Golang程序  |  4001行  |  109.55 KB

// AUTOGENERATED FROM executor/common.h

package csource

var commonHeader = `


#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif

#include <endian.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#if SYZ_TRACE
#include <errno.h>
#endif

#if SYZ_EXECUTOR && !GOOS_linux
#include <unistd.h>
NORETURN void doexit(int status)
{
	_exit(status);
	for (;;) {
	}
}
#endif

#if SYZ_EXECUTOR || SYZ_PROCS || SYZ_REPEAT && SYZ_ENABLE_CGROUPS || \
    __NR_syz_mount_image || __NR_syz_read_part_table
unsigned long long procid;
#endif

#if !GOOS_fuchsia && !GOOS_windows
#if SYZ_EXECUTOR || SYZ_HANDLE_SEGV
#include <setjmp.h>
#include <signal.h>
#include <string.h>

#if GOOS_linux
#include <sys/syscall.h>
#endif

static __thread int skip_segv;
static __thread jmp_buf segv_env;

#if GOOS_akaros
#include <parlib/parlib.h>
static void recover()
{
	_longjmp(segv_env, 1);
}
#endif

static void segv_handler(int sig, siginfo_t* info, void* ctx)
{
	uintptr_t addr = (uintptr_t)info->si_addr;
	const uintptr_t prog_start = 1 << 20;
	const uintptr_t prog_end = 100 << 20;
	if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) {
		debug("SIGSEGV on %p, skipping\n", (void*)addr);
#if GOOS_akaros
		struct user_context* uctx = (struct user_context*)ctx;
		uctx->tf.hw_tf.tf_rip = (long)(void*)recover;
		return;
#else
		_longjmp(segv_env, 1);
#endif
	}
	debug("SIGSEGV on %p, exiting\n", (void*)addr);
	doexit(sig);
}

static void install_segv_handler()
{
	struct sigaction sa;
#if GOOS_linux
	memset(&sa, 0, sizeof(sa));
	sa.sa_handler = SIG_IGN;
	syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8);
	syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8);
#endif
	memset(&sa, 0, sizeof(sa));
	sa.sa_sigaction = segv_handler;
	sa.sa_flags = SA_NODEFER | SA_SIGINFO;
	sigaction(SIGSEGV, &sa, NULL);
	sigaction(SIGBUS, &sa, NULL);
}

#define NONFAILING(...)                                              \
	{                                                            \
		__atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \
		if (_setjmp(segv_env) == 0) {                        \
			__VA_ARGS__;                                 \
		}                                                    \
		__atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \
	}
#endif
#endif

#if !GOOS_linux
#if (SYZ_EXECUTOR || SYZ_REPEAT) && SYZ_EXECUTOR_USES_FORK_SERVER
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>

static void kill_and_wait(int pid, int* status)
{
	kill(pid, SIGKILL);
	while (waitpid(-1, status, 0) != pid) {
	}
}
#endif
#endif

#if !GOOS_windows
#if SYZ_EXECUTOR || SYZ_THREADED || SYZ_REPEAT && SYZ_EXECUTOR_USES_FORK_SERVER
static void sleep_ms(uint64 ms)
{
	usleep(ms * 1000);
}
#endif

#if SYZ_EXECUTOR || SYZ_THREADED || SYZ_REPEAT && SYZ_EXECUTOR_USES_FORK_SERVER
#include <time.h>

static uint64 current_time_ms()
{
	struct timespec ts;
	if (clock_gettime(CLOCK_MONOTONIC, &ts))
		fail("clock_gettime failed");
	return (uint64)ts.tv_sec * 1000 + (uint64)ts.tv_nsec / 1000000;
}
#endif

#if SYZ_EXECUTOR || SYZ_USE_TMP_DIR
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>

static void use_temporary_dir()
{
	char tmpdir_template[] = "./syzkaller.XXXXXX";
	char* tmpdir = mkdtemp(tmpdir_template);
	if (!tmpdir)
		fail("failed to mkdtemp");
	if (chmod(tmpdir, 0777))
		fail("failed to chmod");
	if (chdir(tmpdir))
		fail("failed to chdir");
}
#endif
#endif

#if GOOS_akaros || GOOS_netbsd || GOOS_freebsd || GOOS_test
#if SYZ_EXECUTOR || SYZ_EXECUTOR_USES_FORK_SERVER && SYZ_REPEAT && SYZ_USE_TMP_DIR
#include <dirent.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>

static void remove_dir(const char* dir)
{
	DIR* dp;
	struct dirent* ep;
	dp = opendir(dir);
	if (dp == NULL)
		exitf("opendir(%s) failed", dir);
	while ((ep = readdir(dp))) {
		if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0)
			continue;
		char filename[FILENAME_MAX];
		snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name);
		struct stat st;
		if (lstat(filename, &st))
			exitf("lstat(%s) failed", filename);
		if (S_ISDIR(st.st_mode)) {
			remove_dir(filename);
			continue;
		}
		if (unlink(filename))
			exitf("unlink(%s) failed", filename);
	}
	closedir(dp);
	if (rmdir(dir))
		exitf("rmdir(%s) failed", dir);
}
#endif
#endif

#if !GOOS_linux
#if SYZ_EXECUTOR || SYZ_FAULT_INJECTION
static int inject_fault(int nth)
{
	return 0;
}
#endif
#if SYZ_EXECUTOR
static int fault_injected(int fail_fd)
{
	return 0;
}
#endif
#endif

#if !GOOS_windows
#if SYZ_EXECUTOR || SYZ_THREADED
#include <pthread.h>

static void thread_start(void* (*fn)(void*), void* arg)
{
	pthread_t th;
	pthread_attr_t attr;
	pthread_attr_init(&attr);
	pthread_attr_setstacksize(&attr, 128 << 10);
	if (pthread_create(&th, &attr, fn, arg))
		exitf("pthread_create failed");
	pthread_attr_destroy(&attr);
}

#endif
#endif

#if GOOS_freebsd || GOOS_netbsd || GOOS_akaros || GOOS_test
#if SYZ_EXECUTOR || SYZ_THREADED

#include <pthread.h>
#include <time.h>

typedef struct {
	pthread_mutex_t mu;
	pthread_cond_t cv;
	int state;
} event_t;

static void event_init(event_t* ev)
{
	if (pthread_mutex_init(&ev->mu, 0))
		fail("pthread_mutex_init failed");
	if (pthread_cond_init(&ev->cv, 0))
		fail("pthread_cond_init failed");
	ev->state = 0;
}

static void event_reset(event_t* ev)
{
	ev->state = 0;
}

static void event_set(event_t* ev)
{
	pthread_mutex_lock(&ev->mu);
	if (ev->state)
		fail("event already set");
	ev->state = 1;
	pthread_mutex_unlock(&ev->mu);
	pthread_cond_broadcast(&ev->cv);
}

static void event_wait(event_t* ev)
{
	pthread_mutex_lock(&ev->mu);
	while (!ev->state)
		pthread_cond_wait(&ev->cv, &ev->mu);
	pthread_mutex_unlock(&ev->mu);
}

static int event_isset(event_t* ev)
{
	pthread_mutex_lock(&ev->mu);
	int res = ev->state;
	pthread_mutex_unlock(&ev->mu);
	return res;
}

static int event_timedwait(event_t* ev, uint64 timeout)
{
	uint64 start = current_time_ms();
	uint64 now = start;
	pthread_mutex_lock(&ev->mu);
	for (;;) {
		if (ev->state)
			break;
		uint64 remain = timeout - (now - start);
		struct timespec ts;
		ts.tv_sec = remain / 1000;
		ts.tv_nsec = (remain % 1000) * 1000 * 1000;
		pthread_cond_timedwait(&ev->cv, &ev->mu, &ts);
		now = current_time_ms();
		if (now - start > timeout)
			break;
	}
	int res = ev->state;
	pthread_mutex_unlock(&ev->mu);
	return res;
}
#endif
#endif

#if SYZ_EXECUTOR || SYZ_USE_BITMASKS
#define BITMASK_LEN(type, bf_len) (type)((1ull << (bf_len)) - 1)

#define BITMASK_LEN_OFF(type, bf_off, bf_len) (type)(BITMASK_LEN(type, (bf_len)) << (bf_off))

#define STORE_BY_BITMASK(type, addr, val, bf_off, bf_len)                         \
	if ((bf_off) == 0 && (bf_len) == 0) {                                     \
		*(type*)(addr) = (type)(val);                                     \
	} else {                                                                  \
		type new_val = *(type*)(addr);                                    \
		new_val &= ~BITMASK_LEN_OFF(type, (bf_off), (bf_len));            \
		new_val |= ((type)(val)&BITMASK_LEN(type, (bf_len))) << (bf_off); \
		*(type*)(addr) = new_val;                                         \
	}
#endif

#if SYZ_EXECUTOR || SYZ_USE_CHECKSUMS
struct csum_inet {
	uint32 acc;
};

static void csum_inet_init(struct csum_inet* csum)
{
	csum->acc = 0;
}

static void csum_inet_update(struct csum_inet* csum, const uint8* data, size_t length)
{
	if (length == 0)
		return;

	size_t i;
	for (i = 0; i < length - 1; i += 2)
		csum->acc += *(uint16*)&data[i];

	if (length & 1)
		csum->acc += (uint16)data[length - 1];

	while (csum->acc > 0xffff)
		csum->acc = (csum->acc & 0xffff) + (csum->acc >> 16);
}

static uint16 csum_inet_digest(struct csum_inet* csum)
{
	return ~csum->acc;
}
#endif

#if GOOS_akaros

#include <ros/syscall.h>
#include <stdlib.h>
#include <unistd.h>

#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE
static void loop();
static int do_sandbox_none(void)
{
	loop();
	doexit(0);
}
#endif

#if SYZ_EXECUTOR || SYZ_REPEAT
static void execute_one();
const char* program_name;

void child()
{
#if SYZ_EXECUTOR || SYZ_HANDLE_SEGV
	install_segv_handler();
#endif
#if SYZ_EXECUTOR
	receive_execute();
	close(kInPipeFd);
#endif
	execute_one();
	doexit(0);
}
#endif

#if SYZ_EXECUTOR
#define do_sandbox_setuid() 0
#define do_sandbox_namespace() 0
#endif

#elif GOOS_freebsd || GOOS_netbsd

#include <unistd.h>

#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE
static void loop();
static int do_sandbox_none(void)
{
	loop();
	return 0;
}
#endif

#if SYZ_EXECUTOR
#define do_sandbox_setuid() 0
#define do_sandbox_namespace() 0
#endif

#elif GOOS_fuchsia

#include <ddk/driver.h>
#include <fcntl.h>
#include <lib/fdio/util.h>
#include <poll.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <time.h>
#include <unistd.h>
#include <utime.h>
#include <zircon/process.h>
#include <zircon/syscalls.h>

#if SYZ_EXECUTOR || SYZ_HANDLE_SEGV
#include <pthread.h>
#include <setjmp.h>
#include <zircon/syscalls/debug.h>
#include <zircon/syscalls/exception.h>
#include <zircon/syscalls/object.h>
#include <zircon/syscalls/port.h>

static __thread int skip_segv;
static __thread jmp_buf segv_env;

static void segv_handler()
{
	if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED)) {
		debug("recover: skipping\n");
		longjmp(segv_env, 1);
	}
	debug("recover: exiting\n");
	doexit(SIGSEGV);
}

static void* ex_handler(void* arg)
{
	zx_handle_t port = (zx_handle_t)(long)arg;
	for (int i = 0; i < 10000; i++) {
		zx_port_packet_t packet = {};
		zx_status_t status = zx_port_wait(port, ZX_TIME_INFINITE, &packet);
		if (status != ZX_OK) {
			debug("zx_port_wait failed: %d\n", status);
			continue;
		}
		debug("got exception packet: type=%d status=%d tid=%llu\n",
		      packet.type, packet.status, (unsigned long long)(packet.exception.tid));
		zx_handle_t thread;
		status = zx_object_get_child(zx_process_self(), packet.exception.tid,
					     ZX_RIGHT_SAME_RIGHTS, &thread);
		if (status != ZX_OK) {
			debug("zx_object_get_child failed: %d\n", status);
			continue;
		}
		zx_thread_state_general_regs_t regs;
		status = zx_thread_read_state(thread, ZX_THREAD_STATE_GENERAL_REGS,
					      &regs, sizeof(regs));
		if (status != ZX_OK) {
			debug("zx_thread_read_state failed: %d (%d)\n",
			      (int)sizeof(regs), status);
		} else {
#if GOARCH_amd64
			regs.rip = (uint64)(void*)&segv_handler;
#elif GOARCH_arm64
			regs.pc = (uint64)(void*)&segv_handler;
#else
#error "unsupported arch"
#endif
			status = zx_thread_write_state(thread, ZX_THREAD_STATE_GENERAL_REGS, &regs, sizeof(regs));
			if (status != ZX_OK) {
				debug("zx_thread_write_state failed: %d\n", status);
			}
		}
		status = zx_task_resume(thread, ZX_RESUME_EXCEPTION);
		if (status != ZX_OK) {
			debug("zx_task_resume failed: %d\n", status);
		}
		zx_handle_close(thread);
	}
	doexit(1);
	return 0;
}

static void install_segv_handler()
{
	zx_status_t status;
	zx_handle_t port;
	if ((status = zx_port_create(0, &port)) != ZX_OK)
		fail("zx_port_create failed: %d", status);
	if ((status = zx_task_bind_exception_port(zx_process_self(), port, 0, 0)) != ZX_OK)
		fail("zx_task_bind_exception_port failed: %d", status);
	pthread_t th;
	if (pthread_create(&th, 0, ex_handler, (void*)(long)port))
		fail("pthread_create failed");
}

#define NONFAILING(...)                                              \
	{                                                            \
		__atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \
		if (sigsetjmp(segv_env, 0) == 0) {                   \
			__VA_ARGS__;                                 \
		}                                                    \
		__atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \
	}
#endif

#if SYZ_EXECUTOR || SYZ_THREADED
#include <unistd.h>
typedef struct {
	int state;
} event_t;

static void event_init(event_t* ev)
{
	ev->state = 0;
}

static void event_reset(event_t* ev)
{
	ev->state = 0;
}

static void event_set(event_t* ev)
{
	if (ev->state)
		fail("event already set");
	__atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE);
}

static void event_wait(event_t* ev)
{
	while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
		usleep(200);
}

static int event_isset(event_t* ev)
{
	return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE);
}

static int event_timedwait(event_t* ev, uint64 timeout_ms)
{
	uint64 start = current_time_ms();
	for (;;) {
		if (__atomic_load_n(&ev->state, __ATOMIC_RELAXED))
			return 1;
		if (current_time_ms() - start > timeout_ms)
			return 0;
		usleep(200);
	}
}
#endif

#if SYZ_EXECUTOR || __NR_syz_mmap
long syz_mmap(size_t addr, size_t size)
{
	zx_handle_t root = zx_vmar_root_self();
	zx_info_vmar_t info;
	zx_status_t status = zx_object_get_info(root, ZX_INFO_VMAR, &info, sizeof(info), 0, 0);
	if (status != ZX_OK)
		fail("zx_object_get_info(ZX_INFO_VMAR) failed: %d", status);
	zx_handle_t vmo;
	status = zx_vmo_create(size, 0, &vmo);
	if (status != ZX_OK)
		return status;
	uintptr_t mapped_addr;
	status = zx_vmar_map(root, addr - info.base, vmo, 0, size,
			     ZX_VM_FLAG_SPECIFIC_OVERWRITE | ZX_VM_FLAG_PERM_READ |
				 ZX_VM_FLAG_PERM_WRITE | ZX_VM_FLAG_PERM_EXECUTE,
			     &mapped_addr);
	return status;
}
#endif

#if SYZ_EXECUTOR || __NR_syz_process_self
static long syz_process_self()
{
	return zx_process_self();
}
#endif

#if SYZ_EXECUTOR || __NR_syz_thread_self
static long syz_thread_self()
{
	return zx_thread_self();
}
#endif

#if SYZ_EXECUTOR || __NR_syz_vmar_root_self
static long syz_vmar_root_self()
{
	return zx_vmar_root_self();
}
#endif

#if SYZ_EXECUTOR || __NR_syz_job_default
static long syz_job_default()
{
	return zx_job_default();
}
#endif

#if SYZ_EXECUTOR || __NR_syz_future_time
static long syz_future_time(long when)
{
	zx_time_t delta_ms;
	switch (when) {
	case 0:
		delta_ms = 5;
	case 1:
		delta_ms = 30;
	default:
		delta_ms = 10000;
	}
	zx_time_t now = zx_clock_get(ZX_CLOCK_MONOTONIC);
	return now + delta_ms * 1000 * 1000;
}
#endif

#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE
static void loop();
static int do_sandbox_none(void)
{
	loop();
	return 0;
}
#endif

#if SYZ_EXECUTOR
#define do_sandbox_setuid() 0
#define do_sandbox_namespace() 0
#endif

