/* Copyright (c) 2018-2019 The Khronos Group Inc.
* Copyright (c) 2018-2019 Valve Corporation
* Copyright (c) 2018-2019 LunarG, Inc.
* Copyright (C) 2018-2019 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
// Allow use of STL min and max functions in Windows
#define NOMINMAX
#include "chassis.h"
#include "core_validation.h"
#include "gpu_validation.h"
#include "shader_validation.h"
#include "spirv-tools/libspirv.h"
#include "spirv-tools/optimizer.hpp"
#include "spirv-tools/instrument.hpp"
#include <SPIRV/spirv.hpp>
#include <algorithm>
#include <regex>
// This is the number of bindings in the debug descriptor set.
static const uint32_t kNumBindingsInSet = 1;
// Implementation for Device Memory Manager class
GpuDeviceMemoryManager::GpuDeviceMemoryManager(layer_data *dev_data, uint32_t data_size) {
uint32_t align = static_cast<uint32_t>(dev_data->GetPDProperties()->limits.minStorageBufferOffsetAlignment);
if (0 == align) {
align = 1;
}
record_size_ = data_size;
// Round the requested size up to the next multiple of the storage buffer offset alignment
// so that we can address each block in the storage buffer using the offset.
block_size_ = ((record_size_ + align - 1) / align) * align;
blocks_per_chunk_ = kItemsPerChunk;
chunk_size_ = blocks_per_chunk_ * block_size_;
dev_data_ = dev_data;
}
GpuDeviceMemoryManager::~GpuDeviceMemoryManager() {
for (auto &chunk : chunk_list_) {
FreeMemoryChunk(chunk);
}
chunk_list_.clear();
}
VkResult GpuDeviceMemoryManager::GetBlock(GpuDeviceMemoryBlock *block) {
assert(block->buffer == VK_NULL_HANDLE); // avoid possible overwrite/leak of an allocated block
VkResult result = VK_SUCCESS;
MemoryChunk *pChunk = nullptr;
// Look for a chunk with available offsets.
for (auto &chunk : chunk_list_) {
if (!chunk.available_offsets.empty()) {
pChunk = &chunk;
break;
}
}
// If no chunks with available offsets, allocate device memory and set up offsets.
if (pChunk == nullptr) {
MemoryChunk new_chunk;
result = AllocMemoryChunk(new_chunk);
if (result == VK_SUCCESS) {
new_chunk.available_offsets.resize(blocks_per_chunk_);
for (uint32_t offset = 0, i = 0; i < blocks_per_chunk_; offset += block_size_, ++i) {
new_chunk.available_offsets[i] = offset;
}
chunk_list_.push_front(std::move(new_chunk));
pChunk = &chunk_list_.front();
} else {
// Indicate failure
block->buffer = VK_NULL_HANDLE;
block->memory = VK_NULL_HANDLE;
return result;
}
}
// Give the requester an available offset
block->buffer = pChunk->buffer;
block->memory = pChunk->memory;
block->offset = pChunk->available_offsets.back();
pChunk->available_offsets.pop_back();
return result;
}
void GpuDeviceMemoryManager::PutBackBlock(VkBuffer buffer, VkDeviceMemory memory, uint32_t offset) {
GpuDeviceMemoryBlock block = {buffer, memory, offset};
PutBackBlock(block);
}
void GpuDeviceMemoryManager::PutBackBlock(GpuDeviceMemoryBlock &block) {
// Find the chunk belonging to the allocated offset and make the offset available again
auto chunk = std::find_if(std::begin(chunk_list_), std::end(chunk_list_),
[&block](const MemoryChunk &c) { return c.buffer == block.buffer; });
if (chunk_list_.end() == chunk) {
assert(false);
} else {
chunk->available_offsets.push_back(block.offset);
if (chunk->available_offsets.size() == blocks_per_chunk_) {
// All offsets have been returned
FreeMemoryChunk(*chunk);
chunk_list_.erase(chunk);
}
}
}
void ResetBlock(GpuDeviceMemoryBlock &block) {
block.buffer = VK_NULL_HANDLE;
block.memory = VK_NULL_HANDLE;
block.offset = 0;
}
bool BlockUsed(GpuDeviceMemoryBlock &block) { return (block.buffer != VK_NULL_HANDLE) && (block.memory != VK_NULL_HANDLE); }
bool GpuDeviceMemoryManager::MemoryTypeFromProperties(uint32_t typeBits, VkFlags requirements_mask, uint32_t *typeIndex) {
// Search memtypes to find first index with those properties
const VkPhysicalDeviceMemoryProperties *props = dev_data_->GetPhysicalDeviceMemoryProperties();
for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; i++) {
if ((typeBits & 1) == 1) {
// Type is available, does it match user properties?
