//===-- lib/CodeGen/MachineInstrBundle.cpp --------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <utility>
using namespace llvm;
namespace {
class UnpackMachineBundles : public MachineFunctionPass {
public:
static char ID; // Pass identification
UnpackMachineBundles(
std::function<bool(const MachineFunction &)> Ftor = nullptr)
: MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
initializeUnpackMachineBundlesPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
std::function<bool(const MachineFunction &)> PredicateFtor;
};
} // end anonymous namespace
char UnpackMachineBundles::ID = 0;
char &llvm::UnpackMachineBundlesID = UnpackMachineBundles::ID;
INITIALIZE_PASS(UnpackMachineBundles, "unpack-mi-bundles",
"Unpack machine instruction bundles", false, false)
bool UnpackMachineBundles::runOnMachineFunction(MachineFunction &MF) {
if (PredicateFtor && !PredicateFtor(MF))
return false;
bool Changed = false;
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock *MBB = &*I;
for (MachineBasicBlock::instr_iterator MII = MBB->instr_begin(),
MIE = MBB->instr_end(); MII != MIE; ) {
MachineInstr *MI = &*MII;
// Remove BUNDLE instruction and the InsideBundle flags from bundled
// instructions.
if (MI->isBundle()) {
while (++MII != MIE && MII->isBundledWithPred()) {
MII->unbundleFromPred();
for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MII->getOperand(i);
if (MO.isReg() && MO.isInternalRead())
MO.setIsInternalRead(false);
}
}
MI->eraseFromParent();
Changed = true;
continue;
}
++MII;
}
}
return Changed;
}
FunctionPass *
llvm::createUnpackMachineBundles(
std::function<bool(const MachineFunction &)> Ftor) {
return new UnpackMachineBundles(std::move(Ftor));
}
namespace {
class FinalizeMachineBundles : public MachineFunctionPass {
public:
static char ID; // Pass identification
FinalizeMachineBundles() : MachineFunctionPass(ID) {
initializeFinalizeMachineBundlesPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // end anonymous namespace
char FinalizeMachineBundles::ID = 0;
char &llvm::FinalizeMachineBundlesID = FinalizeMachineBundles::ID;
INITIALIZE_PASS(FinalizeMachineBundles, "finalize-mi-bundles",
"Finalize machine instruction bundles", false, false)
bool FinalizeMachineBundles::runOnMachineFunction(MachineFunction &MF) {
return llvm::finalizeBundles(MF);
}
/// finalizeBundle - Finalize a machine instruction bundle which includes
/// a sequence of instructions starting from FirstMI to LastMI (exclusive).
/// This routine adds a BUNDLE instruction to represent the bundle, it adds
/// IsInternalRead markers to MachineOperands which are defined inside the
/// bundle, and it copies externally visible defs and uses to the BUNDLE
/// instruction.
void llvm::finalizeBundle(MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator FirstMI,
MachineBasicBlock::instr_iterator LastMI) {
assert(FirstMI != LastMI && "Empty bundle?");
MIBundleBuilder Bundle(MBB, FirstMI, LastMI);
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
MachineInstrBuilder MIB =
BuildMI(MF, FirstMI->getDebugLoc(), TII->get(TargetOpcode::BUNDLE));
Bundle.prepend(MIB);
SmallVector<unsigned, 32> LocalDefs;
SmallSet<unsigned, 32> LocalDefSet;
SmallSet<unsigned, 8> DeadDefSet;
SmallSet<unsigned, 16> KilledDefSet;
SmallVector<unsigned, 8> ExternUses;
SmallSet<unsigned, 8> ExternUseSet;
SmallSet<unsigned, 8> KilledUseSet;
SmallSet<unsigned, 8> UndefUseSet;
SmallVector<MachineOperand*, 4> Defs;
for (; FirstMI != LastMI; ++FirstMI) {
for (unsigned i = 0, e = FirstMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = FirstMI->getOperand(i);
if (!MO.isReg())
continue;
if (MO.isDef()) {
Defs.push_back(&MO);
continue;
}
unsigned Reg = MO.getReg();
if (!Reg)
continue;
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
if (LocalDefSet.count(Reg)) {
MO.setIsInternalRead();
if (MO.isKill())
// Internal def is now killed.
KilledDefSet.insert(Reg);
} else {
if (ExternUseSet.insert(Reg).second) {
ExternUses.push_back(Reg);
if (MO.isUndef())
UndefUseSet.insert(Reg);
}
if (MO.isKill())
// External def is now killed.
KilledUseSet.insert(Reg);
}
}
for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
MachineOperand &MO = *Defs[i];
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (LocalDefSet.insert(Reg).second) {
LocalDefs.push_back(Reg);
if (MO.isDead()) {
DeadDefSet.insert(Reg);
}
} else {
// Re-defined inside the bundle, it's no longer killed.
KilledDefSet.erase(Reg);
if (!MO.isDead())
// Previously defined but dead.