#elif GOOS_linux

#include <stdlib.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>

#if SYZ_EXECUTOR
struct cover_t;
static void cover_reset(cover_t* cov);
#endif

#if SYZ_EXECUTOR || SYZ_THREADED
#include <linux/futex.h>
#include <pthread.h>

typedef struct {
	int state;
} event_t;

static void event_init(event_t* ev)
{
	ev->state = 0;
}

static void event_reset(event_t* ev)
{
	ev->state = 0;
}

static void event_set(event_t* ev)
{
	if (ev->state)
		fail("event already set");
	__atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE);
	syscall(SYS_futex, &ev->state, FUTEX_WAKE);
}

static void event_wait(event_t* ev)
{
	while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
		syscall(SYS_futex, &ev->state, FUTEX_WAIT, 0, 0);
}

static int event_isset(event_t* ev)
{
	return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE);
}

static int event_timedwait(event_t* ev, uint64 timeout)
{
	uint64 start = current_time_ms();
	uint64 now = start;
	for (;;) {
		uint64 remain = timeout - (now - start);
		struct timespec ts;
		ts.tv_sec = remain / 1000;
		ts.tv_nsec = (remain % 1000) * 1000 * 1000;
		syscall(SYS_futex, &ev->state, FUTEX_WAIT, 0, &ts);
		if (__atomic_load_n(&ev->state, __ATOMIC_RELAXED))
			return 1;
		now = current_time_ms();
		if (now - start > timeout)
			return 0;
	}
}
#endif

#if SYZ_EXECUTOR || SYZ_TUN_ENABLE || SYZ_ENABLE_NETDEV
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>

static void vsnprintf_check(char* str, size_t size, const char* format, va_list args)
{
	int rv;

	rv = vsnprintf(str, size, format, args);
	if (rv < 0)
		fail("tun: snprintf failed");
	if ((size_t)rv >= size)
		fail("tun: string '%s...' doesn't fit into buffer", str);
}

#define COMMAND_MAX_LEN 128
#define PATH_PREFIX "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin "
#define PATH_PREFIX_LEN (sizeof(PATH_PREFIX) - 1)

static void execute_command(bool panic, const char* format, ...)
{
	va_list args;
	char command[PATH_PREFIX_LEN + COMMAND_MAX_LEN];
	int rv;

	va_start(args, format);
	memcpy(command, PATH_PREFIX, PATH_PREFIX_LEN);
	vsnprintf_check(command + PATH_PREFIX_LEN, COMMAND_MAX_LEN, format, args);
	va_end(args);
	rv = system(command);
	if (rv) {
		if (panic)
			fail("command '%s' failed: %d", &command[0], rv);
		debug("command '%s': %d\n", &command[0], rv);
	}
}
#endif

#if SYZ_EXECUTOR || SYZ_TUN_ENABLE
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/if.h>
#include <linux/if_ether.h>
#include <linux/if_tun.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <net/if_arp.h>
#include <stdarg.h>
#include <stdbool.h>
#include <sys/ioctl.h>
#include <sys/stat.h>

static int tunfd = -1;
static int tun_frags_enabled;
#define SYZ_TUN_MAX_PACKET_SIZE 1000

#define TUN_IFACE "syz_tun"

#define LOCAL_MAC "aa:aa:aa:aa:aa:aa"
#define REMOTE_MAC "aa:aa:aa:aa:aa:bb"

#define LOCAL_IPV4 "172.20.20.170"
#define REMOTE_IPV4 "172.20.20.187"

#define LOCAL_IPV6 "fe80::aa"
#define REMOTE_IPV6 "fe80::bb"

#ifndef IFF_NAPI
#define IFF_NAPI 0x0010
#endif
#ifndef IFF_NAPI_FRAGS
#define IFF_NAPI_FRAGS 0x0020
#endif

static void initialize_tun(void)
{
#if SYZ_EXECUTOR
	if (!flag_enable_tun)
		return;
#endif
	tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK);
	if (tunfd == -1) {
#if SYZ_EXECUTOR
		fail("tun: can't open /dev/net/tun\n");
#else
		printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n");
		printf("otherwise fuzzing or reproducing might not work as intended\n");
		return;
#endif
	}
	const int kTunFd = 240;
	if (dup2(tunfd, kTunFd) < 0)
		fail("dup2(tunfd, kTunFd) failed");
	close(tunfd);
	tunfd = kTunFd;

	struct ifreq ifr;
	memset(&ifr, 0, sizeof(ifr));
	strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ);
	ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_NAPI | IFF_NAPI_FRAGS;
	if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) {
		ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
		if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0)
			fail("tun: ioctl(TUNSETIFF) failed");
	}
	if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0)
		fail("tun: ioctl(TUNGETIFF) failed");
	tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0;
	debug("tun_frags_enabled=%d\n", tun_frags_enabled);
	execute_command(0, "sysctl -w net.ipv6.conf.%s.accept_dad=0", TUN_IFACE);
	execute_command(0, "sysctl -w net.ipv6.conf.%s.router_solicitations=0", TUN_IFACE);

	execute_command(1, "ip link set dev %s address %s", TUN_IFACE, LOCAL_MAC);
	execute_command(1, "ip addr add %s/24 dev %s", LOCAL_IPV4, TUN_IFACE);
	execute_command(1, "ip neigh add %s lladdr %s dev %s nud permanent",
			REMOTE_IPV4, REMOTE_MAC, TUN_IFACE);
	execute_command(0, "ip -6 addr add %s/120 dev %s", LOCAL_IPV6, TUN_IFACE);
	execute_command(0, "ip -6 neigh add %s lladdr %s dev %s nud permanent",
			REMOTE_IPV6, REMOTE_MAC, TUN_IFACE);
	execute_command(1, "ip link set dev %s up", TUN_IFACE);
}
#endif

#if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/if.h>
#include <linux/if_ether.h>
#include <linux/if_tun.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <net/if_arp.h>
#include <stdarg.h>
#include <stdbool.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/uio.h>
#define DEV_IPV4 "172.20.20.%d"
#define DEV_IPV6 "fe80::%02hx"
#define DEV_MAC "aa:aa:aa:aa:aa:%02hx"

static void snprintf_check(char* str, size_t size, const char* format, ...)
{
	va_list args;

	va_start(args, format);
	vsnprintf_check(str, size, format, args);
	va_end(args);
}
static void initialize_netdevices(void)
{
#if SYZ_EXECUTOR
	if (!flag_enable_net_dev)
		return;
#endif
	unsigned i;
	const char* devtypes[] = {"ip6gretap", "bridge", "vcan", "bond", "team"};
	const char* devnames[] = {"lo", "sit0", "bridge0", "vcan0", "tunl0",
				  "gre0", "gretap0", "ip_vti0", "ip6_vti0",
				  "ip6tnl0", "ip6gre0", "ip6gretap0",
				  "erspan0", "bond0", "veth0", "veth1", "team0",
				  "veth0_to_bridge", "veth1_to_bridge",
				  "veth0_to_bond", "veth1_to_bond",
				  "veth0_to_team", "veth1_to_team"};
	const char* devmasters[] = {"bridge", "bond", "team"};

	for (i = 0; i < sizeof(devtypes) / (sizeof(devtypes[0])); i++)
		execute_command(0, "ip link add dev %s0 type %s", devtypes[i], devtypes[i]);
	execute_command(0, "ip link add type veth");
	for (i = 0; i < sizeof(devmasters) / (sizeof(devmasters[0])); i++) {
		execute_command(0, "ip link add name %s_slave_0 type veth peer name veth0_to_%s", devmasters[i], devmasters[i]);
		execute_command(0, "ip link add name %s_slave_1 type veth peer name veth1_to_%s", devmasters[i], devmasters[i]);
		execute_command(0, "ip link set %s_slave_0 master %s0", devmasters[i], devmasters[i]);
		execute_command(0, "ip link set %s_slave_1 master %s0", devmasters[i], devmasters[i]);
		execute_command(0, "ip link set veth0_to_%s up", devmasters[i]);
		execute_command(0, "ip link set veth1_to_%s up", devmasters[i]);
	}
	execute_command(0, "ip link set bridge_slave_0 up");
	execute_command(0, "ip link set bridge_slave_1 up");

	for (i = 0; i < sizeof(devnames) / (sizeof(devnames[0])); i++) {
		char addr[32];
		snprintf_check(addr, sizeof(addr), DEV_IPV4, i + 10);
		execute_command(0, "ip -4 addr add %s/24 dev %s", addr, devnames[i]);
		snprintf_check(addr, sizeof(addr), DEV_IPV6, i + 10);
		execute_command(0, "ip -6 addr add %s/120 dev %s", addr, devnames[i]);
		snprintf_check(addr, sizeof(addr), DEV_MAC, i + 10);
		execute_command(0, "ip link set dev %s address %s", devnames[i], addr);
		execute_command(0, "ip link set dev %s up", devnames[i]);
	}
}
#endif

#if SYZ_EXECUTOR || SYZ_TUN_ENABLE && (__NR_syz_extract_tcp_res || SYZ_REPEAT)
#include <errno.h>

static int read_tun(char* data, int size)
{
	if (tunfd < 0)
		return -1;

	int rv = read(tunfd, data, size);
	if (rv < 0) {
		if (errno == EAGAIN)
			return -1;
		if (errno == EBADFD)
			return -1;
		fail("tun: read failed with %d", rv);
	}
	return rv;
}
#endif

#if SYZ_EXECUTOR || __NR_syz_emit_ethernet && SYZ_TUN_ENABLE
#include <stdbool.h>
#include <sys/uio.h>

#define MAX_FRAGS 4
struct vnet_fragmentation {
	uint32 full;
	uint32 count;
	uint32 frags[MAX_FRAGS];
};

static long syz_emit_ethernet(long a0, long a1, long a2)
{
	if (tunfd < 0)
		return (uintptr_t)-1;

	uint32 length = a0;
	char* data = (char*)a1;
	debug_dump_data(data, length);

	struct vnet_fragmentation* frags = (struct vnet_fragmentation*)a2;
	struct iovec vecs[MAX_FRAGS + 1];
	uint32 nfrags = 0;
	if (!tun_frags_enabled || frags == NULL) {
		vecs[nfrags].iov_base = data;
		vecs[nfrags].iov_len = length;
		nfrags++;
	} else {
		bool full = true;
		uint32 i, count = 0;
		NONFAILING(full = frags->full);
		NONFAILING(count = frags->count);
		if (count > MAX_FRAGS)
			count = MAX_FRAGS;
		for (i = 0; i < count && length != 0; i++) {
			uint32 size = 0;
			NONFAILING(size = frags->frags[i]);
			if (size > length)
				size = length;
			vecs[nfrags].iov_base = data;
			vecs[nfrags].iov_len = size;
			nfrags++;
			data += size;
			length -= size;
		}
		if (length != 0 && (full || nfrags == 0)) {
			vecs[nfrags].iov_base = data;
			vecs[nfrags].iov_len = length;
			nfrags++;
		}
	}
	return writev(tunfd, vecs, nfrags);
}
#endif

#if SYZ_EXECUTOR || SYZ_REPEAT && SYZ_TUN_ENABLE
static void flush_tun()
{
#if SYZ_EXECUTOR
	if (!flag_enable_tun)
		return;
#endif
	char data[SYZ_TUN_MAX_PACKET_SIZE];
	while (read_tun(&data[0], sizeof(data)) != -1) {
	}
}
#endif

#if SYZ_EXECUTOR || __NR_syz_extract_tcp_res && SYZ_TUN_ENABLE
#ifndef __ANDROID__
struct ipv6hdr {
	__u8 priority : 4,
	    version : 4;
	__u8 flow_lbl[3];

	__be16 payload_len;
	__u8 nexthdr;
	__u8 hop_limit;

	struct in6_addr saddr;
	struct in6_addr daddr;
};
#endif

struct tcp_resources {
	uint32 seq;
	uint32 ack;
};

static long syz_extract_tcp_res(long a0, long a1, long a2)
{

	if (tunfd < 0)
		return (uintptr_t)-1;

	char data[SYZ_TUN_MAX_PACKET_SIZE];
	int rv = read_tun(&data[0], sizeof(data));
	if (rv == -1)
		return (uintptr_t)-1;
	size_t length = rv;
	debug_dump_data(data, length);

	struct tcphdr* tcphdr;

	if (length < sizeof(struct ethhdr))
		return (uintptr_t)-1;
	struct ethhdr* ethhdr = (struct ethhdr*)&data[0];

	if (ethhdr->h_proto == htons(ETH_P_IP)) {
		if (length < sizeof(struct ethhdr) + sizeof(struct iphdr))
			return (uintptr_t)-1;
		struct iphdr* iphdr = (struct iphdr*)&data[sizeof(struct ethhdr)];
		if (iphdr->protocol != IPPROTO_TCP)
			return (uintptr_t)-1;
		if (length < sizeof(struct ethhdr) + iphdr->ihl * 4 + sizeof(struct tcphdr))
			return (uintptr_t)-1;
		tcphdr = (struct tcphdr*)&data[sizeof(struct ethhdr) + iphdr->ihl * 4];
	} else {
		if (length < sizeof(struct ethhdr) + sizeof(struct ipv6hdr))
			return (uintptr_t)-1;
		struct ipv6hdr* ipv6hdr = (struct ipv6hdr*)&data[sizeof(struct ethhdr)];
		if (ipv6hdr->nexthdr != IPPROTO_TCP)
			return (uintptr_t)-1;
		if (length < sizeof(struct ethhdr) + sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
			return (uintptr_t)-1;
		tcphdr = (struct tcphdr*)&data[sizeof(struct ethhdr) + sizeof(struct ipv6hdr)];
	}

	struct tcp_resources* res = (struct tcp_resources*)a0;
	NONFAILING(res->seq = htonl((ntohl(tcphdr->seq) + (uint32)a1)));
	NONFAILING(res->ack = htonl((ntohl(tcphdr->ack_seq) + (uint32)a2)));

	debug("extracted seq: %08x\n", res->seq);
	debug("extracted ack: %08x\n", res->ack);

	return 0;
}
#endif

#if SYZ_EXECUTOR || __NR_syz_open_dev
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>

static long syz_open_dev(long a0, long a1, long a2)
{
	if (a0 == 0xc || a0 == 0xb) {
		char buf[128];
		sprintf(buf, "/dev/%s/%d:%d", a0 == 0xc ? "char" : "block", (uint8)a1, (uint8)a2);
		return open(buf, O_RDWR, 0);
	} else {
		char buf[1024];
		char* hash;
		NONFAILING(strncpy(buf, (char*)a0, sizeof(buf) - 1));
		buf[sizeof(buf) - 1] = 0;
		while ((hash = strchr(buf, '#'))) {
			*hash = '0' + (char)(a1 % 10);
			a1 /= 10;
		}
		return open(buf, a2, 0);
	}
}
#endif

#if SYZ_EXECUTOR || __NR_syz_open_procfs
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>

static long syz_open_procfs(long a0, long a1)
{

	char buf[128];
	memset(buf, 0, sizeof(buf));
	if (a0 == 0) {
		NONFAILING(snprintf(buf, sizeof(buf), "/proc/self/%s", (char*)a1));
	} else if (a0 == -1) {
		NONFAILING(snprintf(buf, sizeof(buf), "/proc/thread-self/%s", (char*)a1));
	} else {
		NONFAILING(snprintf(buf, sizeof(buf), "/proc/self/task/%d/%s", (int)a0, (char*)a1));
	}
	int fd = open(buf, O_RDWR);
	if (fd == -1)
		fd = open(buf, O_RDONLY);
	return fd;
}
#endif

#if SYZ_EXECUTOR || __NR_syz_open_pts
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>

static long syz_open_pts(long a0, long a1)
{
	int ptyno = 0;
	if (ioctl(a0, TIOCGPTN, &ptyno))
		return -1;
	char buf[128];
	sprintf(buf, "/dev/pts/%d", ptyno);
	return open(buf, a1, 0);
}
#endif

#if SYZ_EXECUTOR || __NR_syz_init_net_socket
#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE
#include <fcntl.h>
#include <sched.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

const int kInitNetNsFd = 239;
static long syz_init_net_socket(long domain, long type, long proto)
{
	int netns = open("/proc/self/ns/net", O_RDONLY);
	if (netns == -1)
		return netns;
	if (setns(kInitNetNsFd, 0))
		return -1;
	int sock = syscall(__NR_socket, domain, type, proto);
	int err = errno;
	if (setns(netns, 0))
		fail("setns(netns) failed");
	close(netns);
	errno = err;
	return sock;
}
#else
static long syz_init_net_socket(long domain, long type, long proto)
{
	return syscall(__NR_socket, domain, type, proto);
}
#endif
#endif

