPSHUFHWMask(ShuffleVectorSDNode *N);
/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
bool isPSHUFLWMask(ShuffleVectorSDNode *N);
/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to SHUFP*.
bool isSHUFPMask(ShuffleVectorSDNode *N);
/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
bool isMOVHLPSMask(ShuffleVectorSDNode *N);
/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
/// <2, 3, 2, 3>
bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
bool isMOVLPMask(ShuffleVectorSDNode *N);
/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
/// as well as MOVLHPS.
bool isMOVLHPSMask(ShuffleVectorSDNode *N);
/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKL.
bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKH.
bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
/// <0, 0, 1, 1>
bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
/// <2, 2, 3, 3>
bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSS,
/// MOVSD, and MOVD, i.e. setting the lowest element.
bool isMOVLMask(ShuffleVectorSDNode *N);
/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
bool isMOVSHDUPMask(ShuffleVectorSDNode *N, const X86Subtarget *Subtarget);
/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
bool isMOVSLDUPMask(ShuffleVectorSDNode *N, const X86Subtarget *Subtarget);
/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
bool isMOVDDUPMask(ShuffleVectorSDNode *N);
/// isVEXTRACTF128Index - Return true if the specified
/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
/// suitable for input to VEXTRACTF128.
bool isVEXTRACTF128Index(SDNode *N);
/// isVINSERTF128Index - Return true if the specified
/// INSERT_SUBVECTOR operand specifies a subvector insert that is
/// suitable for input to VINSERTF128.
bool isVINSERTF128Index(SDNode *N);
/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
/// instructions.
unsigned getShuffleSHUFImmediate(SDNode *N);
/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
unsigned getShufflePSHUFHWImmediate(SDNode *N);
/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
unsigned getShufflePSHUFLWImmediate(SDNode *N);
/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
unsigned getShufflePALIGNRImmediate(SDNode *N);
/// getExtractVEXTRACTF128Immediate - Return the appropriate
/// immediate to extract the specified EXTRACT_SUBVECTOR index
/// with VEXTRACTF128 instructions.
unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
/// getInsertVINSERTF128Immediate - Return the appropriate
/// immediate to insert at the specified INSERT_SUBVECTOR index
/// with VINSERTF128 instructions.
unsigned getInsertVINSERTF128Immediate(SDNode *N);
/// isZeroNode - Returns true if Elt is a constant zero or a floating point
/// constant +0.0.
bool isZeroNode(SDValue Elt);
/// isOffsetSuitableForCodeModel - Returns true of the given offset can be
/// fit into displacement field of the instruction.
bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
bool hasSymbolicDisplacement = true);
/// isCalleePop - Determines whether the callee is required to pop its
/// own arguments. Callee pop is necessary to support tail calls.
bool isCalleePop(CallingConv::ID CallingConv,
bool is64Bit, bool IsVarArg, bool TailCallOpt);
}
//===--------------------------------------------------------------------===//
// X86TargetLowering - X86 Implementation of the TargetLowering interface
class X86TargetLowering : public TargetLowering {
public:
explicit X86TargetLowering(X86TargetMachine &TM);
virtual unsigned getJumpTableEncoding() const;
virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
virtual const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB, unsigned uid,
MCContext &Ctx) const;
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
/// jumptable.
virtual SDValue getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const;
virtual const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
unsigned JTI, MCContext &Ctx) const;
/// getStackPtrReg - Return the stack pointer register we are using: either
/// ESP or RSP.
unsigned getStackPtrReg() const { return X86StackPtr; }
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contains are placed at 16-byte boundaries while the rest are at
/// 4-byte boundaries.
virtual unsigned getByValTypeAlignment(Type *Ty) const;
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If
/// 'NonScalarIntSafe' is true, that means it's safe to return a
/// non-scalar-integer type, e.g. empty string source, constant, or loaded
/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
/// constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
virtual EVT
getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
bool NonScalarIntSafe, bool MemcpyStrSrc,
MachineFunction &MF) const;
/// allowsUnalignedMemoryAccesses - Returns true if the target allows
/// unaligned memory accesses. of the specified type.
virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
return true;
}
/// LowerOperation - Provide custom lowering hooks for some operations.