DeadDefSet.erase(Reg);
}
if (!MO.isDead()) {
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
unsigned SubReg = *SubRegs;
if (LocalDefSet.insert(SubReg).second)
LocalDefs.push_back(SubReg);
}
}
}
Defs.clear();
}
SmallSet<unsigned, 32> Added;
for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) {
unsigned Reg = LocalDefs[i];
if (Added.insert(Reg).second) {
// If it's not live beyond end of the bundle, mark it dead.
bool isDead = DeadDefSet.count(Reg) || KilledDefSet.count(Reg);
MIB.addReg(Reg, getDefRegState(true) | getDeadRegState(isDead) |
getImplRegState(true));
}
}
for (unsigned i = 0, e = ExternUses.size(); i != e; ++i) {
unsigned Reg = ExternUses[i];
bool isKill = KilledUseSet.count(Reg);
bool isUndef = UndefUseSet.count(Reg);
MIB.addReg(Reg, getKillRegState(isKill) | getUndefRegState(isUndef) |
getImplRegState(true));
}
}
/// finalizeBundle - Same functionality as the previous finalizeBundle except
/// the last instruction in the bundle is not provided as an input. This is
/// used in cases where bundles are pre-determined by marking instructions
/// with 'InsideBundle' marker. It returns the MBB instruction iterator that
/// points to the end of the bundle.
MachineBasicBlock::instr_iterator
llvm::finalizeBundle(MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator FirstMI) {
MachineBasicBlock::instr_iterator E = MBB.instr_end();
MachineBasicBlock::instr_iterator LastMI = std::next(FirstMI);
while (LastMI != E && LastMI->isInsideBundle())
++LastMI;
finalizeBundle(MBB, FirstMI, LastMI);
return LastMI;
}
/// finalizeBundles - Finalize instruction bundles in the specified
/// MachineFunction. Return true if any bundles are finalized.
bool llvm::finalizeBundles(MachineFunction &MF) {
bool Changed = false;
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock &MBB = *I;
MachineBasicBlock::instr_iterator MII = MBB.instr_begin();
MachineBasicBlock::instr_iterator MIE = MBB.instr_end();
if (MII == MIE)
continue;
assert(!MII->isInsideBundle() &&
"First instr cannot be inside bundle before finalization!");
for (++MII; MII != MIE; ) {
if (!MII->isInsideBundle())
++MII;
else {
MII = finalizeBundle(MBB, std::prev(MII));
Changed = true;
}
}
}
return Changed;
}
//===----------------------------------------------------------------------===//
// MachineOperand iterator
//===----------------------------------------------------------------------===//
MachineOperandIteratorBase::VirtRegInfo
MachineOperandIteratorBase::analyzeVirtReg(unsigned Reg,
SmallVectorImpl<std::pair<MachineInstr*, unsigned> > *Ops) {
VirtRegInfo RI = { false, false, false };
for(; isValid(); ++*this) {
MachineOperand &MO = deref();
if (!MO.isReg() || MO.getReg() != Reg)
continue;
// Remember each (MI, OpNo) that refers to Reg.
if (Ops)
Ops->push_back(std::make_pair(MO.getParent(), getOperandNo()));
// Both defs and uses can read virtual registers.
if (MO.readsReg()) {
RI.Reads = true;
if (MO.isDef())
RI.Tied = true;
}
// Only defs can write.
if (MO.isDef())
RI.Writes = true;
else if (!RI.Tied && MO.getParent()->isRegTiedToDefOperand(getOperandNo()))
RI.Tied = true;
}
return RI;
}
MachineOperandIteratorBase::PhysRegInfo
MachineOperandIteratorBase::analyzePhysReg(unsigned Reg,
const TargetRegisterInfo *TRI) {
bool AllDefsDead = true;
PhysRegInfo PRI = {false, false, false, false, false, false, false, false};
assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
"analyzePhysReg not given a physical register!");
for (; isValid(); ++*this) {
MachineOperand &MO = deref();
if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) {
PRI.Clobbered = true;
continue;
}
if (!MO.isReg())
continue;
unsigned MOReg = MO.getReg();
if (!MOReg || !TargetRegisterInfo::isPhysicalRegister(MOReg))
continue;
if (!TRI->regsOverlap(MOReg, Reg))
continue;
bool Covered = TRI->isSuperRegisterEq(Reg, MOReg);
if (MO.readsReg()) {
PRI.Read = true;
if (Covered) {
PRI.FullyRead = true;
if (MO.isKill())
PRI.Killed = true;
}
} else if (MO.isDef()) {
PRI.Defined = true;
if (Covered)
PRI.FullyDefined = true;
if (!MO.isDead())
AllDefsDead = false;
}
}
if (AllDefsDead) {
if (PRI.FullyDefined || PRI.Clobbered)
PRI.DeadDef = true;
else if (PRI.Defined)
PRI.PartialDeadDef = true;
}
return PRI;
}