#if SYZ_EXECUTOR || __NR_syz_genetlink_get_family_id
#include <errno.h>
#include <linux/genetlink.h>
#include <linux/netlink.h>
#include <sys/socket.h>
#include <sys/types.h>

static long syz_genetlink_get_family_id(long name)
{
	char buf[512] = {0};
	struct nlmsghdr* hdr = (struct nlmsghdr*)buf;
	struct genlmsghdr* genlhdr = (struct genlmsghdr*)NLMSG_DATA(hdr);
	struct nlattr* attr = (struct nlattr*)(genlhdr + 1);
	hdr->nlmsg_len = sizeof(*hdr) + sizeof(*genlhdr) + sizeof(*attr) + GENL_NAMSIZ;
	hdr->nlmsg_type = GENL_ID_CTRL;
	hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
	genlhdr->cmd = CTRL_CMD_GETFAMILY;
	attr->nla_type = CTRL_ATTR_FAMILY_NAME;
	attr->nla_len = sizeof(*attr) + GENL_NAMSIZ;
	NONFAILING(strncpy((char*)(attr + 1), (char*)name, GENL_NAMSIZ));
	struct iovec iov = {hdr, hdr->nlmsg_len};
	struct sockaddr_nl addr = {0};
	addr.nl_family = AF_NETLINK;
	debug("syz_genetlink_get_family_id(%s)\n", (char*)(attr + 1));
	int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
	if (fd == -1) {
		debug("syz_genetlink_get_family_id: socket failed: %d\n", errno);
		return -1;
	}
	struct msghdr msg = {&addr, sizeof(addr), &iov, 1, NULL, 0, 0};
	if (sendmsg(fd, &msg, 0) == -1) {
		debug("syz_genetlink_get_family_id: sendmsg failed: %d\n", errno);
		close(fd);
		return -1;
	}
	ssize_t n = recv(fd, buf, sizeof(buf), 0);
	close(fd);
	if (n <= 0) {
		debug("syz_genetlink_get_family_id: recv failed: %d\n", errno);
		return -1;
	}
	if (hdr->nlmsg_type != GENL_ID_CTRL) {
		debug("syz_genetlink_get_family_id: wrong reply type: %d\n", hdr->nlmsg_type);
		return -1;
	}
	for (; (char*)attr < buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) {
		if (attr->nla_type == CTRL_ATTR_FAMILY_ID)
			return *(uint16*)(attr + 1);
	}
	debug("syz_genetlink_get_family_id: no CTRL_ATTR_FAMILY_ID attr\n");
	return -1;
}
#endif

#if SYZ_EXECUTOR || __NR_syz_mount_image || __NR_syz_read_part_table
#include <errno.h>
#include <fcntl.h>
#include <linux/loop.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>

struct fs_image_segment {
	void* data;
	uintptr_t size;
	uintptr_t offset;
};

#define IMAGE_MAX_SEGMENTS 4096
#define IMAGE_MAX_SIZE (129 << 20)

#if GOARCH_386
#define SYZ_memfd_create 356
#elif GOARCH_amd64
#define SYZ_memfd_create 319
#elif GOARCH_arm
#define SYZ_memfd_create 385
#elif GOARCH_arm64
#define SYZ_memfd_create 279
#elif GOARCH_ppc64le
#define SYZ_memfd_create 360
#endif
#endif

#if SYZ_EXECUTOR || __NR_syz_read_part_table
static long syz_read_part_table(unsigned long size, unsigned long nsegs, long segments)
{
	char loopname[64], linkname[64];
	int loopfd, err = 0, res = -1;
	unsigned long i, j;
	struct fs_image_segment* segs = (struct fs_image_segment*)segments;

	if (nsegs > IMAGE_MAX_SEGMENTS)
		nsegs = IMAGE_MAX_SEGMENTS;
	for (i = 0; i < nsegs; i++) {
		if (segs[i].size > IMAGE_MAX_SIZE)
			segs[i].size = IMAGE_MAX_SIZE;
		segs[i].offset %= IMAGE_MAX_SIZE;
		if (segs[i].offset > IMAGE_MAX_SIZE - segs[i].size)
			segs[i].offset = IMAGE_MAX_SIZE - segs[i].size;
		if (size < segs[i].offset + segs[i].offset)
			size = segs[i].offset + segs[i].offset;
	}
	if (size > IMAGE_MAX_SIZE)
		size = IMAGE_MAX_SIZE;
	int memfd = syscall(SYZ_memfd_create, "syz_read_part_table", 0);
	if (memfd == -1) {
		err = errno;
		goto error;
	}
	if (ftruncate(memfd, size)) {
		err = errno;
		goto error_close_memfd;
	}
	for (i = 0; i < nsegs; i++) {
		if (pwrite(memfd, segs[i].data, segs[i].size, segs[i].offset) < 0) {
			debug("syz_read_part_table: pwrite[%u] failed: %d\n", (int)i, errno);
		}
	}
	snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid);
	loopfd = open(loopname, O_RDWR);
	if (loopfd == -1) {
		err = errno;
		goto error_close_memfd;
	}
	if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
		if (errno != EBUSY) {
			err = errno;
			goto error_close_loop;
		}
		ioctl(loopfd, LOOP_CLR_FD, 0);
		usleep(1000);
		if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
			err = errno;
			goto error_close_loop;
		}
	}
	struct loop_info64 info;
	if (ioctl(loopfd, LOOP_GET_STATUS64, &info)) {
		err = errno;
		goto error_clear_loop;
	}
#if SYZ_EXECUTOR
	cover_reset(0);
#endif
	info.lo_flags |= LO_FLAGS_PARTSCAN;
	if (ioctl(loopfd, LOOP_SET_STATUS64, &info)) {
		err = errno;
		goto error_clear_loop;
	}
	res = 0;
	for (i = 1, j = 0; i < 8; i++) {
		snprintf(loopname, sizeof(loopname), "/dev/loop%llup%d", procid, (int)i);
		struct stat statbuf;
		if (stat(loopname, &statbuf) == 0) {
			snprintf(linkname, sizeof(linkname), "./file%d", (int)j++);
			if (symlink(loopname, linkname)) {
				debug("syz_read_part_table: symlink(%s, %s) failed: %d\n", loopname, linkname, errno);
			}
		}
	}
error_clear_loop:
	ioctl(loopfd, LOOP_CLR_FD, 0);
error_close_loop:
	close(loopfd);
error_close_memfd:
	close(memfd);
error:
	errno = err;
	return res;
}
#endif

#if SYZ_EXECUTOR || __NR_syz_mount_image
#include <string.h>
#include <sys/mount.h>
static long syz_mount_image(long fsarg, long dir, unsigned long size, unsigned long nsegs, long segments, long flags, long optsarg)
{
	char loopname[64], fs[32], opts[256];
	int loopfd, err = 0, res = -1;
	unsigned long i;
	struct fs_image_segment* segs = (struct fs_image_segment*)segments;

	if (nsegs > IMAGE_MAX_SEGMENTS)
		nsegs = IMAGE_MAX_SEGMENTS;
	for (i = 0; i < nsegs; i++) {
		if (segs[i].size > IMAGE_MAX_SIZE)
			segs[i].size = IMAGE_MAX_SIZE;
		segs[i].offset %= IMAGE_MAX_SIZE;
		if (segs[i].offset > IMAGE_MAX_SIZE - segs[i].size)
			segs[i].offset = IMAGE_MAX_SIZE - segs[i].size;
		if (size < segs[i].offset + segs[i].offset)
			size = segs[i].offset + segs[i].offset;
	}
	if (size > IMAGE_MAX_SIZE)
		size = IMAGE_MAX_SIZE;
	int memfd = syscall(SYZ_memfd_create, "syz_mount_image", 0);
	if (memfd == -1) {
		err = errno;
		goto error;
	}
	if (ftruncate(memfd, size)) {
		err = errno;
		goto error_close_memfd;
	}
	for (i = 0; i < nsegs; i++) {
		if (pwrite(memfd, segs[i].data, segs[i].size, segs[i].offset) < 0) {
			debug("syz_mount_image: pwrite[%u] failed: %d\n", (int)i, errno);
		}
	}
	snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid);
	loopfd = open(loopname, O_RDWR);
	if (loopfd == -1) {
		err = errno;
		goto error_close_memfd;
	}
	if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
		if (errno != EBUSY) {
			err = errno;
			goto error_close_loop;
		}
		ioctl(loopfd, LOOP_CLR_FD, 0);
		usleep(1000);
		if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
			err = errno;
			goto error_close_loop;
		}
	}
	mkdir((char*)dir, 0777);
	memset(fs, 0, sizeof(fs));
	NONFAILING(strncpy(fs, (char*)fsarg, sizeof(fs) - 1));
	memset(opts, 0, sizeof(opts));
	NONFAILING(strncpy(opts, (char*)optsarg, sizeof(opts) - 32));
	if (strcmp(fs, "iso9660") == 0) {
		flags |= MS_RDONLY;
	} else if (strncmp(fs, "ext", 3) == 0) {
		if (strstr(opts, "errors=panic") || strstr(opts, "errors=remount-ro") == 0)
			strcat(opts, ",errors=continue");
	} else if (strcmp(fs, "xfs") == 0) {
		strcat(opts, ",nouuid");
	}
	debug("syz_mount_image: size=%llu segs=%llu loop='%s' dir='%s' fs='%s' flags=%llu opts='%s'\n", (uint64)size, (uint64)nsegs, loopname, (char*)dir, fs, (uint64)flags, opts);
#if SYZ_EXECUTOR
	cover_reset(0);
#endif
	if (mount(loopname, (char*)dir, fs, flags, opts)) {
		err = errno;
		goto error_clear_loop;
	}
	res = 0;
error_clear_loop:
	ioctl(loopfd, LOOP_CLR_FD, 0);
error_close_loop:
	close(loopfd);
error_close_memfd:
	close(memfd);
error:
	errno = err;
	return res;
}
#endif

#if SYZ_EXECUTOR || __NR_syz_kvm_setup_cpu
#include <errno.h>
#include <fcntl.h>
#include <linux/kvm.h>
#include <stdarg.h>
#include <stddef.h>
#include <sys/ioctl.h>
#include <sys/stat.h>

#if defined(__x86_64__)
const char kvm_asm16_cpl3[] = "\x0f\x20\xc0\x66\x83\xc8\x01\x0f\x22\xc0\xb8\xa0\x00\x0f\x00\xd8\xb8\x2b\x00\x8e\xd8\x8e\xc0\x8e\xe0\x8e\xe8\xbc\x00\x01\xc7\x06\x00\x01\x1d\xba\xc7\x06\x02\x01\x23\x00\xc7\x06\x04\x01\x00\x01\xc7\x06\x06\x01\x2b\x00\xcb";
const char kvm_asm32_paged[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0";
const char kvm_asm32_vm86[] = "\x66\xb8\xb8\x00\x0f\x00\xd8\xea\x00\x00\x00\x00\xd0\x00";
const char kvm_asm32_paged_vm86[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\x66\xb8\xb8\x00\x0f\x00\xd8\xea\x00\x00\x00\x00\xd0\x00";
const char kvm_asm64_vm86[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\x66\xb8\xb8\x00\x0f\x00\xd8\xea\x00\x00\x00\x00\xd0\x00";
const char kvm_asm64_enable_long[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8";
const char kvm_asm64_init_vm[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8\x48\xc7\xc1\x3a\x00\x00\x00\x0f\x32\x48\x83\xc8\x05\x0f\x30\x0f\x20\xe0\x48\x0d\x00\x20\x00\x00\x0f\x22\xe0\x48\xc7\xc1\x80\x04\x00\x00\x0f\x32\x48\xc7\xc2\x00\x60\x00\x00\x89\x02\x48\xc7\xc2\x00\x70\x00\x00\x89\x02\x48\xc7\xc0\x00\x5f\x00\x00\xf3\x0f\xc7\x30\x48\xc7\xc0\x08\x5f\x00\x00\x66\x0f\xc7\x30\x0f\xc7\x30\x48\xc7\xc1\x81\x04\x00\x00\x0f\x32\x48\x83\xc8\x3f\x48\x21\xd0\x48\xc7\xc2\x00\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x40\x00\x00\x48\xb8\x84\x9e\x99\xf3\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x40\x00\x00\x48\xc7\xc0\x81\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x83\x04\x00\x00\x0f\x32\x48\x0d\xff\x6f\x03\x00\x48\x21\xd0\x48\xc7\xc2\x0c\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x84\x04\x00\x00\x0f\x32\x48\x0d\xff\x17\x00\x00\x48\x21\xd0\x48\xc7\xc2\x12\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x2c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x28\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x02\x0c\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc0\x58\x00\x00\x00\x48\xc7\xc2\x00\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc0\xd8\x00\x00\x00\x48\xc7\xc2\x0c\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x2c\x00\x00\x48\xc7\xc0\x00\x05\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x4c\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x0f\x20\xc0\x48\xc7\xc2\x00\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xd8\x48\xc7\xc2\x02\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xe0\x48\xc7\xc2\x04\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc2\x06\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x6c\x00\x00\x48\xc7\xc0\x00\x3a\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x6c\x00\x00\x48\xc7\xc0\x00\x10\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x6c\x00\x00\x48\xc7\xc0\x00\x38\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x6c\x00\x00\x48\x8b\x04\x25\x10\x5f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x00\x00\x00\x48\xc7\xc0\x01\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x00\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x77\x02\x00\x00\x0f\x32\x48\xc1\xe2\x20\x48\x09\xd0\x48\xc7\xc2\x00\x2c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc2\x04\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x60\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x02\x60\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x1c\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x22\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x08\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x08\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x08\x00\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x68\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x68\x00\x00\x48\xc7\xc0\x00\x3a\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x68\x00\x00\x48\xc7\xc0\x00\x10\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x18\x68\x00\x00\x48\xc7\xc0\x00\x38\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x48\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x48\x00\x00\x48\xc7\xc0\x9b\x20\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x18\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1a\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1c\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x48\x00\x00\x48\xc7\xc0\x82\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x22\x48\x00\x00\x48\xc7\xc0\x8b\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1c\x68\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x68\x00\x00\x48\xc7\xc0\x00\x91\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x68\x00\x00\x48\xc7\xc0\x02\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x28\x00\x00\x48\xc7\xc0\x00\x05\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x0f\x20\xc0\x48\xc7\xc2\x00\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xd8\x48\xc7\xc2\x02\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xe0\x48\xc7\xc2\x04\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc0\x18\x5f\x00\x00\x48\x8b\x10\x48\xc7\xc0\x20\x5f\x00\x00\x48\x8b\x08\x48\x31\xc0\x0f\x78\xd0\x48\x31\xc8\x0f\x79\xd0\x0f\x01\xc2\x48\xc7\xc2\x00\x44\x00\x00\x0f\x78\xd0\xf4";
const char kvm_asm64_vm_exit[] = "\x48\xc7\xc3\x00\x44\x00\x00\x0f\x78\xda\x48\xc7\xc3\x02\x44\x00\x00\x0f\x78\xd9\x48\xc7\xc0\x00\x64\x00\x00\x0f\x78\xc0\x48\xc7\xc3\x1e\x68\x00\x00\x0f\x78\xdb\xf4";
const char kvm_asm64_cpl3[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8\x48\xc7\xc0\x6b\x00\x00\x00\x8e\xd8\x8e\xc0\x8e\xe0\x8e\xe8\x48\xc7\xc4\x80\x0f\x00\x00\x48\xc7\x04\x24\x1d\xba\x00\x00\x48\xc7\x44\x24\x04\x63\x00\x00\x00\x48\xc7\x44\x24\x08\x80\x0f\x00\x00\x48\xc7\x44\x24\x0c\x6b\x00\x00\x00\xcb";

#define ADDR_TEXT 0x0000
#define ADDR_GDT 0x1000
#define ADDR_LDT 0x1800
#define ADDR_PML4 0x2000
#define ADDR_PDP 0x3000
#define ADDR_PD 0x4000
#define ADDR_STACK0 0x0f80
#define ADDR_VAR_HLT 0x2800
#define ADDR_VAR_SYSRET 0x2808
#define ADDR_VAR_SYSEXIT 0x2810
#define ADDR_VAR_IDT 0x3800
#define ADDR_VAR_TSS64 0x3a00
#define ADDR_VAR_TSS64_CPL3 0x3c00
#define ADDR_VAR_TSS16 0x3d00
#define ADDR_VAR_TSS16_2 0x3e00
#define ADDR_VAR_TSS16_CPL3 0x3f00
#define ADDR_VAR_TSS32 0x4800
#define ADDR_VAR_TSS32_2 0x4a00
#define ADDR_VAR_TSS32_CPL3 0x4c00
#define ADDR_VAR_TSS32_VM86 0x4e00
#define ADDR_VAR_VMXON_PTR 0x5f00
#define ADDR_VAR_VMCS_PTR 0x5f08
#define ADDR_VAR_VMEXIT_PTR 0x5f10
#define ADDR_VAR_VMWRITE_FLD 0x5f18
#define ADDR_VAR_VMWRITE_VAL 0x5f20
#define ADDR_VAR_VMXON 0x6000
#define ADDR_VAR_VMCS 0x7000
#define ADDR_VAR_VMEXIT_CODE 0x9000
#define ADDR_VAR_USER_CODE 0x9100
#define ADDR_VAR_USER_CODE2 0x9120