if ((props->memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) {
*typeIndex = i;
return true;
}
}
typeBits >>= 1;
}
// No memory types matched, return failure
return false;
}
VkResult GpuDeviceMemoryManager::AllocMemoryChunk(MemoryChunk &chunk) {
VkBuffer buffer;
VkDeviceMemory memory;
VkBufferCreateInfo buffer_create_info = {};
VkMemoryRequirements mem_reqs = {};
VkMemoryAllocateInfo mem_alloc = {};
VkResult result = VK_SUCCESS;
bool pass;
void *pData;
const auto *dispatch_table = dev_data_->GetDispatchTable();
buffer_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
buffer_create_info.size = chunk_size_;
result = dispatch_table->CreateBuffer(dev_data_->GetDevice(), &buffer_create_info, NULL, &buffer);
if (result != VK_SUCCESS) {
return result;
}
dispatch_table->GetBufferMemoryRequirements(dev_data_->GetDevice(), buffer, &mem_reqs);
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = mem_reqs.size;
pass = MemoryTypeFromProperties(mem_reqs.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&mem_alloc.memoryTypeIndex);
if (!pass) {
dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
return result;
}
result = dispatch_table->AllocateMemory(dev_data_->GetDevice(), &mem_alloc, NULL, &memory);
if (result != VK_SUCCESS) {
dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
return result;
}
result = dispatch_table->BindBufferMemory(dev_data_->GetDevice(), buffer, memory, 0);
if (result != VK_SUCCESS) {
dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
dispatch_table->FreeMemory(dev_data_->GetDevice(), memory, NULL);
return result;
}
result = dispatch_table->MapMemory(dev_data_->GetDevice(), memory, 0, mem_alloc.allocationSize, 0, &pData);
if (result == VK_SUCCESS) {
memset(pData, 0, chunk_size_);
dispatch_table->UnmapMemory(dev_data_->GetDevice(), memory);
} else {
dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
dispatch_table->FreeMemory(dev_data_->GetDevice(), memory, NULL);
return result;
}
chunk.buffer = buffer;
chunk.memory = memory;
return result;
}
void GpuDeviceMemoryManager::FreeMemoryChunk(MemoryChunk &chunk) {
dev_data_->GetDispatchTable()->DestroyBuffer(dev_data_->GetDevice(), chunk.buffer, NULL);
dev_data_->GetDispatchTable()->FreeMemory(dev_data_->GetDevice(), chunk.memory, NULL);
}
void GpuDeviceMemoryManager::FreeAllBlocks() {
for (auto &chunk : chunk_list_) {
FreeMemoryChunk(chunk);
}
chunk_list_.clear();
}
// Implementation for Descriptor Set Manager class
GpuDescriptorSetManager::GpuDescriptorSetManager(layer_data *dev_data) { dev_data_ = dev_data; }
GpuDescriptorSetManager::~GpuDescriptorSetManager() {
for (auto &pool : desc_pool_map_) {
dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), pool.first, NULL);
}
desc_pool_map_.clear();
}
VkResult GpuDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool,
std::vector<VkDescriptorSet> *desc_sets) {
auto gpu_state = dev_data_->GetGpuValidationState();
const uint32_t default_pool_size = kItemsPerChunk;
VkResult result = VK_SUCCESS;
VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
if (0 == count) {
return result;
}
desc_sets->clear();
desc_sets->resize(count);
for (auto &pool : desc_pool_map_) {
if (pool.second.used + count < pool.second.size) {
pool_to_use = pool.first;
break;
}
}
if (VK_NULL_HANDLE == pool_to_use) {
uint32_t pool_count = default_pool_size;
if (count > default_pool_size) {
pool_count = count;
}
const VkDescriptorPoolSize size_counts = {
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
pool_count * kNumBindingsInSet,
};
VkDescriptorPoolCreateInfo desc_pool_info = {};
desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
desc_pool_info.pNext = NULL;
desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
desc_pool_info.maxSets = pool_count;
desc_pool_info.poolSizeCount = 1;
desc_pool_info.pPoolSizes = &size_counts;
result = dev_data_->GetDispatchTable()->CreateDescriptorPool(dev_data_->GetDevice(), &desc_pool_info, NULL, &pool_to_use);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
desc_pool_map_[pool_to_use].used = 0;
}
std::vector<VkDescriptorSetLayout> desc_layouts(count, gpu_state->debug_desc_layout);
VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
desc_layouts.data()};
result = dev_data_->GetDispatchTable()->AllocateDescriptorSets(dev_data_->GetDevice(), &alloc_info, desc_sets->data());
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
*pool = pool_to_use;
desc_pool_map_[pool_to_use].used += count;
return result;
}
void GpuDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
auto iter = desc_pool_map_.find(desc_pool);
if (iter != desc_pool_map_.end()) {
VkResult result = dev_data_->GetDispatchTable()->FreeDescriptorSets(dev_data_->GetDevice(), desc_pool, 1, &desc_set);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return;
}
desc_pool_map_[desc_pool].used--;
if (0 == desc_pool_map_[desc_pool].used) {
dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), desc_pool, NULL);
desc_pool_map_.erase(desc_pool);
}
}
return;
}
void GpuDescriptorSetManager::DestroyDescriptorPools() {
for (auto &pool : desc_pool_map_) {
dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), pool.first, NULL);
}
desc_pool_map_.clear();
}
// Convenience function for reporting problems with setting up GPU Validation.
void CoreChecks::ReportSetupProblem(const layer_data *dev_data, VkDebugReportObjectTypeEXT object_type, uint64_t object_handle,
const char *const specific_message) {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, object_type, object_handle, "UNASSIGNED-GPU-Assisted Validation Error. ",
"Detail: (%s)", specific_message);
}
// Turn on necessary device features.
void CoreChecks::GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu, std::unique_ptr<safe_VkDeviceCreateInfo> &create_info,
VkPhysicalDeviceFeatures *supported_features) {
if (supported_features->fragmentStoresAndAtomics || supported_features->vertexPipelineStoresAndAtomics) {
VkPhysicalDeviceFeatures new_features = {};
if (create_info->pEnabledFeatures) {
new_features = *create_info->pEnabledFeatures;
}
new_features.fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics;
new_features.vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics;
delete create_info->pEnabledFeatures;
create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
}
}
// Perform initializations that can be done at Create Device time.
void CoreChecks::GpuPostCallRecordCreateDevice(layer_data *dev_data) {
auto gpu_state = GetGpuValidationState();
const auto *dispatch_table = GetDispatchTable();
gpu_state->aborted = false;
gpu_state->reserve_binding_slot = false;
gpu_state->barrier_command_pool = VK_NULL_HANDLE;
gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
if (GetPDProperties()->apiVersion < VK_API_VERSION_1_1) {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
"GPU-Assisted validation requires Vulkan 1.1 or later. GPU-Assisted Validation disabled.");
gpu_state->aborted = true;
return;
}
// Some devices have extremely high limits here, so set a reasonable max because we have to pad
// the pipeline layout with dummy descriptor set layouts.
gpu_state->adjusted_max_desc_sets = GetPDProperties()->limits.maxBoundDescriptorSets;
gpu_state->adjusted_max_desc_sets = std::min(33U, gpu_state->adjusted_max_desc_sets);
// We can't do anything if there is only one.
// Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
if (gpu_state->adjusted_max_desc_sets == 1) {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
"Device can bind only a single descriptor set. GPU-Assisted Validation disabled.");
gpu_state->aborted = true;
return;
}
gpu_state->desc_set_bind_index = gpu_state->adjusted_max_desc_sets - 1;
log_msg(GetReportData(), VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
HandleToUint64(GetDevice()), "UNASSIGNED-GPU-Assisted Validation. ", "Shaders using descriptor set at index %d. ",
gpu_state->desc_set_bind_index);
std::unique_ptr<GpuDeviceMemoryManager> memory_manager(
new GpuDeviceMemoryManager(dev_data, sizeof(uint32_t) * (spvtools::kInstMaxOutCnt + 1)));
std::unique_ptr<GpuDescriptorSetManager> desc_set_manager(new GpuDescriptorSetManager(dev_data));
// The descriptor indexing checks require only the first "output" binding.
