//-- SystemZMachineScheduler.cpp - SystemZ Scheduler Interface -*- C++ -*---==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// -------------------------- Post RA scheduling ---------------------------- //
// SystemZPostRASchedStrategy is a scheduling strategy which is plugged into
// the MachineScheduler. It has a sorted Available set of SUs and a pickNode()
// implementation that looks to optimize decoder grouping and balance the
// usage of processor resources. Scheduler states are saved for the end
// region of each MBB, so that a successor block can learn from it.
//===----------------------------------------------------------------------===//
#include "SystemZMachineScheduler.h"
using namespace llvm;
#define DEBUG_TYPE "machine-scheduler"
#ifndef NDEBUG
// Print the set of SUs
void SystemZPostRASchedStrategy::SUSet::
dump(SystemZHazardRecognizer &HazardRec) const {
dbgs() << "{";
for (auto &SU : *this) {
HazardRec.dumpSU(SU, dbgs());
if (SU != *rbegin())
dbgs() << ", ";
}
dbgs() << "}\n";
}
#endif
// Try to find a single predecessor that would be interesting for the
// scheduler in the top-most region of MBB.
static MachineBasicBlock *getSingleSchedPred(MachineBasicBlock *MBB,
const MachineLoop *Loop) {
MachineBasicBlock *PredMBB = nullptr;
if (MBB->pred_size() == 1)
PredMBB = *MBB->pred_begin();
// The loop header has two predecessors, return the latch, but not for a
// single block loop.
if (MBB->pred_size() == 2 && Loop != nullptr && Loop->getHeader() == MBB) {
for (auto I = MBB->pred_begin(); I != MBB->pred_end(); ++I)
if (Loop->contains(*I))
PredMBB = (*I == MBB ? nullptr : *I);
}
assert ((PredMBB == nullptr || !Loop || Loop->contains(PredMBB))
&& "Loop MBB should not consider predecessor outside of loop.");
return PredMBB;
}
void SystemZPostRASchedStrategy::
advanceTo(MachineBasicBlock::iterator NextBegin) {
MachineBasicBlock::iterator LastEmittedMI = HazardRec->getLastEmittedMI();
MachineBasicBlock::iterator I =
((LastEmittedMI != nullptr && LastEmittedMI->getParent() == MBB) ?
std::next(LastEmittedMI) : MBB->begin());
for (; I != NextBegin; ++I) {
if (I->isPosition() || I->isDebugInstr())
continue;
HazardRec->emitInstruction(&*I);
}
}
void SystemZPostRASchedStrategy::initialize(ScheduleDAGMI *dag) {
LLVM_DEBUG(HazardRec->dumpState(););
}
void SystemZPostRASchedStrategy::enterMBB(MachineBasicBlock *NextMBB) {
assert ((SchedStates.find(NextMBB) == SchedStates.end()) &&
"Entering MBB twice?");
LLVM_DEBUG(dbgs() << "** Entering " << printMBBReference(*NextMBB));
MBB = NextMBB;
/// Create a HazardRec for MBB, save it in SchedStates and set HazardRec to
/// point to it.
HazardRec = SchedStates[MBB] = new SystemZHazardRecognizer(TII, &SchedModel);
LLVM_DEBUG(const MachineLoop *Loop = MLI->getLoopFor(MBB);
if (Loop && Loop->getHeader() == MBB) dbgs() << " (Loop header)";
dbgs() << ":\n";);
// Try to take over the state from a single predecessor, if it has been
// scheduled. If this is not possible, we are done.
MachineBasicBlock *SinglePredMBB =
getSingleSchedPred(MBB, MLI->getLoopFor(MBB));
if (SinglePredMBB == nullptr ||
SchedStates.find(SinglePredMBB) == SchedStates.end())
return;
LLVM_DEBUG(dbgs() << "** Continued scheduling from "
<< printMBBReference(*SinglePredMBB) << "\n";);
HazardRec->copyState(SchedStates[SinglePredMBB]);
LLVM_DEBUG(HazardRec->dumpState(););
// Emit incoming terminator(s). Be optimistic and assume that branch
// prediction will generally do "the right thing".
for (MachineBasicBlock::iterator I = SinglePredMBB->getFirstTerminator();
I != SinglePredMBB->end(); I++) {
LLVM_DEBUG(dbgs() << "** Emitting incoming branch: "; I->dump(););
bool TakenBranch = (I->isBranch() &&
(TII->getBranchInfo(*I).Target->isReg() || // Relative branch
TII->getBranchInfo(*I).Target->getMBB() == MBB));
HazardRec->emitInstruction(&*I, TakenBranch);
if (TakenBranch)
break;
}
}
void SystemZPostRASchedStrategy::leaveMBB() {
LLVM_DEBUG(dbgs() << "** Leaving " << printMBBReference(*MBB) << "\n";);
// Advance to first terminator. The successor block will handle terminators
// dependent on CFG layout (T/NT branch etc).