#define SEL_LDT (1 << 3)
#define SEL_CS16 (2 << 3)
#define SEL_DS16 (3 << 3)
#define SEL_CS16_CPL3 ((4 << 3) + 3)
#define SEL_DS16_CPL3 ((5 << 3) + 3)
#define SEL_CS32 (6 << 3)
#define SEL_DS32 (7 << 3)
#define SEL_CS32_CPL3 ((8 << 3) + 3)
#define SEL_DS32_CPL3 ((9 << 3) + 3)
#define SEL_CS64 (10 << 3)
#define SEL_DS64 (11 << 3)
#define SEL_CS64_CPL3 ((12 << 3) + 3)
#define SEL_DS64_CPL3 ((13 << 3) + 3)
#define SEL_CGATE16 (14 << 3)
#define SEL_TGATE16 (15 << 3)
#define SEL_CGATE32 (16 << 3)
#define SEL_TGATE32 (17 << 3)
#define SEL_CGATE64 (18 << 3)
#define SEL_CGATE64_HI (19 << 3)
#define SEL_TSS16 (20 << 3)
#define SEL_TSS16_2 (21 << 3)
#define SEL_TSS16_CPL3 ((22 << 3) + 3)
#define SEL_TSS32 (23 << 3)
#define SEL_TSS32_2 (24 << 3)
#define SEL_TSS32_CPL3 ((25 << 3) + 3)
#define SEL_TSS32_VM86 (26 << 3)
#define SEL_TSS64 (27 << 3)
#define SEL_TSS64_HI (28 << 3)
#define SEL_TSS64_CPL3 ((29 << 3) + 3)
#define SEL_TSS64_CPL3_HI (30 << 3)

#define MSR_IA32_FEATURE_CONTROL 0x3a
#define MSR_IA32_VMX_BASIC 0x480
#define MSR_IA32_SMBASE 0x9e
#define MSR_IA32_SYSENTER_CS 0x174
#define MSR_IA32_SYSENTER_ESP 0x175
#define MSR_IA32_SYSENTER_EIP 0x176
#define MSR_IA32_STAR 0xC0000081
#define MSR_IA32_LSTAR 0xC0000082
#define MSR_IA32_VMX_PROCBASED_CTLS2 0x48B

#define NEXT_INSN $0xbadc0de
#define PREFIX_SIZE 0xba1d


#ifndef KVM_SMI
#define KVM_SMI _IO(KVMIO, 0xb7)
#endif

#define CR0_PE 1
#define CR0_MP (1 << 1)
#define CR0_EM (1 << 2)
#define CR0_TS (1 << 3)
#define CR0_ET (1 << 4)
#define CR0_NE (1 << 5)
#define CR0_WP (1 << 16)
#define CR0_AM (1 << 18)
#define CR0_NW (1 << 29)
#define CR0_CD (1 << 30)
#define CR0_PG (1 << 31)

#define CR4_VME 1
#define CR4_PVI (1 << 1)
#define CR4_TSD (1 << 2)
#define CR4_DE (1 << 3)
#define CR4_PSE (1 << 4)
#define CR4_PAE (1 << 5)
#define CR4_MCE (1 << 6)
#define CR4_PGE (1 << 7)
#define CR4_PCE (1 << 8)
#define CR4_OSFXSR (1 << 8)
#define CR4_OSXMMEXCPT (1 << 10)
#define CR4_UMIP (1 << 11)
#define CR4_VMXE (1 << 13)
#define CR4_SMXE (1 << 14)
#define CR4_FSGSBASE (1 << 16)
#define CR4_PCIDE (1 << 17)
#define CR4_OSXSAVE (1 << 18)
#define CR4_SMEP (1 << 20)
#define CR4_SMAP (1 << 21)
#define CR4_PKE (1 << 22)

#define EFER_SCE 1
#define EFER_LME (1 << 8)
#define EFER_LMA (1 << 10)
#define EFER_NXE (1 << 11)
#define EFER_SVME (1 << 12)
#define EFER_LMSLE (1 << 13)
#define EFER_FFXSR (1 << 14)
#define EFER_TCE (1 << 15)
#define PDE32_PRESENT 1
#define PDE32_RW (1 << 1)
#define PDE32_USER (1 << 2)
#define PDE32_PS (1 << 7)
#define PDE64_PRESENT 1
#define PDE64_RW (1 << 1)
#define PDE64_USER (1 << 2)
#define PDE64_ACCESSED (1 << 5)
#define PDE64_DIRTY (1 << 6)
#define PDE64_PS (1 << 7)
#define PDE64_G (1 << 8)

struct tss16 {
	uint16 prev;
	uint16 sp0;
	uint16 ss0;
	uint16 sp1;
	uint16 ss1;
	uint16 sp2;
	uint16 ss2;
	uint16 ip;
	uint16 flags;
	uint16 ax;
	uint16 cx;
	uint16 dx;
	uint16 bx;
	uint16 sp;
	uint16 bp;
	uint16 si;
	uint16 di;
	uint16 es;
	uint16 cs;
	uint16 ss;
	uint16 ds;
	uint16 ldt;
} __attribute__((packed));

struct tss32 {
	uint16 prev, prevh;
	uint32 sp0;
	uint16 ss0, ss0h;
	uint32 sp1;
	uint16 ss1, ss1h;
	uint32 sp2;
	uint16 ss2, ss2h;
	uint32 cr3;
	uint32 ip;
	uint32 flags;
	uint32 ax;
	uint32 cx;
	uint32 dx;
	uint32 bx;
	uint32 sp;
	uint32 bp;
	uint32 si;
	uint32 di;
	uint16 es, esh;
	uint16 cs, csh;
	uint16 ss, ssh;
	uint16 ds, dsh;
	uint16 fs, fsh;
	uint16 gs, gsh;
	uint16 ldt, ldth;
	uint16 trace;
	uint16 io_bitmap;
} __attribute__((packed));

struct tss64 {
	uint32 reserved0;
	uint64 rsp[3];
	uint64 reserved1;
	uint64 ist[7];
	uint64 reserved2;
	uint32 reserved3;
	uint32 io_bitmap;
} __attribute__((packed));

static void fill_segment_descriptor(uint64* dt, uint64* lt, struct kvm_segment* seg)
{
	uint16 index = seg->selector >> 3;
	uint64 limit = seg->g ? seg->limit >> 12 : seg->limit;
	uint64 sd = (limit & 0xffff) | (seg->base & 0xffffff) << 16 | (uint64)seg->type << 40 | (uint64)seg->s << 44 | (uint64)seg->dpl << 45 | (uint64)seg->present << 47 | (limit & 0xf0000ULL) << 48 | (uint64)seg->avl << 52 | (uint64)seg->l << 53 | (uint64)seg->db << 54 | (uint64)seg->g << 55 | (seg->base & 0xff000000ULL) << 56;
	NONFAILING(dt[index] = sd);
	NONFAILING(lt[index] = sd);
}

static void fill_segment_descriptor_dword(uint64* dt, uint64* lt, struct kvm_segment* seg)
{
	fill_segment_descriptor(dt, lt, seg);
	uint16 index = seg->selector >> 3;
	NONFAILING(dt[index + 1] = 0);
	NONFAILING(lt[index + 1] = 0);
}

static void setup_syscall_msrs(int cpufd, uint16 sel_cs, uint16 sel_cs_cpl3)
{
	char buf[sizeof(struct kvm_msrs) + 5 * sizeof(struct kvm_msr_entry)];
	memset(buf, 0, sizeof(buf));
	struct kvm_msrs* msrs = (struct kvm_msrs*)buf;
	struct kvm_msr_entry* entries = msrs->entries;
	msrs->nmsrs = 5;
	entries[0].index = MSR_IA32_SYSENTER_CS;
	entries[0].data = sel_cs;
	entries[1].index = MSR_IA32_SYSENTER_ESP;
	entries[1].data = ADDR_STACK0;
	entries[2].index = MSR_IA32_SYSENTER_EIP;
	entries[2].data = ADDR_VAR_SYSEXIT;
	entries[3].index = MSR_IA32_STAR;
	entries[3].data = ((uint64)sel_cs << 32) | ((uint64)sel_cs_cpl3 << 48);
	entries[4].index = MSR_IA32_LSTAR;
	entries[4].data = ADDR_VAR_SYSRET;
	ioctl(cpufd, KVM_SET_MSRS, msrs);
}

static void setup_32bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem)
{
	sregs->idt.base = guest_mem + ADDR_VAR_IDT;
	sregs->idt.limit = 0x1ff;
	uint64* idt = (uint64*)(host_mem + sregs->idt.base);
	int i;
	for (i = 0; i < 32; i++) {
		struct kvm_segment gate;
		gate.selector = i << 3;
		switch (i % 6) {
		case 0:
			gate.type = 6;
			gate.base = SEL_CS16;
			break;
		case 1:
			gate.type = 7;
			gate.base = SEL_CS16;
			break;
		case 2:
			gate.type = 3;
			gate.base = SEL_TGATE16;
			break;
		case 3:
			gate.type = 14;
			gate.base = SEL_CS32;
			break;
		case 4:
			gate.type = 15;
			gate.base = SEL_CS32;
			break;
		case 6:
			gate.type = 11;
			gate.base = SEL_TGATE32;
			break;
		}
		gate.limit = guest_mem + ADDR_VAR_USER_CODE2;
		gate.present = 1;
		gate.dpl = 0;
		gate.s = 0;
		gate.g = 0;
		gate.db = 0;
		gate.l = 0;
		gate.avl = 0;
		fill_segment_descriptor(idt, idt, &gate);
	}
}

static void setup_64bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem)
{
	sregs->idt.base = guest_mem + ADDR_VAR_IDT;
	sregs->idt.limit = 0x1ff;
	uint64* idt = (uint64*)(host_mem + sregs->idt.base);
	int i;
	for (i = 0; i < 32; i++) {
		struct kvm_segment gate;
		gate.selector = (i * 2) << 3;
		gate.type = (i & 1) ? 14 : 15;
		gate.base = SEL_CS64;
		gate.limit = guest_mem + ADDR_VAR_USER_CODE2;
		gate.present = 1;
		gate.dpl = 0;
		gate.s = 0;
		gate.g = 0;
		gate.db = 0;
		gate.l = 0;
		gate.avl = 0;
		fill_segment_descriptor_dword(idt, idt, &gate);
	}
}

struct kvm_text {
	uintptr_t typ;
	const void* text;
	uintptr_t size;
};

struct kvm_opt {
	uint64 typ;
	uint64 val;
};

#define KVM_SETUP_PAGING (1 << 0)
#define KVM_SETUP_PAE (1 << 1)
#define KVM_SETUP_PROTECTED (1 << 2)
#define KVM_SETUP_CPL3 (1 << 3)
#define KVM_SETUP_VIRT86 (1 << 4)
#define KVM_SETUP_SMM (1 << 5)
#define KVM_SETUP_VM (1 << 6)
static uintptr_t syz_kvm_setup_cpu(uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5, uintptr_t a6, uintptr_t a7)
{
	const int vmfd = a0;
	const int cpufd = a1;
	char* const host_mem = (char*)a2;
	const struct kvm_text* const text_array_ptr = (struct kvm_text*)a3;
	const uintptr_t text_count = a4;
	const uintptr_t flags = a5;
	const struct kvm_opt* const opt_array_ptr = (struct kvm_opt*)a6;
	uintptr_t opt_count = a7;

	const uintptr_t page_size = 4 << 10;
	const uintptr_t ioapic_page = 10;
	const uintptr_t guest_mem_size = 24 * page_size;
	const uintptr_t guest_mem = 0;

	(void)text_count;
	int text_type = 0;
	const void* text = 0;
	uintptr_t text_size = 0;
	NONFAILING(text_type = text_array_ptr[0].typ);
	NONFAILING(text = text_array_ptr[0].text);
	NONFAILING(text_size = text_array_ptr[0].size);

	uintptr_t i;
	for (i = 0; i < guest_mem_size / page_size; i++) {
		struct kvm_userspace_memory_region memreg;
		memreg.slot = i;
		memreg.flags = 0;
		memreg.guest_phys_addr = guest_mem + i * page_size;
		if (i == ioapic_page)
			memreg.guest_phys_addr = 0xfec00000;
		memreg.memory_size = page_size;
		memreg.userspace_addr = (uintptr_t)host_mem + i * page_size;
		ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
	}
	struct kvm_userspace_memory_region memreg;
	memreg.slot = 1 + (1 << 16);
	memreg.flags = 0;
	memreg.guest_phys_addr = 0x30000;
	memreg.memory_size = 64 << 10;
	memreg.userspace_addr = (uintptr_t)host_mem;
	ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);

	struct kvm_sregs sregs;
	if (ioctl(cpufd, KVM_GET_SREGS, &sregs))
		return -1;

	struct kvm_regs regs;
	memset(&regs, 0, sizeof(regs));
	regs.rip = guest_mem + ADDR_TEXT;
	regs.rsp = ADDR_STACK0;

	sregs.gdt.base = guest_mem + ADDR_GDT;
	sregs.gdt.limit = 256 * sizeof(uint64) - 1;
	uint64* gdt = (uint64*)(host_mem + sregs.gdt.base);

	struct kvm_segment seg_ldt;
	seg_ldt.selector = SEL_LDT;
	seg_ldt.type = 2;
	seg_ldt.base = guest_mem + ADDR_LDT;
	seg_ldt.limit = 256 * sizeof(uint64) - 1;
	seg_ldt.present = 1;
	seg_ldt.dpl = 0;
	seg_ldt.s = 0;
	seg_ldt.g = 0;
	seg_ldt.db = 1;
	seg_ldt.l = 0;
	sregs.ldt = seg_ldt;
	uint64* ldt = (uint64*)(host_mem + sregs.ldt.base);

	struct kvm_segment seg_cs16;
	seg_cs16.selector = SEL_CS16;
	seg_cs16.type = 11;
	seg_cs16.base = 0;
	seg_cs16.limit = 0xfffff;
	seg_cs16.present = 1;
	seg_cs16.dpl = 0;
	seg_cs16.s = 1;
	seg_cs16.g = 0;
	seg_cs16.db = 0;
	seg_cs16.l = 0;

	struct kvm_segment seg_ds16 = seg_cs16;
	seg_ds16.selector = SEL_DS16;
	seg_ds16.type = 3;

	struct kvm_segment seg_cs16_cpl3 = seg_cs16;
	seg_cs16_cpl3.selector = SEL_CS16_CPL3;
	seg_cs16_cpl3.dpl = 3;

	struct kvm_segment seg_ds16_cpl3 = seg_ds16;
	seg_ds16_cpl3.selector = SEL_DS16_CPL3;
	seg_ds16_cpl3.dpl = 3;

	struct kvm_segment seg_cs32 = seg_cs16;
	seg_cs32.selector = SEL_CS32;
	seg_cs32.db = 1;

	struct kvm_segment seg_ds32 = seg_ds16;
	seg_ds32.selector = SEL_DS32;
	seg_ds32.db = 1;

	struct kvm_segment seg_cs32_cpl3 = seg_cs32;
	seg_cs32_cpl3.selector = SEL_CS32_CPL3;
	seg_cs32_cpl3.dpl = 3;

	struct kvm_segment seg_ds32_cpl3 = seg_ds32;
	seg_ds32_cpl3.selector = SEL_DS32_CPL3;
	seg_ds32_cpl3.dpl = 3;

	struct kvm_segment seg_cs64 = seg_cs16;
	seg_cs64.selector = SEL_CS64;
	seg_cs64.l = 1;

	struct kvm_segment seg_ds64 = seg_ds32;
	seg_ds64.selector = SEL_DS64;

	struct kvm_segment seg_cs64_cpl3 = seg_cs64;
	seg_cs64_cpl3.selector = SEL_CS64_CPL3;
	seg_cs64_cpl3.dpl = 3;

	struct kvm_segment seg_ds64_cpl3 = seg_ds64;
	seg_ds64_cpl3.selector = SEL_DS64_CPL3;
	seg_ds64_cpl3.dpl = 3;

	struct kvm_segment seg_tss32;
	seg_tss32.selector = SEL_TSS32;
	seg_tss32.type = 9;
	seg_tss32.base = ADDR_VAR_TSS32;
	seg_tss32.limit = 0x1ff;
	seg_tss32.present = 1;
	seg_tss32.dpl = 0;
	seg_tss32.s = 0;
	seg_tss32.g = 0;
	seg_tss32.db = 0;
	seg_tss32.l = 0;

	struct kvm_segment seg_tss32_2 = seg_tss32;
	seg_tss32_2.selector = SEL_TSS32_2;
	seg_tss32_2.base = ADDR_VAR_TSS32_2;

	struct kvm_segment seg_tss32_cpl3 = seg_tss32;
	seg_tss32_cpl3.selector = SEL_TSS32_CPL3;
	seg_tss32_cpl3.base = ADDR_VAR_TSS32_CPL3;

	struct kvm_segment seg_tss32_vm86 = seg_tss32;
	seg_tss32_vm86.selector = SEL_TSS32_VM86;
	seg_tss32_vm86.base = ADDR_VAR_TSS32_VM86;