///
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
///
virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const;
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
/// isTypeDesirableForOp - Return true if the target has native support for
/// the specified value type and it is 'desirable' to use the type for the
/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
/// instruction encodings are longer and some i16 instructions are slow.
virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
/// isTypeDesirable - Return true if the target has native support for the
/// specified value type and it is 'desirable' to use the type. e.g. On x86
/// i16 is legal, but undesirable since i16 instruction encodings are longer
/// and some i16 instructions are slow.
virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
virtual MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const;
/// getTargetNodeName - This method returns the name of a target specific
/// DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// getSetCCResultType - Return the value type to use for ISD::SETCC.
virtual EVT getSetCCResultType(EVT VT) const;
/// computeMaskedBitsForTargetNode - Determine which of the bits specified
/// in Mask are known to be either zero or one and return them in the
/// KnownZero/KnownOne bitsets.
virtual void computeMaskedBitsForTargetNode(const SDValue Op,
const APInt &Mask,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth = 0) const;
// ComputeNumSignBitsForTargetNode - Determine the number of bits in the
// operation that are sign bits.
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
unsigned Depth) const;
virtual bool
isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
virtual bool ExpandInlineAsm(CallInst *CI) const;
ConstraintType getConstraintType(const std::string &Constraint) const;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
virtual ConstraintWeight getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const;
virtual const char *LowerXConstraint(EVT ConstraintVT) const;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops. If hasMemory is
/// true it means one of the asm constraint of the inline asm instruction
/// being processed is 'm'.
virtual void LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const;
/// getRegForInlineAsmConstraint - Given a physical register constraint
/// (e.g. {edx}), return the register number and the register class for the
/// register. This should only be used for C_Register constraints. On
/// error, this returns a register number of 0.
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const;
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
/// isTruncateFree - Return true if it's free to truncate a value of
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
/// register EAX to i16 by referencing its sub-register AX.
virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
/// isZExtFree - Return true if any actual instruction that defines a
/// value of type Ty1 implicit zero-extends the value to Ty2 in the result
/// register. This does not necessarily include registers defined in
/// unknown ways, such as incoming arguments, or copies from unknown
/// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
/// does not necessarily apply to truncate instructions. e.g. on x86-64,
/// all instructions that define 32-bit values implicit zero-extend the
/// result out to 64 bits.
virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
virtual bool isZExtFree(EVT VT1, EVT VT2) const;
/// isNarrowingProfitable - Return true if it's profitable to narrow
/// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
/// from i32 to i8 but not from i32 to i16.
virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask
/// values are assumed to be legal.
virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
EVT VT) const;
/// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
/// used by Targets can use this to indicate if there is a suitable
/// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
/// pool entry.
virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
EVT VT) const;
/// ShouldShrinkFPConstant - If true, then instruction selection should
/// seek to shrink the FP constant of the specified type to a smaller type
/// in order to save space and / or reduce runtime.
virtual bool ShouldShrinkFPConstant(EVT VT) const {
// Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
// expensive than a straight movsd. On the other hand, it's important to
// shrink long double fp constant since fldt is very slow.
return !X86ScalarSSEf64 || VT == MVT::f80;
}
const X86Subtarget* getSubtarget() const {
return Subtarget;
}
/// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
/// computed in an SSE register, not on the X87 floating point stack.
bool isScalarFPTypeInSSEReg(EVT VT) const {
return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
(VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
}
/// createFastISel - This method returns a target specific FastISel object,
/// or null if the target does not support "fast" ISel.
virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const;
/// getStackCookieLocation - Return true if the target stores stack
/// protector cookies at a fixed offset in some non-standard address
/// space, and populates the address space and offset as
/// appropriate.
virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
SelectionDAG &DAG) const;
protected:
std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(EVT VT) const;
private:
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
/// make the right decision when generating code for different targets.
const X86Subtarget *Subtarget;
const X86RegisterInfo *RegInfo;
const TargetData *TD;
/// X86StackPtr - X86 physical register used as stack ptr.
unsigned X86StackPtr;
/// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
/// floating point ops.