advanceTo(MBB->getFirstTerminator());
}
SystemZPostRASchedStrategy::
SystemZPostRASchedStrategy(const MachineSchedContext *C)
: MLI(C->MLI),
TII(static_cast<const SystemZInstrInfo *>
(C->MF->getSubtarget().getInstrInfo())),
MBB(nullptr), HazardRec(nullptr) {
const TargetSubtargetInfo *ST = &C->MF->getSubtarget();
SchedModel.init(ST);
}
SystemZPostRASchedStrategy::~SystemZPostRASchedStrategy() {
// Delete hazard recognizers kept around for each MBB.
for (auto I : SchedStates) {
SystemZHazardRecognizer *hazrec = I.second;
delete hazrec;
}
}
void SystemZPostRASchedStrategy::initPolicy(MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
unsigned NumRegionInstrs) {
// Don't emit the terminators.
if (Begin->isTerminator())
return;
// Emit any instructions before start of region.
advanceTo(Begin);
}
// Pick the next node to schedule.
SUnit *SystemZPostRASchedStrategy::pickNode(bool &IsTopNode) {
// Only scheduling top-down.
IsTopNode = true;
if (Available.empty())
return nullptr;
// If only one choice, return it.
if (Available.size() == 1) {
LLVM_DEBUG(dbgs() << "** Only one: ";
HazardRec->dumpSU(*Available.begin(), dbgs()); dbgs() << "\n";);
return *Available.begin();
}
// All nodes that are possible to schedule are stored in the Available set.
LLVM_DEBUG(dbgs() << "** Available: "; Available.dump(*HazardRec););
Candidate Best;
for (auto *SU : Available) {
// SU is the next candidate to be compared against current Best.
Candidate c(SU, *HazardRec);
// Remeber which SU is the best candidate.
if (Best.SU == nullptr || c < Best) {
Best = c;
LLVM_DEBUG(dbgs() << "** Best so far: ";);
} else
LLVM_DEBUG(dbgs() << "** Tried : ";);
LLVM_DEBUG(HazardRec->dumpSU(c.SU, dbgs()); c.dumpCosts();
dbgs() << " Height:" << c.SU->getHeight(); dbgs() << "\n";);
// Once we know we have seen all SUs that affect grouping or use unbuffered
// resources, we can stop iterating if Best looks good.
if (!SU->isScheduleHigh && Best.noCost())
break;
}
assert (Best.SU != nullptr);
return Best.SU;
}
SystemZPostRASchedStrategy::Candidate::
Candidate(SUnit *SU_, SystemZHazardRecognizer &HazardRec) : Candidate() {
SU = SU_;
// Check the grouping cost. For a node that must begin / end a
// group, it is positive if it would do so prematurely, or negative
// if it would fit naturally into the schedule.
GroupingCost = HazardRec.groupingCost(SU);
// Check the resources cost for this SU.
ResourcesCost = HazardRec.resourcesCost(SU);
}
bool SystemZPostRASchedStrategy::Candidate::
operator<(const Candidate &other) {
// Check decoder grouping.
if (GroupingCost < other.GroupingCost)
return true;
if (GroupingCost > other.GroupingCost)
return false;
// Compare the use of resources.
if (ResourcesCost < other.ResourcesCost)
return true;
if (ResourcesCost > other.ResourcesCost)
return false;
// Higher SU is otherwise generally better.
if (SU->getHeight() > other.SU->getHeight())
return true;
if (SU->getHeight() < other.SU->getHeight())
return false;
// If all same, fall back to original order.
if (SU->NodeNum < other.SU->NodeNum)
return true;
return false;
}
void SystemZPostRASchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
LLVM_DEBUG(dbgs() << "** Scheduling SU(" << SU->NodeNum << ") ";
if (Available.size() == 1) dbgs() << "(only one) ";
Candidate c(SU, *HazardRec); c.dumpCosts(); dbgs() << "\n";);
// Remove SU from Available set and update HazardRec.
Available.erase(SU);
HazardRec->EmitInstruction(SU);
}
void SystemZPostRASchedStrategy::releaseTopNode(SUnit *SU) {
// Set isScheduleHigh flag on all SUs that we want to consider first in
// pickNode().
const MCSchedClassDesc *SC = HazardRec->getSchedClass(SU);
bool AffectsGrouping = (SC->isValid() && (SC->BeginGroup || SC->EndGroup));
SU->isScheduleHigh = (AffectsGrouping || SU->isUnbuffered);
// Put all released SUs in the Available set.
Available.insert(SU);
}