	struct kvm_segment seg_tss16 = seg_tss32;
	seg_tss16.selector = SEL_TSS16;
	seg_tss16.base = ADDR_VAR_TSS16;
	seg_tss16.limit = 0xff;
	seg_tss16.type = 1;

	struct kvm_segment seg_tss16_2 = seg_tss16;
	seg_tss16_2.selector = SEL_TSS16_2;
	seg_tss16_2.base = ADDR_VAR_TSS16_2;
	seg_tss16_2.dpl = 0;

	struct kvm_segment seg_tss16_cpl3 = seg_tss16;
	seg_tss16_cpl3.selector = SEL_TSS16_CPL3;
	seg_tss16_cpl3.base = ADDR_VAR_TSS16_CPL3;
	seg_tss16_cpl3.dpl = 3;

	struct kvm_segment seg_tss64 = seg_tss32;
	seg_tss64.selector = SEL_TSS64;
	seg_tss64.base = ADDR_VAR_TSS64;
	seg_tss64.limit = 0x1ff;

	struct kvm_segment seg_tss64_cpl3 = seg_tss64;
	seg_tss64_cpl3.selector = SEL_TSS64_CPL3;
	seg_tss64_cpl3.base = ADDR_VAR_TSS64_CPL3;
	seg_tss64_cpl3.dpl = 3;

	struct kvm_segment seg_cgate16;
	seg_cgate16.selector = SEL_CGATE16;
	seg_cgate16.type = 4;
	seg_cgate16.base = SEL_CS16 | (2 << 16);
	seg_cgate16.limit = ADDR_VAR_USER_CODE2;
	seg_cgate16.present = 1;
	seg_cgate16.dpl = 0;
	seg_cgate16.s = 0;
	seg_cgate16.g = 0;
	seg_cgate16.db = 0;
	seg_cgate16.l = 0;
	seg_cgate16.avl = 0;

	struct kvm_segment seg_tgate16 = seg_cgate16;
	seg_tgate16.selector = SEL_TGATE16;
	seg_tgate16.type = 3;
	seg_cgate16.base = SEL_TSS16_2;
	seg_tgate16.limit = 0;

	struct kvm_segment seg_cgate32 = seg_cgate16;
	seg_cgate32.selector = SEL_CGATE32;
	seg_cgate32.type = 12;
	seg_cgate32.base = SEL_CS32 | (2 << 16);

	struct kvm_segment seg_tgate32 = seg_cgate32;
	seg_tgate32.selector = SEL_TGATE32;
	seg_tgate32.type = 11;
	seg_tgate32.base = SEL_TSS32_2;
	seg_tgate32.limit = 0;

	struct kvm_segment seg_cgate64 = seg_cgate16;
	seg_cgate64.selector = SEL_CGATE64;
	seg_cgate64.type = 12;
	seg_cgate64.base = SEL_CS64;

	int kvmfd = open("/dev/kvm", O_RDWR);
	char buf[sizeof(struct kvm_cpuid2) + 128 * sizeof(struct kvm_cpuid_entry2)];
	memset(buf, 0, sizeof(buf));
	struct kvm_cpuid2* cpuid = (struct kvm_cpuid2*)buf;
	cpuid->nent = 128;
	ioctl(kvmfd, KVM_GET_SUPPORTED_CPUID, cpuid);
	ioctl(cpufd, KVM_SET_CPUID2, cpuid);
	close(kvmfd);

	const char* text_prefix = 0;
	int text_prefix_size = 0;
	char* host_text = host_mem + ADDR_TEXT;

	if (text_type == 8) {
		if (flags & KVM_SETUP_SMM) {
			if (flags & KVM_SETUP_PROTECTED) {
				sregs.cs = seg_cs16;
				sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
				sregs.cr0 |= CR0_PE;
			} else {
				sregs.cs.selector = 0;
				sregs.cs.base = 0;
			}

			NONFAILING(*(host_mem + ADDR_TEXT) = 0xf4);
			host_text = host_mem + 0x8000;

			ioctl(cpufd, KVM_SMI, 0);
		} else if (flags & KVM_SETUP_VIRT86) {
			sregs.cs = seg_cs32;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
			sregs.cr0 |= CR0_PE;
			sregs.efer |= EFER_SCE;

			setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3);
			setup_32bit_idt(&sregs, host_mem, guest_mem);

			if (flags & KVM_SETUP_PAGING) {
				uint64 pd_addr = guest_mem + ADDR_PD;
				uint64* pd = (uint64*)(host_mem + ADDR_PD);
				NONFAILING(pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS);
				sregs.cr3 = pd_addr;
				sregs.cr4 |= CR4_PSE;

				text_prefix = kvm_asm32_paged_vm86;
				text_prefix_size = sizeof(kvm_asm32_paged_vm86) - 1;
			} else {
				text_prefix = kvm_asm32_vm86;
				text_prefix_size = sizeof(kvm_asm32_vm86) - 1;
			}
		} else {
			sregs.cs.selector = 0;
			sregs.cs.base = 0;
		}
	} else if (text_type == 16) {
		if (flags & KVM_SETUP_CPL3) {
			sregs.cs = seg_cs16;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;

			text_prefix = kvm_asm16_cpl3;
			text_prefix_size = sizeof(kvm_asm16_cpl3) - 1;
		} else {
			sregs.cr0 |= CR0_PE;
			sregs.cs = seg_cs16;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
		}
	} else if (text_type == 32) {
		sregs.cr0 |= CR0_PE;
		sregs.efer |= EFER_SCE;

		setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3);
		setup_32bit_idt(&sregs, host_mem, guest_mem);

		if (flags & KVM_SETUP_SMM) {
			sregs.cs = seg_cs32;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;

			NONFAILING(*(host_mem + ADDR_TEXT) = 0xf4);
			host_text = host_mem + 0x8000;

			ioctl(cpufd, KVM_SMI, 0);
		} else if (flags & KVM_SETUP_PAGING) {
			sregs.cs = seg_cs32;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;

			uint64 pd_addr = guest_mem + ADDR_PD;
			uint64* pd = (uint64*)(host_mem + ADDR_PD);
			NONFAILING(pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS);
			sregs.cr3 = pd_addr;
			sregs.cr4 |= CR4_PSE;

			text_prefix = kvm_asm32_paged;
			text_prefix_size = sizeof(kvm_asm32_paged) - 1;
		} else if (flags & KVM_SETUP_CPL3) {
			sregs.cs = seg_cs32_cpl3;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32_cpl3;
		} else {
			sregs.cs = seg_cs32;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
		}
	} else {
		sregs.efer |= EFER_LME | EFER_SCE;
		sregs.cr0 |= CR0_PE;

		setup_syscall_msrs(cpufd, SEL_CS64, SEL_CS64_CPL3);
		setup_64bit_idt(&sregs, host_mem, guest_mem);

		sregs.cs = seg_cs32;
		sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;

		uint64 pml4_addr = guest_mem + ADDR_PML4;
		uint64* pml4 = (uint64*)(host_mem + ADDR_PML4);
		uint64 pdpt_addr = guest_mem + ADDR_PDP;
		uint64* pdpt = (uint64*)(host_mem + ADDR_PDP);
		uint64 pd_addr = guest_mem + ADDR_PD;
		uint64* pd = (uint64*)(host_mem + ADDR_PD);
		NONFAILING(pml4[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pdpt_addr);
		NONFAILING(pdpt[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pd_addr);
		NONFAILING(pd[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | PDE64_PS);
		sregs.cr3 = pml4_addr;
		sregs.cr4 |= CR4_PAE;

		if (flags & KVM_SETUP_VM) {
			sregs.cr0 |= CR0_NE;

			NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMXON_PTR)) = ADDR_VAR_VMXON);
			NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMCS_PTR)) = ADDR_VAR_VMCS);
			NONFAILING(memcpy(host_mem + ADDR_VAR_VMEXIT_CODE, kvm_asm64_vm_exit, sizeof(kvm_asm64_vm_exit) - 1));
			NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMEXIT_PTR)) = ADDR_VAR_VMEXIT_CODE);

			text_prefix = kvm_asm64_init_vm;
			text_prefix_size = sizeof(kvm_asm64_init_vm) - 1;
		} else if (flags & KVM_SETUP_CPL3) {
			text_prefix = kvm_asm64_cpl3;
			text_prefix_size = sizeof(kvm_asm64_cpl3) - 1;
		} else {
			text_prefix = kvm_asm64_enable_long;
			text_prefix_size = sizeof(kvm_asm64_enable_long) - 1;
		}
	}

	struct tss16 tss16;
	memset(&tss16, 0, sizeof(tss16));
	tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16;
	tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0;
	tss16.ip = ADDR_VAR_USER_CODE2;
	tss16.flags = (1 << 1);
	tss16.cs = SEL_CS16;
	tss16.es = tss16.ds = tss16.ss = SEL_DS16;
	tss16.ldt = SEL_LDT;
	struct tss16* tss16_addr = (struct tss16*)(host_mem + seg_tss16_2.base);
	NONFAILING(memcpy(tss16_addr, &tss16, sizeof(tss16)));

	memset(&tss16, 0, sizeof(tss16));
	tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16;
	tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0;
	tss16.ip = ADDR_VAR_USER_CODE2;
	tss16.flags = (1 << 1);
	tss16.cs = SEL_CS16_CPL3;
	tss16.es = tss16.ds = tss16.ss = SEL_DS16_CPL3;
	tss16.ldt = SEL_LDT;
	struct tss16* tss16_cpl3_addr = (struct tss16*)(host_mem + seg_tss16_cpl3.base);
	NONFAILING(memcpy(tss16_cpl3_addr, &tss16, sizeof(tss16)));

	struct tss32 tss32;
	memset(&tss32, 0, sizeof(tss32));
	tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32;
	tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0;
	tss32.ip = ADDR_VAR_USER_CODE;
	tss32.flags = (1 << 1) | (1 << 17);
	tss32.ldt = SEL_LDT;
	tss32.cr3 = sregs.cr3;
	tss32.io_bitmap = offsetof(struct tss32, io_bitmap);
	struct tss32* tss32_addr = (struct tss32*)(host_mem + seg_tss32_vm86.base);
	NONFAILING(memcpy(tss32_addr, &tss32, sizeof(tss32)));

	memset(&tss32, 0, sizeof(tss32));
	tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32;
	tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0;
	tss32.ip = ADDR_VAR_USER_CODE;
	tss32.flags = (1 << 1);
	tss32.cr3 = sregs.cr3;
	tss32.es = tss32.ds = tss32.ss = tss32.gs = tss32.fs = SEL_DS32;
	tss32.cs = SEL_CS32;
	tss32.ldt = SEL_LDT;
	tss32.cr3 = sregs.cr3;
	tss32.io_bitmap = offsetof(struct tss32, io_bitmap);
	struct tss32* tss32_cpl3_addr = (struct tss32*)(host_mem + seg_tss32_2.base);
	NONFAILING(memcpy(tss32_cpl3_addr, &tss32, sizeof(tss32)));

	struct tss64 tss64;
	memset(&tss64, 0, sizeof(tss64));
	tss64.rsp[0] = ADDR_STACK0;
	tss64.rsp[1] = ADDR_STACK0;
	tss64.rsp[2] = ADDR_STACK0;
	tss64.io_bitmap = offsetof(struct tss64, io_bitmap);
	struct tss64* tss64_addr = (struct tss64*)(host_mem + seg_tss64.base);
	NONFAILING(memcpy(tss64_addr, &tss64, sizeof(tss64)));

	memset(&tss64, 0, sizeof(tss64));
	tss64.rsp[0] = ADDR_STACK0;
	tss64.rsp[1] = ADDR_STACK0;
	tss64.rsp[2] = ADDR_STACK0;
	tss64.io_bitmap = offsetof(struct tss64, io_bitmap);
	struct tss64* tss64_cpl3_addr = (struct tss64*)(host_mem + seg_tss64_cpl3.base);
	NONFAILING(memcpy(tss64_cpl3_addr, &tss64, sizeof(tss64)));

	if (text_size > 1000)
		text_size = 1000;
	if (text_prefix) {
		NONFAILING(memcpy(host_text, text_prefix, text_prefix_size));
		void* patch = 0;
		NONFAILING(patch = memmem(host_text, text_prefix_size, "\xde\xc0\xad\x0b", 4));
		if (patch)
			NONFAILING(*((uint32*)patch) = guest_mem + ADDR_TEXT + ((char*)patch - host_text) + 6);
		uint16 magic = PREFIX_SIZE;
		patch = 0;
		NONFAILING(patch = memmem(host_text, text_prefix_size, &magic, sizeof(magic)));
		if (patch)
			NONFAILING(*((uint16*)patch) = guest_mem + ADDR_TEXT + text_prefix_size);
	}
	NONFAILING(memcpy((void*)(host_text + text_prefix_size), text, text_size));
	NONFAILING(*(host_text + text_prefix_size + text_size) = 0xf4);

	NONFAILING(memcpy(host_mem + ADDR_VAR_USER_CODE, text, text_size));
	NONFAILING(*(host_mem + ADDR_VAR_USER_CODE + text_size) = 0xf4);

	NONFAILING(*(host_mem + ADDR_VAR_HLT) = 0xf4);
	NONFAILING(memcpy(host_mem + ADDR_VAR_SYSRET, "\x0f\x07\xf4", 3));
	NONFAILING(memcpy(host_mem + ADDR_VAR_SYSEXIT, "\x0f\x35\xf4", 3));

	NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_FLD) = 0);
	NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_VAL) = 0);

	if (opt_count > 2)
		opt_count = 2;
	for (i = 0; i < opt_count; i++) {
		uint64 typ = 0;
		uint64 val = 0;
		NONFAILING(typ = opt_array_ptr[i].typ);
		NONFAILING(val = opt_array_ptr[i].val);
		switch (typ % 9) {
		case 0:
			sregs.cr0 ^= val & (CR0_MP | CR0_EM | CR0_ET | CR0_NE | CR0_WP | CR0_AM | CR0_NW | CR0_CD);
			break;
		case 1:
			sregs.cr4 ^= val & (CR4_VME | CR4_PVI | CR4_TSD | CR4_DE | CR4_MCE | CR4_PGE | CR4_PCE |
					    CR4_OSFXSR | CR4_OSXMMEXCPT | CR4_UMIP | CR4_VMXE | CR4_SMXE | CR4_FSGSBASE | CR4_PCIDE |
					    CR4_OSXSAVE | CR4_SMEP | CR4_SMAP | CR4_PKE);
			break;
		case 2:
			sregs.efer ^= val & (EFER_SCE | EFER_NXE | EFER_SVME | EFER_LMSLE | EFER_FFXSR | EFER_TCE);
			break;
		case 3:
			val &= ((1 << 8) | (1 << 9) | (1 << 10) | (1 << 12) | (1 << 13) | (1 << 14) |
				(1 << 15) | (1 << 18) | (1 << 19) | (1 << 20) | (1 << 21));
			regs.rflags ^= val;
			NONFAILING(tss16_addr->flags ^= val);
			NONFAILING(tss16_cpl3_addr->flags ^= val);
			NONFAILING(tss32_addr->flags ^= val);
			NONFAILING(tss32_cpl3_addr->flags ^= val);
			break;
		case 4:
			seg_cs16.type = val & 0xf;
			seg_cs32.type = val & 0xf;
			seg_cs64.type = val & 0xf;
			break;
		case 5:
			seg_cs16_cpl3.type = val & 0xf;
			seg_cs32_cpl3.type = val & 0xf;
			seg_cs64_cpl3.type = val & 0xf;
			break;
		case 6:
			seg_ds16.type = val & 0xf;
			seg_ds32.type = val & 0xf;
			seg_ds64.type = val & 0xf;
			break;
		case 7:
			seg_ds16_cpl3.type = val & 0xf;
			seg_ds32_cpl3.type = val & 0xf;
			seg_ds64_cpl3.type = val & 0xf;
			break;
		case 8:
			NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_FLD) = (val & 0xffff));
			NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_VAL) = (val >> 16));
			break;
		default:
			fail("bad kvm setup opt");
		}
	}
	regs.rflags |= 2;

	fill_segment_descriptor(gdt, ldt, &seg_ldt);
	fill_segment_descriptor(gdt, ldt, &seg_cs16);
	fill_segment_descriptor(gdt, ldt, &seg_ds16);
	fill_segment_descriptor(gdt, ldt, &seg_cs16_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_ds16_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_cs32);
	fill_segment_descriptor(gdt, ldt, &seg_ds32);
	fill_segment_descriptor(gdt, ldt, &seg_cs32_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_ds32_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_cs64);
	fill_segment_descriptor(gdt, ldt, &seg_ds64);
	fill_segment_descriptor(gdt, ldt, &seg_cs64_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_ds64_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_tss32);
	fill_segment_descriptor(gdt, ldt, &seg_tss32_2);
	fill_segment_descriptor(gdt, ldt, &seg_tss32_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_tss32_vm86);
	fill_segment_descriptor(gdt, ldt, &seg_tss16);
	fill_segment_descriptor(gdt, ldt, &seg_tss16_2);
	fill_segment_descriptor(gdt, ldt, &seg_tss16_cpl3);
	fill_segment_descriptor_dword(gdt, ldt, &seg_tss64);
	fill_segment_descriptor_dword(gdt, ldt, &seg_tss64_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_cgate16);
	fill_segment_descriptor(gdt, ldt, &seg_tgate16);
	fill_segment_descriptor(gdt, ldt, &seg_cgate32);
	fill_segment_descriptor(gdt, ldt, &seg_tgate32);
	fill_segment_descriptor_dword(gdt, ldt, &seg_cgate64);

	if (ioctl(cpufd, KVM_SET_SREGS, &sregs))
		return -1;
	if (ioctl(cpufd, KVM_SET_REGS, &regs))
		return -1;
	return 0;
}