/// When SSE is available, use it for f32 operations.
/// When SSE2 is available, use it for f64 operations.
bool X86ScalarSSEf32;
bool X86ScalarSSEf64;
/// LegalFPImmediates - A list of legal fp immediates.
std::vector<APFloat> LegalFPImmediates;
/// addLegalFPImmediate - Indicate that this x86 target can instruction
/// select the specified FP immediate natively.
void addLegalFPImmediate(const APFloat& Imm) {
LegalFPImmediates.push_back(Imm);
}
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue LowerMemArgument(SDValue Chain,
CallingConv::ID CallConv,
const SmallVectorImpl<ISD::InputArg> &ArgInfo,
DebugLoc dl, SelectionDAG &DAG,
const CCValAssign &VA, MachineFrameInfo *MFI,
unsigned i) const;
SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
DebugLoc dl, SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const;
// Call lowering helpers.
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
bool isCalleeStructRet,
bool isCallerStructRet,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const;
bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
SDValue Chain, bool IsTailCall, bool Is64Bit,
int FPDiff, DebugLoc dl) const;
unsigned GetAlignedArgumentStackSize(unsigned StackSize,
SelectionDAG &DAG) const;
std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
bool isSigned) const;
SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
SelectionDAG &DAG) const;
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
int64_t Offset, SelectionDAG &DAG) const;
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerToBT(SDValue And, ISD::CondCode CC,
DebugLoc dl, SelectionDAG &DAG) const;
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerADD(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
// Utility functions to help LowerVECTOR_SHUFFLE
SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const;
virtual SDValue
LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
virtual SDValue
LowerCall(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
virtual SDValue
LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const;
virtual bool isUsedByReturnOnly(SDNode *N) const;
virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
virtual EVT
getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
ISD::NodeType ExtendKind) const;
virtual bool
CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const;
void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG, unsigned NewOp) const;
/// Utility function to emit string processing sse4.2 instructions
/// that return in xmm0.
/// This takes the instruction to expand, the associated machine basic
/// block, the number of args, and whether or not the second arg is
/// in memory or not.
MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
unsigned argNum, bool inMem) const;
/// Utility functions to emit monitor and mwait instructions. These
/// need to make sure that the arguments to the intrinsic are in the
/// correct registers.
MachineBasicBlock *EmitMonitor(MachineInstr *MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const;
/// Utility function to emit atomic bitwise operations (and, or, xor).
/// It takes the bitwise instruction to expand, the associated machine basic
/// block, and the associated X86 opcodes for reg/reg and reg/imm.
MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
MachineInstr *BInstr,
MachineBasicBlock *BB,
unsigned regOpc,
unsigned immOpc,
unsigned loadOpc,
unsigned cxchgOpc,
unsigned notOpc,
unsigned EAXreg,
TargetRegisterClass *RC,
bool invSrc = false) const;
MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
MachineInstr *BInstr,
MachineBasicBlock *BB,
unsigned regOpcL,
unsigned regOpcH,
unsigned immOpcL,
unsigned immOpcH,
bool invSrc = false) const;
/// Utility function to emit atomic min and max. It takes the min/max
/// instruction to expand, the associated basic block, and the associated
/// cmov opcode for moving the min or max value.
MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
MachineBasicBlock *BB,
unsigned cmovOpc) const;
// Utility function to emit the low-level va_arg code for X86-64.
MachineBasicBlock *EmitVAARG64WithCustomInserter(
MachineInstr *MI,
MachineBasicBlock *MBB) const;
/// Utility function to emit the xmm reg save portion of va_start.
MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
MachineInstr *BInstr,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
MachineBasicBlock *BB,
bool Is64Bit) const;
MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
MachineBasicBlock *BB) const;
/// Emit nodes that will be selected as "test Op0,Op0", or something
/// equivalent, for use with the given x86 condition code.
SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
/// equivalent, for use with the given x86 condition code.
SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
SelectionDAG &DAG) const;
};
namespace X86 {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo);
}
}
#endif // X86ISELLOWERING_H