#elif defined(__aarch64__)

struct kvm_text {
	uintptr_t typ;
	const void* text;
	uintptr_t size;
};

struct kvm_opt {
	uint64 typ;
	uint64 val;
};
static uintptr_t syz_kvm_setup_cpu(uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5, uintptr_t a6, uintptr_t a7)
{
	const int vmfd = a0;
	const int cpufd = a1;
	char* const host_mem = (char*)a2;
	const struct kvm_text* const text_array_ptr = (struct kvm_text*)a3;
	const uintptr_t text_count = a4;
	const uintptr_t flags = a5;
	const struct kvm_opt* const opt_array_ptr = (struct kvm_opt*)a6;
	uintptr_t opt_count = a7;

	(void)flags;
	(void)opt_count;

	const uintptr_t page_size = 4 << 10;
	const uintptr_t guest_mem = 0;
	const uintptr_t guest_mem_size = 24 * page_size;

	(void)text_count;
	int text_type = 0;
	const void* text = 0;
	int text_size = 0;
	NONFAILING(text_type = text_array_ptr[0].typ);
	NONFAILING(text = text_array_ptr[0].text);
	NONFAILING(text_size = text_array_ptr[0].size);
	(void)text_type;
	(void)opt_array_ptr;

	uint32 features = 0;
	if (opt_count > 1)
		opt_count = 1;
	uintptr_t i;
	for (i = 0; i < opt_count; i++) {
		uint64 typ = 0;
		uint64 val = 0;
		NONFAILING(typ = opt_array_ptr[i].typ);
		NONFAILING(val = opt_array_ptr[i].val);
		switch (typ) {
		case 1:
			features = val;
			break;
		}
	}

	for (i = 0; i < guest_mem_size / page_size; i++) {
		struct kvm_userspace_memory_region memreg;
		memreg.slot = i;
		memreg.flags = 0;
		memreg.guest_phys_addr = guest_mem + i * page_size;
		memreg.memory_size = page_size;
		memreg.userspace_addr = (uintptr_t)host_mem + i * page_size;
		ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
	}

	struct kvm_vcpu_init init;
	ioctl(cpufd, KVM_ARM_PREFERRED_TARGET, &init);
	init.features[0] = features;
	ioctl(cpufd, KVM_ARM_VCPU_INIT, &init);

	if (text_size > 1000)
		text_size = 1000;
	NONFAILING(memcpy(host_mem, text, text_size));

	return 0;
}

#else
static long syz_kvm_setup_cpu(long a0, long a1, long a2, long a3, long a4, long a5, long a6, long a7)
{
	return 0;
}
#endif
#endif

#if SYZ_EXECUTOR || SYZ_FAULT_INJECTION || SYZ_SANDBOX_NAMESPACE || SYZ_ENABLE_CGROUPS
#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>

static bool write_file(const char* file, const char* what, ...)
{
	char buf[1024];
	va_list args;
	va_start(args, what);
	vsnprintf(buf, sizeof(buf), what, args);
	va_end(args);
	buf[sizeof(buf) - 1] = 0;
	int len = strlen(buf);

	int fd = open(file, O_WRONLY | O_CLOEXEC);
	if (fd == -1)
		return false;
	if (write(fd, buf, len) != len) {
		int err = errno;
		close(fd);
		errno = err;
		return false;
	}
	close(fd);
	return true;
}
#endif

#if SYZ_EXECUTOR || SYZ_RESET_NET_NAMESPACE
#include <errno.h>
#include <linux/net.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/socket.h>
#define XT_TABLE_SIZE 1536
#define XT_MAX_ENTRIES 10

struct xt_counters {
	uint64 pcnt, bcnt;
};

struct ipt_getinfo {
	char name[32];
	unsigned int valid_hooks;
	unsigned int hook_entry[5];
	unsigned int underflow[5];
	unsigned int num_entries;
	unsigned int size;
};

struct ipt_get_entries {
	char name[32];
	unsigned int size;
	void* entrytable[XT_TABLE_SIZE / sizeof(void*)];
};

struct ipt_replace {
	char name[32];
	unsigned int valid_hooks;
	unsigned int num_entries;
	unsigned int size;
	unsigned int hook_entry[5];
	unsigned int underflow[5];
	unsigned int num_counters;
	struct xt_counters* counters;
	char entrytable[XT_TABLE_SIZE];
};

struct ipt_table_desc {
	const char* name;
	struct ipt_getinfo info;
	struct ipt_replace replace;
};

static struct ipt_table_desc ipv4_tables[] = {
    {.name = "filter"},
    {.name = "nat"},
    {.name = "mangle"},
    {.name = "raw"},
    {.name = "security"},
};

static struct ipt_table_desc ipv6_tables[] = {
    {.name = "filter"},
    {.name = "nat"},
    {.name = "mangle"},
    {.name = "raw"},
    {.name = "security"},
};

#define IPT_BASE_CTL 64
#define IPT_SO_SET_REPLACE (IPT_BASE_CTL)
#define IPT_SO_GET_INFO (IPT_BASE_CTL)
#define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1)

struct arpt_getinfo {
	char name[32];
	unsigned int valid_hooks;
	unsigned int hook_entry[3];
	unsigned int underflow[3];
	unsigned int num_entries;
	unsigned int size;
};

struct arpt_get_entries {
	char name[32];
	unsigned int size;
	void* entrytable[XT_TABLE_SIZE / sizeof(void*)];
};

struct arpt_replace {
	char name[32];
	unsigned int valid_hooks;
	unsigned int num_entries;
	unsigned int size;
	unsigned int hook_entry[3];
	unsigned int underflow[3];
	unsigned int num_counters;
	struct xt_counters* counters;
	char entrytable[XT_TABLE_SIZE];
};

struct arpt_table_desc {
	const char* name;
	struct arpt_getinfo info;
	struct arpt_replace replace;
};

static struct arpt_table_desc arpt_tables[] = {
    {.name = "filter"},
};

#define ARPT_BASE_CTL 96
#define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL)
#define ARPT_SO_GET_INFO (ARPT_BASE_CTL)
#define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1)

static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level)
{
	struct ipt_get_entries entries;
	socklen_t optlen;
	int fd, i;

	fd = socket(family, SOCK_STREAM, IPPROTO_TCP);
	if (fd == -1) {
		switch (errno) {
		case EAFNOSUPPORT:
		case ENOPROTOOPT:
			return;
		}
		fail("iptable checkpoint %d: socket failed", family);
	}
	for (i = 0; i < num_tables; i++) {
		struct ipt_table_desc* table = &tables[i];
		strcpy(table->info.name, table->name);
		strcpy(table->replace.name, table->name);
		optlen = sizeof(table->info);
		if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) {
			switch (errno) {
			case EPERM:
			case ENOENT:
			case ENOPROTOOPT:
				continue;
			}
			fail("iptable checkpoint %s/%d: getsockopt(IPT_SO_GET_INFO)", table->name, family);
		}
		debug("iptable checkpoint %s/%d: checkpoint entries=%d hooks=%x size=%d\n",
		      table->name, family, table->info.num_entries,
		      table->info.valid_hooks, table->info.size);
		if (table->info.size > sizeof(table->replace.entrytable))
			fail("iptable checkpoint %s/%d: table size is too large: %u",
			     table->name, family, table->info.size);
		if (table->info.num_entries > XT_MAX_ENTRIES)
			fail("iptable checkpoint %s/%d: too many counters: %u",
			     table->name, family, table->info.num_entries);
		memset(&entries, 0, sizeof(entries));
		strcpy(entries.name, table->name);
		entries.size = table->info.size;
		optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size;
		if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen))
			fail("iptable checkpoint %s/%d: getsockopt(IPT_SO_GET_ENTRIES)",
			     table->name, family);
		table->replace.valid_hooks = table->info.valid_hooks;
		table->replace.num_entries = table->info.num_entries;
		table->replace.size = table->info.size;
		memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry));
		memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow));
		memcpy(table->replace.entrytable, entries.entrytable, table->info.size);
	}
	close(fd);
}

static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level)
{
	struct xt_counters counters[XT_MAX_ENTRIES];
	struct ipt_get_entries entries;
	struct ipt_getinfo info;
	socklen_t optlen;
	int fd, i;

	fd = socket(family, SOCK_STREAM, IPPROTO_TCP);
	if (fd == -1) {
		switch (errno) {
		case EAFNOSUPPORT:
		case ENOPROTOOPT:
			return;
		}
		fail("iptable %d: socket failed", family);
	}
	for (i = 0; i < num_tables; i++) {
		struct ipt_table_desc* table = &tables[i];
		if (table->info.valid_hooks == 0)
			continue;
		memset(&info, 0, sizeof(info));
		strcpy(info.name, table->name);
		optlen = sizeof(info);
		if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen))
			fail("iptable %s/%d: getsockopt(IPT_SO_GET_INFO)", table->name, family);
		if (memcmp(&table->info, &info, sizeof(table->info)) == 0) {
			memset(&entries, 0, sizeof(entries));
			strcpy(entries.name, table->name);
			entries.size = table->info.size;
			optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size;
			if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen))
				fail("iptable %s/%d: getsockopt(IPT_SO_GET_ENTRIES)", table->name, family);
			if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0)
				continue;
		}
		debug("iptable %s/%d: resetting\n", table->name, family);
		table->replace.num_counters = info.num_entries;
		table->replace.counters = counters;
		optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size;
		if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen))
			fail("iptable %s/%d: setsockopt(IPT_SO_SET_REPLACE)", table->name, family);
	}
	close(fd);
}

static void checkpoint_arptables(void)
{
	struct arpt_get_entries entries;
	socklen_t optlen;
	unsigned i;
	int fd;

	fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
	if (fd == -1) {
		switch (errno) {
		case EAFNOSUPPORT:
		case ENOPROTOOPT:
			return;
		}
		fail("arptable checkpoint: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)");
	}
	for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) {
		struct arpt_table_desc* table = &arpt_tables[i];
		strcpy(table->info.name, table->name);
		strcpy(table->replace.name, table->name);
		optlen = sizeof(table->info);
		if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) {
			switch (errno) {
			case EPERM:
			case ENOENT:
			case ENOPROTOOPT:
				continue;
			}
			fail("arptable checkpoint %s: getsockopt(ARPT_SO_GET_INFO)", table->name);
		}
		debug("arptable checkpoint %s: entries=%d hooks=%x size=%d\n",
		      table->name, table->info.num_entries, table->info.valid_hooks, table->info.size);
		if (table->info.size > sizeof(table->replace.entrytable))
			fail("arptable checkpoint %s: table size is too large: %u",
			     table->name, table->info.size);
		if (table->info.num_entries > XT_MAX_ENTRIES)
			fail("arptable checkpoint %s: too many counters: %u",
			     table->name, table->info.num_entries);
		memset(&entries, 0, sizeof(entries));
		strcpy(entries.name, table->name);
		entries.size = table->info.size;
		optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size;
		if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen))
			fail("arptable checkpoint %s: getsockopt(ARPT_SO_GET_ENTRIES)", table->name);
		table->replace.valid_hooks = table->info.valid_hooks;
		table->replace.num_entries = table->info.num_entries;
		table->replace.size = table->info.size;
		memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry));
		memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow));
		memcpy(table->replace.entrytable, entries.entrytable, table->info.size);
	}
	close(fd);
}

static void reset_arptables()
{
	struct xt_counters counters[XT_MAX_ENTRIES];
	struct arpt_get_entries entries;
	struct arpt_getinfo info;
	socklen_t optlen;
	unsigned i;
	int fd;

	fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
	if (fd == -1) {
		switch (errno) {
		case EAFNOSUPPORT:
		case ENOPROTOOPT:
			return;
		}
		fail("arptable: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)");
	}
	for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) {
		struct arpt_table_desc* table = &arpt_tables[i];
		if (table->info.valid_hooks == 0)
			continue;
		memset(&info, 0, sizeof(info));
		strcpy(info.name, table->name);
		optlen = sizeof(info);
		if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen))
			fail("arptable %s:getsockopt(ARPT_SO_GET_INFO)", table->name);
		if (memcmp(&table->info, &info, sizeof(table->info)) == 0) {
			memset(&entries, 0, sizeof(entries));
			strcpy(entries.name, table->name);
			entries.size = table->info.size;
			optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size;
			if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen))
				fail("arptable %s: getsockopt(ARPT_SO_GET_ENTRIES)", table->name);
			if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0)
				continue;
			debug("arptable %s: data changed\n", table->name);
		} else {
			debug("arptable %s: header changed\n", table->name);
		}
		debug("arptable %s: resetting\n", table->name);
		table->replace.num_counters = info.num_entries;
		table->replace.counters = counters;
		optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size;
		if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen))
			fail("arptable %s: setsockopt(ARPT_SO_SET_REPLACE)", table->name);
	}
	close(fd);
}

#include <linux/if.h>
#include <linux/netfilter_bridge/ebtables.h>

struct ebt_table_desc {
	const char* name;
	struct ebt_replace replace;
	char entrytable[XT_TABLE_SIZE];
};

static struct ebt_table_desc ebt_tables[] = {
    {.name = "filter"},
    {.name = "nat"},
    {.name = "broute"},
};

static void checkpoint_ebtables(void)
{
	socklen_t optlen;
	unsigned i;
	int fd;

	fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
	if (fd == -1) {
		switch (errno) {
		case EAFNOSUPPORT:
		case ENOPROTOOPT:
			return;
		}
		fail("ebtable checkpoint: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)");
	}
	for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) {
		struct ebt_table_desc* table = &ebt_tables[i];
		strcpy(table->replace.name, table->name);
		optlen = sizeof(table->replace);
		if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_INFO, &table->replace, &optlen)) {
			switch (errno) {
			case EPERM:
			case ENOENT:
			case ENOPROTOOPT:
				continue;
			}
			fail("ebtable checkpoint %s: getsockopt(EBT_SO_GET_INIT_INFO)", table->name);
		}
		debug("ebtable checkpoint %s: entries=%d hooks=%x size=%d\n",
		      table->name, table->replace.nentries, table->replace.valid_hooks,
		      table->replace.entries_size);
		if (table->replace.entries_size > sizeof(table->entrytable))
			fail("ebtable checkpoint %s: table size is too large: %u",
			     table->name, table->replace.entries_size);
		table->replace.num_counters = 0;
		table->replace.entries = table->entrytable;
		optlen = sizeof(table->replace) + table->replace.entries_size;
		if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_ENTRIES, &table->replace, &optlen))
			fail("ebtable checkpoint %s: getsockopt(EBT_SO_GET_INIT_ENTRIES)", table->name);
	}
	close(fd);
}

static void reset_ebtables()
{
	struct ebt_replace replace;
	char entrytable[XT_TABLE_SIZE];
	socklen_t optlen;
	unsigned i, j, h;
	int fd;

	fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
	if (fd == -1) {
		switch (errno) {
		case EAFNOSUPPORT:
		case ENOPROTOOPT:
			return;
		}
		fail("ebtable: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)");
	}
	for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) {
		struct ebt_table_desc* table = &ebt_tables[i];
		if (table->replace.valid_hooks == 0)
			continue;
		memset(&replace, 0, sizeof(replace));
		strcpy(replace.name, table->name);
		optlen = sizeof(replace);
		if (getsockopt(fd, SOL_IP, EBT_SO_GET_INFO, &replace, &optlen))
			fail("ebtable %s: getsockopt(EBT_SO_GET_INFO)", table->name);
		replace.num_counters = 0;
		table->replace.entries = 0;
		for (h = 0; h < NF_BR_NUMHOOKS; h++)
			table->replace.hook_entry[h] = 0;
		if (memcmp(&table->replace, &replace, sizeof(table->replace)) == 0) {
			memset(&entrytable, 0, sizeof(entrytable));
			replace.entries = entrytable;
			optlen = sizeof(replace) + replace.entries_size;
			if (getsockopt(fd, SOL_IP, EBT_SO_GET_ENTRIES, &replace, &optlen))
				fail("ebtable %s: getsockopt(EBT_SO_GET_ENTRIES)", table->name);
			if (memcmp(table->entrytable, entrytable, replace.entries_size) == 0)
				continue;
		}
		debug("ebtable %s: resetting\n", table->name);
		for (j = 0, h = 0; h < NF_BR_NUMHOOKS; h++) {
			if (table->replace.valid_hooks & (1 << h)) {
				table->replace.hook_entry[h] = (struct ebt_entries*)table->entrytable + j;
				j++;
			}
		}
		table->replace.entries = table->entrytable;
		optlen = sizeof(table->replace) + table->replace.entries_size;
		if (setsockopt(fd, SOL_IP, EBT_SO_SET_ENTRIES, &table->replace, optlen))
			fail("ebtable %s: setsockopt(EBT_SO_SET_ENTRIES)", table->name);
	}
	close(fd);
}

static void checkpoint_net_namespace(void)
{
#if SYZ_EXECUTOR
	if (flag_sandbox == sandbox_setuid)
		return;
#endif
	checkpoint_ebtables();
	checkpoint_arptables();
	checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP);
	checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6);
}

static void reset_net_namespace(void)
{
#if SYZ_EXECUTOR
	if (flag_sandbox == sandbox_setuid)
		return;
#endif
	reset_ebtables();
	reset_arptables();
	reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP);
	reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6);
}
#endif

#if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS
#include <fcntl.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>

static void setup_cgroups()
{
	if (mkdir("/syzcgroup", 0777)) {
		debug("mkdir(/syzcgroup) failed: %d\n", errno);
	}
	if (mkdir("/syzcgroup/unified", 0777)) {
		debug("mkdir(/syzcgroup/unified) failed: %d\n", errno);
	}
	if (mount("none", "/syzcgroup/unified", "cgroup2", 0, NULL)) {
		debug("mount(cgroup2) failed: %d\n", errno);
	}
	if (chmod("/syzcgroup/unified", 0777)) {
		debug("chmod(/syzcgroup/unified) failed: %d\n", errno);
	}
	if (!write_file("/syzcgroup/unified/cgroup.subtree_control", "+cpu +memory +io +pids +rdma")) {
		debug("write(cgroup.subtree_control) failed: %d\n", errno);
	}
	if (mkdir("/syzcgroup/cpu", 0777)) {
		debug("mkdir(/syzcgroup/cpu) failed: %d\n", errno);
	}
	if (mount("none", "/syzcgroup/cpu", "cgroup", 0, "cpuset,cpuacct,perf_event,hugetlb")) {
		debug("mount(cgroup cpu) failed: %d\n", errno);
	}
	if (!write_file("/syzcgroup/cpu/cgroup.clone_children", "1")) {
		debug("write(/syzcgroup/cpu/cgroup.clone_children) failed: %d\n", errno);
	}
	if (chmod("/syzcgroup/cpu", 0777)) {
		debug("chmod(/syzcgroup/cpu) failed: %d\n", errno);
	}
	if (mkdir("/syzcgroup/net", 0777)) {
		debug("mkdir(/syzcgroup/net) failed: %d\n", errno);
	}
	if (mount("none", "/syzcgroup/net", "cgroup", 0, "net_cls,net_prio,devices,freezer")) {
		debug("mount(cgroup net) failed: %d\n", errno);
	}
	if (chmod("/syzcgroup/net", 0777)) {
		debug("chmod(/syzcgroup/net) failed: %d\n", errno);
	}
}
static void setup_binfmt_misc()
{
	if (mount(0, "/proc/sys/fs/binfmt_misc", "binfmt_misc", 0, 0)) {
		debug("mount(binfmt_misc) failed: %d\n", errno);
	}
	if (!write_file("/proc/sys/fs/binfmt_misc/register", ":syz0:M:0:\x01::./file0:")) {
		debug("write(/proc/sys/fs/binfmt_misc/register, syz0) failed: %d\n", errno);
	}
	if (!write_file("/proc/sys/fs/binfmt_misc/register", ":syz1:M:1:\x02::./file0:POC")) {
		debug("write(/proc/sys/fs/binfmt_misc/register, syz1) failed: %d\n", errno);
	}
}
#endif

#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE
#include <errno.h>
#include <sys/mount.h>

static void setup_common()
{
	if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) {
		debug("mount(fusectl) failed: %d\n", errno);
	}
#if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS
	setup_cgroups();
	setup_binfmt_misc();
#endif
}
#endif

#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE
#include <sched.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/wait.h>

static void loop();

static void sandbox_common()
{
	prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
	setpgrp();
	setsid();

#if SYZ_EXECUTOR || __NR_syz_init_net_socket
	int netns = open("/proc/self/ns/net", O_RDONLY);
	if (netns == -1)
		fail("open(/proc/self/ns/net) failed");
	if (dup2(netns, kInitNetNsFd) < 0)
		fail("dup2(netns, kInitNetNsFd) failed");
	close(netns);
#endif

	struct rlimit rlim;
	rlim.rlim_cur = rlim.rlim_max = 160 << 20;
	setrlimit(RLIMIT_AS, &rlim);
	rlim.rlim_cur = rlim.rlim_max = 8 << 20;
	setrlimit(RLIMIT_MEMLOCK, &rlim);
	rlim.rlim_cur = rlim.rlim_max = 136 << 20;
	setrlimit(RLIMIT_FSIZE, &rlim);
	rlim.rlim_cur = rlim.rlim_max = 1 << 20;
	setrlimit(RLIMIT_STACK, &rlim);
	rlim.rlim_cur = rlim.rlim_max = 0;
	setrlimit(RLIMIT_CORE, &rlim);
	rlim.rlim_cur = rlim.rlim_max = 256;
	setrlimit(RLIMIT_NOFILE, &rlim);
	if (unshare(CLONE_NEWNS)) {
		debug("unshare(CLONE_NEWNS): %d\n", errno);
	}
	if (unshare(CLONE_NEWIPC)) {
		debug("unshare(CLONE_NEWIPC): %d\n", errno);
	}
	if (unshare(0x02000000)) {
		debug("unshare(CLONE_NEWCGROUP): %d\n", errno);
	}
	if (unshare(CLONE_NEWUTS)) {
		debug("unshare(CLONE_NEWUTS): %d\n", errno);
	}
	if (unshare(CLONE_SYSVSEM)) {
		debug("unshare(CLONE_SYSVSEM): %d\n", errno);
	}
}

int wait_for_loop(int pid)
{
	if (pid < 0)
		fail("sandbox fork failed");
	debug("spawned loop pid %d\n", pid);
	int status = 0;
	while (waitpid(-1, &status, __WALL) != pid) {
	}
	return WEXITSTATUS(status);
}
#endif

#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE
#include <sched.h>
#include <sys/types.h>

static int do_sandbox_none(void)
{
	if (unshare(CLONE_NEWPID)) {
		debug("unshare(CLONE_NEWPID): %d\n", errno);
	}
	int pid = fork();
	if (pid != 0)
		return wait_for_loop(pid);

	setup_common();
	sandbox_common();
	if (unshare(CLONE_NEWNET)) {
		debug("unshare(CLONE_NEWNET): %d\n", errno);
	}
#if SYZ_EXECUTOR || SYZ_TUN_ENABLE
	initialize_tun();
#endif
#if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV
	initialize_netdevices();
#endif
	loop();
	doexit(1);
}
#endif

#if SYZ_EXECUTOR || SYZ_SANDBOX_SETUID
#include <grp.h>
#include <sched.h>
#include <sys/prctl.h>

static int do_sandbox_setuid(void)
{
	if (unshare(CLONE_NEWPID)) {
		debug("unshare(CLONE_NEWPID): %d\n", errno);
	}
	int pid = fork();
	if (pid != 0)
		return wait_for_loop(pid);

	setup_common();
	sandbox_common();
	if (unshare(CLONE_NEWNET)) {
		debug("unshare(CLONE_NEWNET): %d\n", errno);
	}
#if SYZ_EXECUTOR || SYZ_TUN_ENABLE
	initialize_tun();
#endif
#if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV
	initialize_netdevices();
#endif

	const int nobody = 65534;
	if (setgroups(0, NULL))
		fail("failed to setgroups");
	if (syscall(SYS_setresgid, nobody, nobody, nobody))
		fail("failed to setresgid");
	if (syscall(SYS_setresuid, nobody, nobody, nobody))
		fail("failed to setresuid");
	prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);

	loop();
	doexit(1);
}
#endif

#if SYZ_EXECUTOR || SYZ_SANDBOX_NAMESPACE
#include <linux/capability.h>
#include <sched.h>
#include <sys/mman.h>
#include <sys/mount.h>

static int real_uid;
static int real_gid;
__attribute__((aligned(64 << 10))) static char sandbox_stack[1 << 20];

static int namespace_sandbox_proc(void* arg)
{
	sandbox_common();
	write_file("/proc/self/setgroups", "deny");
	if (!write_file("/proc/self/uid_map", "0 %d 1\n", real_uid))
		fail("write of /proc/self/uid_map failed");
	if (!write_file("/proc/self/gid_map", "0 %d 1\n", real_gid))
		fail("write of /proc/self/gid_map failed");
	if (unshare(CLONE_NEWNET))
		fail("unshare(CLONE_NEWNET)");
#if SYZ_EXECUTOR || SYZ_TUN_ENABLE
	initialize_tun();
#endif
#if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV
	initialize_netdevices();
#endif

	if (mkdir("./syz-tmp", 0777))
		fail("mkdir(syz-tmp) failed");
	if (mount("", "./syz-tmp", "tmpfs", 0, NULL))
		fail("mount(tmpfs) failed");
	if (mkdir("./syz-tmp/newroot", 0777))
		fail("mkdir failed");
	if (mkdir("./syz-tmp/newroot/dev", 0700))
		fail("mkdir failed");
	unsigned bind_mount_flags = MS_BIND | MS_REC | MS_PRIVATE;
	if (mount("/dev", "./syz-tmp/newroot/dev", NULL, bind_mount_flags, NULL))
		fail("mount(dev) failed");
	if (mkdir("./syz-tmp/newroot/proc", 0700))
		fail("mkdir failed");
	if (mount(NULL, "./syz-tmp/newroot/proc", "proc", 0, NULL))
		fail("mount(proc) failed");
	if (mkdir("./syz-tmp/newroot/selinux", 0700))
		fail("mkdir failed");
	const char* selinux_path = "./syz-tmp/newroot/selinux";
	if (mount("/selinux", selinux_path, NULL, bind_mount_flags, NULL)) {
		if (errno != ENOENT)
			fail("mount(/selinux) failed");
		if (mount("/sys/fs/selinux", selinux_path, NULL, bind_mount_flags, NULL) && errno != ENOENT)
			fail("mount(/sys/fs/selinux) failed");
	}
	if (mkdir("./syz-tmp/newroot/sys", 0700))
		fail("mkdir failed");
	if (mount("/sys", "./syz-tmp/newroot/sys", 0, bind_mount_flags, NULL))
		fail("mount(sysfs) failed");
#if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS
	if (mkdir("./syz-tmp/newroot/syzcgroup", 0700))
		fail("mkdir failed");
	if (mkdir("./syz-tmp/newroot/syzcgroup/unified", 0700))
		fail("mkdir failed");
	if (mkdir("./syz-tmp/newroot/syzcgroup/cpu", 0700))
		fail("mkdir failed");
	if (mkdir("./syz-tmp/newroot/syzcgroup/net", 0700))
		fail("mkdir failed");
	if (mount("/syzcgroup/unified", "./syz-tmp/newroot/syzcgroup/unified", NULL, bind_mount_flags, NULL)) {
		debug("mount(cgroup2, MS_BIND) failed: %d\n", errno);
	}
	if (mount("/syzcgroup/cpu", "./syz-tmp/newroot/syzcgroup/cpu", NULL, bind_mount_flags, NULL)) {
		debug("mount(cgroup/cpu, MS_BIND) failed: %d\n", errno);
	}
	if (mount("/syzcgroup/net", "./syz-tmp/newroot/syzcgroup/net", NULL, bind_mount_flags, NULL)) {
		debug("mount(cgroup/net, MS_BIND) failed: %d\n", errno);
	}
#endif
	if (mkdir("./syz-tmp/pivot", 0777))
		fail("mkdir failed");
	if (syscall(SYS_pivot_root, "./syz-tmp", "./syz-tmp/pivot")) {
		debug("pivot_root failed\n");
		if (chdir("./syz-tmp"))
			fail("chdir failed");
	} else {
		debug("pivot_root OK\n");
		if (chdir("/"))
			fail("chdir failed");
		if (umount2("./pivot", MNT_DETACH))
			fail("umount failed");
	}
	if (chroot("./newroot"))
		fail("chroot failed");
	if (chdir("/"))
		fail("chdir failed");
	struct __user_cap_header_struct cap_hdr = {};
	struct __user_cap_data_struct cap_data[2] = {};
	cap_hdr.version = _LINUX_CAPABILITY_VERSION_3;
	cap_hdr.pid = getpid();
	if (syscall(SYS_capget, &cap_hdr, &cap_data))
		fail("capget failed");
	cap_data[0].effective &= ~(1 << CAP_SYS_PTRACE);
	cap_data[0].permitted &= ~(1 << CAP_SYS_PTRACE);
	cap_data[0].inheritable &= ~(1 << CAP_SYS_PTRACE);
	if (syscall(SYS_capset, &cap_hdr, &cap_data))
		fail("capset failed");

	loop();
	doexit(1);
}

static int do_sandbox_namespace(void)
{
	int pid;

	setup_common();
	real_uid = getuid();
	real_gid = getgid();
	mprotect(sandbox_stack, 4096, PROT_NONE);
	pid = clone(namespace_sandbox_proc, &sandbox_stack[sizeof(sandbox_stack) - 64],
		    CLONE_NEWUSER | CLONE_NEWPID, 0);
	return wait_for_loop(pid);
}
#endif

#if SYZ_EXECUTOR || SYZ_REPEAT && SYZ_USE_TMP_DIR
#include <dirent.h>
#include <errno.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mount.h>

#define FS_IOC_SETFLAGS _IOW('f', 2, long)
static void remove_dir(const char* dir)
{
	DIR* dp;
	struct dirent* ep;
	int iter = 0;
retry:
	while (umount2(dir, MNT_DETACH) == 0) {
		debug("umount(%s)\n", dir);
	}
	dp = opendir(dir);
	if (dp == NULL) {
		if (errno == EMFILE) {
			exitf("opendir(%s) failed due to NOFILE, exiting", dir);
		}
		exitf("opendir(%s) failed", dir);
	}
	while ((ep = readdir(dp))) {
		if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0)
			continue;
		char filename[FILENAME_MAX];
		snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name);
		while (umount2(filename, MNT_DETACH) == 0) {
			debug("umount(%s)\n", filename);
		}
		struct stat st;
		if (lstat(filename, &st))
			exitf("lstat(%s) failed", filename);
		if (S_ISDIR(st.st_mode)) {
			remove_dir(filename);
			continue;
		}
		int i;
		for (i = 0;; i++) {
			debug("unlink(%s)\n", filename);
			if (unlink(filename) == 0)
				break;
			if (errno == EPERM) {
				int fd = open(filename, O_RDONLY);
				if (fd != -1) {
					long flags = 0;
					if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0)
						debug("reset FS_XFLAG_IMMUTABLE\n");
					close(fd);
					continue;
				}
			}
			if (errno == EROFS) {
				debug("ignoring EROFS\n");
				break;
			}
			if (errno != EBUSY || i > 100)
				exitf("unlink(%s) failed", filename);
			debug("umount(%s)\n", filename);
			if (umount2(filename, MNT_DETACH))
				exitf("umount(%s) failed", filename);
		}
	}
	closedir(dp);
	int i;
	for (i = 0;; i++) {
		debug("rmdir(%s)\n", dir);
		if (rmdir(dir) == 0)
			break;
		if (i < 100) {
			if (errno == EPERM) {
				int fd = open(dir, O_RDONLY);
				if (fd != -1) {
					long flags = 0;
					if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0)
						debug("reset FS_XFLAG_IMMUTABLE\n");
					close(fd);
					continue;
				}
			}
			if (errno == EROFS) {
				debug("ignoring EROFS\n");
				break;
			}
			if (errno == EBUSY) {
				debug("umount(%s)\n", dir);
				if (umount2(dir, MNT_DETACH))
					exitf("umount(%s) failed", dir);
				continue;
			}
			if (errno == ENOTEMPTY) {
				if (iter < 100) {
					iter++;
					goto retry;
				}
			}
		}
		exitf("rmdir(%s) failed", dir);
	}
}
#endif

#if SYZ_EXECUTOR || SYZ_FAULT_INJECTION
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>

static int inject_fault(int nth)
{
	int fd;
	char buf[16];

	fd = open("/proc/thread-self/fail-nth", O_RDWR);
	if (fd == -1)
		exitf("failed to open /proc/thread-self/fail-nth");
	sprintf(buf, "%d", nth + 1);
	if (write(fd, buf, strlen(buf)) != (ssize_t)strlen(buf))
		exitf("failed to write /proc/thread-self/fail-nth");
	return fd;
}
#endif

#if SYZ_EXECUTOR
static int fault_injected(int fail_fd)
{
	char buf[16];
	int n = read(fail_fd, buf, sizeof(buf) - 1);
	if (n <= 0)
		exitf("failed to read /proc/thread-self/fail-nth");
	int res = n == 2 && buf[0] == '0' && buf[1] == '\n';
	buf[0] = '0';
	if (write(fail_fd, buf, 1) != 1)
		exitf("failed to write /proc/thread-self/fail-nth");
	close(fail_fd);
	return res;
}
#endif

#if SYZ_EXECUTOR || SYZ_REPEAT
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>

static void kill_and_wait(int pid, int* status)
{
	kill(-pid, SIGKILL);
	kill(pid, SIGKILL);
	int i;
	for (i = 0; i < 100; i++) {
		if (waitpid(-1, status, WNOHANG | __WALL) == pid)
			return;
		usleep(1000);
	}
	debug("kill is not working\n");
	DIR* dir = opendir("/sys/fs/fuse/connections");
	if (dir) {
		for (;;) {
			struct dirent* ent = readdir(dir);
			if (!ent)
				break;
			if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0)
				continue;
			char abort[300];
			snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name);
			int fd = open(abort, O_WRONLY);
			if (fd == -1) {
				debug("failed to open %s: %d\n", abort, errno);
				continue;
			}
			debug("aborting fuse conn %s\n", ent->d_name);
			if (write(fd, abort, 1) < 0) {
				debug("failed to abort: %d\n", errno);
			}
			close(fd);
		}
		closedir(dir);
	} else {
		debug("failed to open /sys/fs/fuse/connections: %d\n", errno);
	}
	while (waitpid(-1, status, __WALL) != pid) {
	}
}
#endif

#if SYZ_EXECUTOR || SYZ_REPEAT && (SYZ_ENABLE_CGROUPS || SYZ_RESET_NET_NAMESPACE)
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#define SYZ_HAVE_SETUP_LOOP 1
static void setup_loop()
{
#if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS
	int pid = getpid();
	char cgroupdir[64];
	char procs_file[128];
	snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid);
	if (mkdir(cgroupdir, 0777)) {
		debug("mkdir(%s) failed: %d\n", cgroupdir, errno);
	}
	snprintf(procs_file, sizeof(procs_file), "%s/cgroup.procs", cgroupdir);
	if (!write_file(procs_file, "%d", pid)) {
		debug("write(%s) failed: %d\n", procs_file, errno);
	}
	snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid);
	if (mkdir(cgroupdir, 0777)) {
		debug("mkdir(%s) failed: %d\n", cgroupdir, errno);
	}
	snprintf(procs_file, sizeof(procs_file), "%s/cgroup.procs", cgroupdir);
	if (!write_file(procs_file, "%d", pid)) {
		debug("write(%s) failed: %d\n", procs_file, errno);
	}
	snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid);
	if (mkdir(cgroupdir, 0777)) {
		debug("mkdir(%s) failed: %d\n", cgroupdir, errno);
	}
	snprintf(procs_file, sizeof(procs_file), "%s/cgroup.procs", cgroupdir);
	if (!write_file(procs_file, "%d", pid)) {
		debug("write(%s) failed: %d\n", procs_file, errno);
	}
#endif
#if SYZ_EXECUTOR || SYZ_RESET_NET_NAMESPACE
	checkpoint_net_namespace();
#endif
}
#endif

#if SYZ_EXECUTOR || SYZ_REPEAT && (SYZ_RESET_NET_NAMESPACE || __NR_syz_mount_image || __NR_syz_read_part_table)
#define SYZ_HAVE_RESET_LOOP 1
static void reset_loop()
{
#if SYZ_EXECUTOR || __NR_syz_mount_image || __NR_syz_read_part_table
	char buf[64];
	snprintf(buf, sizeof(buf), "/dev/loop%llu", procid);
	int loopfd = open(buf, O_RDWR);
	if (loopfd != -1) {
		ioctl(loopfd, LOOP_CLR_FD, 0);
		close(loopfd);
	}
#endif
#if SYZ_EXECUTOR || SYZ_RESET_NET_NAMESPACE
	reset_net_namespace();
#endif
}
#endif

#if SYZ_EXECUTOR || SYZ_REPEAT
#include <sys/prctl.h>

#define SYZ_HAVE_SETUP_TEST 1
static void setup_test()
{
	prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
	setpgrp();
#if SYZ_EXECUTOR || SYZ_ENABLE_CGROUPS
	char cgroupdir[64];
	snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid);
	if (symlink(cgroupdir, "./cgroup")) {
		debug("symlink(%s, ./cgroup) failed: %d\n", cgroupdir, errno);
	}
	snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid);
	if (symlink(cgroupdir, "./cgroup.cpu")) {
		debug("symlink(%s, ./cgroup.cpu) failed: %d\n", cgroupdir, errno);
	}
	snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid);
	if (symlink(cgroupdir, "./cgroup.net")) {
		debug("symlink(%s, ./cgroup.net) failed: %d\n", cgroupdir, errno);
	}
#endif
#if SYZ_EXECUTOR || SYZ_TUN_ENABLE
	flush_tun();
#endif
}

#define SYZ_HAVE_RESET_TEST 1
static void reset_test()
{
	int fd;
	for (fd = 3; fd < 30; fd++)
		close(fd);
}
#endif

#elif GOOS_test

#include <stdlib.h>
#include <unistd.h>

#if SYZ_EXECUTOR || __NR_syz_mmap
#include <sys/mman.h>
static long syz_mmap(long a0, long a1)
{
	return (long)mmap((void*)a0, a1, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1, 0);
}
#endif

#if SYZ_EXECUTOR || __NR_syz_errno
#include <errno.h>
static long syz_errno(long v)
{
	errno = v;
	return v == 0 ? 0 : -1;
}
#endif

#if SYZ_EXECUTOR || __NR_syz_compare
#include <errno.h>
#include <string.h>
static long syz_compare(long want, long want_len, long got, long got_len)
{
	if (want_len != got_len) {
		debug("syz_compare: want_len=%lu got_len=%lu\n", want_len, got_len);
		errno = EBADF;
		return -1;
	}
	if (memcmp((void*)want, (void*)got, want_len)) {
		debug("syz_compare: data differs\n");
		errno = EINVAL;
		return -1;
	}
	return 0;
}
#endif

#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE
static void loop();
static int do_sandbox_none(void)
{
	loop();
	doexit(0);
}
#endif

#if SYZ_EXECUTOR
#define do_sandbox_setuid() 0
#define do_sandbox_namespace() 0
#endif

#elif GOOS_windows

#include <windows.h>

#include "common.h"

#if SYZ_EXECUTOR || SYZ_HANDLE_SEGV
static void install_segv_handler()
{
}

#define NONFAILING(...)                          \
	__try {                                  \
		__VA_ARGS__;                     \
	} __except (EXCEPTION_EXECUTE_HANDLER) { \
	}
#endif

#if SYZ_EXECUTOR || SYZ_THREADED || SYZ_REPEAT && SYZ_EXECUTOR_USES_FORK_SERVER
static uint64 current_time_ms()
{
	return GetTickCount64();
}
#endif

#if SYZ_EXECUTOR || SYZ_THREADED || SYZ_REPEAT && SYZ_EXECUTOR_USES_FORK_SERVER
static void sleep_ms(uint64 ms)
{
	Sleep(ms);
}
#endif

#if SYZ_EXECUTOR || SYZ_THREADED
static void thread_start(void* (*fn)(void*), void* arg)
{
	HANDLE th = CreateThread(NULL, 128 << 10, (LPTHREAD_START_ROUTINE)fn, arg, 0, NULL);
	if (th == NULL)
		exitf("CreateThread failed");
}

struct event_t {
	CRITICAL_SECTION cs;
	CONDITION_VARIABLE cv;
	int state;
};

static void event_init(event_t* ev)
{
	InitializeCriticalSection(&ev->cs);
	InitializeConditionVariable(&ev->cv);
	ev->state = 0;
}

static void event_reset(event_t* ev)
{
	ev->state = 0;
}

static void event_set(event_t* ev)
{
	EnterCriticalSection(&ev->cs);
	if (ev->state)
		fail("event already set");
	ev->state = 1;
	LeaveCriticalSection(&ev->cs);
	WakeAllConditionVariable(&ev->cv);
}

static void event_wait(event_t* ev)
{
	EnterCriticalSection(&ev->cs);
	while (!ev->state)
		SleepConditionVariableCS(&ev->cv, &ev->cs, INFINITE);
	LeaveCriticalSection(&ev->cs);
}

static int event_isset(event_t* ev)
{
	EnterCriticalSection(&ev->cs);
	int res = ev->state;
	LeaveCriticalSection(&ev->cs);
	return res;
}

static int event_timedwait(event_t* ev, uint64 timeout_ms)
{
	EnterCriticalSection(&ev->cs);
	uint64 start = current_time_ms();
	for (;;) {
		if (ev->state)
			break;
		uint64 now = current_time_ms();
		if (now - start > timeout_ms)
			break;
		SleepConditionVariableCS(&ev->cv, &ev->cs, timeout_ms - (now - start));
	}
	int res = ev->state;
	LeaveCriticalSection(&ev->cs);
	return res;
}
#endif

#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE
static void loop();
static int do_sandbox_none(void)
{
	loop();
	doexit(0);
}
#endif

#if SYZ_EXECUTOR
#define do_sandbox_setuid() 0
#define do_sandbox_namespace() 0
#endif

#elif GOOS_test

#include <stdlib.h>
#include <unistd.h>

#if SYZ_EXECUTOR || __NR_syz_mmap
#include <sys/mman.h>
static long syz_mmap(long a0, long a1)
{
	return (long)mmap((void*)a0, a1, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1, 0);
}
#endif

#if SYZ_EXECUTOR || __NR_syz_errno
#include <errno.h>
static long syz_errno(long v)
{
	errno = v;
	return v == 0 ? 0 : -1;
}
#endif

#if SYZ_EXECUTOR || __NR_syz_compare
#include <errno.h>
#include <string.h>
static long syz_compare(long want, long want_len, long got, long got_len)
{
	if (want_len != got_len) {
		debug("syz_compare: want_len=%lu got_len=%lu\n", want_len, got_len);
		errno = EBADF;
		return -1;
	}
	if (memcmp((void*)want, (void*)got, want_len)) {
		debug("syz_compare: data differs\n");
		errno = EINVAL;
		return -1;
	}
	return 0;
}
#endif

#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE
static void loop();
static int do_sandbox_none(void)
{
	loop();
	doexit(0);
}
#endif

#if SYZ_EXECUTOR
#define do_sandbox_setuid() 0
#define do_sandbox_namespace() 0
#endif

#else
#error "unknown OS"
#endif

#if SYZ_THREADED
struct thread_t {
	int created, call;
	event_t ready, done;
};

static struct thread_t threads[16];
static void execute_call(int call);
static int running;

static void* thr(void* arg)
{
	struct thread_t* th = (struct thread_t*)arg;
	for (;;) {
		event_wait(&th->ready);
		event_reset(&th->ready);
		execute_call(th->call);
		__atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED);
		event_set(&th->done);
	}
	return 0;
}

#if SYZ_REPEAT
static void execute_one()
#else
static void loop()
#endif
{
#if SYZ_REPRO
	if (write(1, "executing program\n", sizeof("executing program\n") - 1)) {
	}
#endif
#if SYZ_TRACE
	printf("### start\n");
#endif
	int i, call, thread;
#if SYZ_COLLIDE
	int collide = 0;
again:
#endif
	for (call = 0; call < [[NUM_CALLS]]; call++) {
		for (thread = 0; thread < sizeof(threads) / sizeof(threads[0]); thread++) {
			struct thread_t* th = &threads[thread];
			if (!th->created) {
				th->created = 1;
				event_init(&th->ready);
				event_init(&th->done);
				event_set(&th->done);
				thread_start(thr, th);
			}
			if (!event_isset(&th->done))
				continue;
			event_reset(&th->done);
			th->call = call;
			__atomic_fetch_add(&running, 1, __ATOMIC_RELAXED);
			event_set(&th->ready);
#if SYZ_COLLIDE
			if (collide && (call % 2) == 0)
				break;
#endif
			event_timedwait(&th->done, 45);
			break;
		}
	}
	for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++)
		sleep_ms(1);
#if SYZ_COLLIDE
	if (!collide) {
		collide = 1;
		goto again;
	}
#endif
}
#endif

#if SYZ_EXECUTOR || SYZ_REPEAT
static void execute_one();
#if SYZ_EXECUTOR_USES_FORK_SERVER
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>

#if GOOS_linux
#define WAIT_FLAGS __WALL
#else
#define WAIT_FLAGS 0
#endif

#if SYZ_EXECUTOR
static void reply_handshake();
#endif

static void loop()
{
#if SYZ_HAVE_SETUP_LOOP
	setup_loop();
#endif
#if SYZ_EXECUTOR
	reply_handshake();
#endif
#if SYZ_EXECUTOR && GOOS_akaros
	int child_pipe[2];
	if (pipe(child_pipe))
		fail("pipe failed");
#endif
	int iter;
#if SYZ_REPEAT_TIMES
	for (iter = 0; iter < [[REPEAT_TIMES]]; iter++) {
#else
	for (iter = 0;; iter++) {
#endif
#if SYZ_EXECUTOR || SYZ_USE_TMP_DIR
		char cwdbuf[32];
		sprintf(cwdbuf, "./%d", iter);
		if (mkdir(cwdbuf, 0777))
			fail("failed to mkdir");
#endif
#if SYZ_HAVE_RESET_LOOP
		reset_loop();
#endif
#if SYZ_EXECUTOR
		receive_execute();
#endif
		int pid = fork();
		if (pid < 0)
			fail("clone failed");
		if (pid == 0) {
#if SYZ_EXECUTOR || SYZ_USE_TMP_DIR
			if (chdir(cwdbuf))
				fail("failed to chdir");
#endif
#if SYZ_HAVE_SETUP_TEST
			setup_test();
#endif
#if GOOS_akaros
#if SYZ_EXECUTOR
			dup2(child_pipe[0], kInPipeFd);
			close(child_pipe[0]);
			close(child_pipe[1]);
#endif
			execl(program_name, program_name, "child", NULL);
			fail("execl failed");
#else
#if SYZ_EXECUTOR
			close(kInPipeFd);
#endif
#if SYZ_EXECUTOR && SYZ_EXECUTOR_USES_SHMEM
			close(kOutPipeFd);
#endif
			execute_one();
			debug("worker exiting\n");
#if SYZ_HAVE_RESET_TEST
			reset_test();
#endif
			doexit(0);
#endif
		}
		debug("spawned worker pid %d\n", pid);

#if SYZ_EXECUTOR && GOOS_akaros
		resend_execute(child_pipe[1]);
#endif
		int status = 0;
		uint64 start = current_time_ms();
#if SYZ_EXECUTOR && SYZ_EXECUTOR_USES_SHMEM
		uint64 last_executed = start;
		uint32 executed_calls = __atomic_load_n(output_data, __ATOMIC_RELAXED);
#endif
		for (;;) {
			if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid)
				break;
			sleep_ms(1);
#if SYZ_EXECUTOR && SYZ_EXECUTOR_USES_SHMEM
			uint64 now = current_time_ms();
			uint32 now_executed = __atomic_load_n(output_data, __ATOMIC_RELAXED);
			if (executed_calls != now_executed) {
				executed_calls = now_executed;
				last_executed = now;
			}
			if ((now - start < 5 * 1000) && (now - start < 3 * 1000 || now - last_executed < 1000))
				continue;
#else
			if (current_time_ms() - start < 5 * 1000)
				continue;
#endif
			debug("killing\n");
			kill_and_wait(pid, &status);
			break;
		}
#if SYZ_EXECUTOR
		status = WEXITSTATUS(status);
		if (status == kFailStatus)
			fail("child failed");
		if (status == kErrorStatus)
			error("child errored");
		reply_execute(0);
#endif
#if SYZ_EXECUTOR || SYZ_USE_TMP_DIR
		remove_dir(cwdbuf);
#endif
	}
}
#else
static void loop()
{
	execute_one();
}
#endif
#endif
#if !SYZ_EXECUTOR
[[SYSCALL_DEFINES]]

[[RESULTS]]

#if SYZ_THREADED || SYZ_REPEAT || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE
#if SYZ_THREADED
void execute_call(int call)
#elif SYZ_REPEAT
void execute_one()
#else
void loop()
#endif
{
	[[SYSCALLS]]
}
#endif
#if GOOS_akaros && SYZ_REPEAT
#include <string.h>

int main(int argc, char** argv)
{
	[[MMAP_DATA]]

	program_name = argv[0];
	if (argc == 2 && strcmp(argv[1], "child") == 0)
		child();
#else
int main()
{
	[[MMAP_DATA]]
#endif

#if SYZ_HANDLE_SEGV
	install_segv_handler();
#endif
#if SYZ_PROCS
	for (procid = 0; procid < [[PROCS]]; procid++) {
		if (fork() == 0) {
#endif
#if SYZ_USE_TMP_DIR
			use_temporary_dir();
#endif
			[[SANDBOX_FUNC]]
#if SYZ_PROCS
		}
	}
	sleep(1000000);
#endif
	return 0;
}
#endif
`