const VkDescriptorSetLayoutBinding debug_desc_layout_bindings[kNumBindingsInSet] = {
{
0, // output
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1,
VK_SHADER_STAGE_ALL_GRAPHICS,
NULL,
},
};
const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
kNumBindingsInSet, debug_desc_layout_bindings};
const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
NULL};
VkResult result =
dispatch_table->CreateDescriptorSetLayout(GetDevice(), &debug_desc_layout_info, NULL, &gpu_state->debug_desc_layout);
// This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
VkResult result2 =
dispatch_table->CreateDescriptorSetLayout(GetDevice(), &dummy_desc_layout_info, NULL, &gpu_state->dummy_desc_layout);
assert((result == VK_SUCCESS) && (result2 == VK_SUCCESS));
if ((result != VK_SUCCESS) || (result2 != VK_SUCCESS)) {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
"Unable to create descriptor set layout. GPU-Assisted Validation disabled.");
if (result == VK_SUCCESS) {
dispatch_table->DestroyDescriptorSetLayout(GetDevice(), gpu_state->debug_desc_layout, NULL);
}
if (result2 == VK_SUCCESS) {
dispatch_table->DestroyDescriptorSetLayout(GetDevice(), gpu_state->dummy_desc_layout, NULL);
}
gpu_state->debug_desc_layout = VK_NULL_HANDLE;
gpu_state->dummy_desc_layout = VK_NULL_HANDLE;
gpu_state->aborted = true;
return;
}
gpu_state->memory_manager = std::move(memory_manager);
gpu_state->desc_set_manager = std::move(desc_set_manager);
}
// Clean up device-related resources
void CoreChecks::GpuPreCallRecordDestroyDevice(layer_data *dev_data) {
auto gpu_state = GetGpuValidationState();
if (gpu_state->barrier_command_buffer) {
GetDispatchTable()->FreeCommandBuffers(GetDevice(), gpu_state->barrier_command_pool, 1, &gpu_state->barrier_command_buffer);
gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
}
if (gpu_state->barrier_command_pool) {
GetDispatchTable()->DestroyCommandPool(GetDevice(), gpu_state->barrier_command_pool, NULL);
gpu_state->barrier_command_pool = VK_NULL_HANDLE;
}
if (gpu_state->debug_desc_layout) {
GetDispatchTable()->DestroyDescriptorSetLayout(GetDevice(), gpu_state->debug_desc_layout, NULL);
gpu_state->debug_desc_layout = VK_NULL_HANDLE;
}
if (gpu_state->dummy_desc_layout) {
GetDispatchTable()->DestroyDescriptorSetLayout(GetDevice(), gpu_state->dummy_desc_layout, NULL);
gpu_state->dummy_desc_layout = VK_NULL_HANDLE;
}
gpu_state->memory_manager->FreeAllBlocks();
gpu_state->desc_set_manager->DestroyDescriptorPools();
}
// Modify the pipeline layout to include our debug descriptor set and any needed padding with the dummy descriptor set.
bool CoreChecks::GpuPreCallCreatePipelineLayout(layer_data *device_data, const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
std::vector<VkDescriptorSetLayout> *new_layouts,
VkPipelineLayoutCreateInfo *modified_create_info) {
auto gpu_state = GetGpuValidationState();
if (gpu_state->aborted) {
return false;
}
if (modified_create_info->setLayoutCount >= gpu_state->adjusted_max_desc_sets) {
std::ostringstream strm;
strm << "Pipeline Layout conflict with validation's descriptor set at slot " << gpu_state->desc_set_bind_index << ". "
<< "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
<< "Validation is not modifying the pipeline layout. "
<< "Instrumented shaders are replaced with non-instrumented shaders.";
ReportSetupProblem(device_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()), strm.str().c_str());
} else {
// Modify the pipeline layout by:
// 1. Copying the caller's descriptor set desc_layouts
// 2. Fill in dummy descriptor layouts up to the max binding
// 3. Fill in with the debug descriptor layout at the max binding slot
new_layouts->reserve(gpu_state->adjusted_max_desc_sets);
new_layouts->insert(new_layouts->end(), &pCreateInfo->pSetLayouts[0],
&pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
for (uint32_t i = pCreateInfo->setLayoutCount; i < gpu_state->adjusted_max_desc_sets - 1; ++i) {
new_layouts->push_back(gpu_state->dummy_desc_layout);
}
new_layouts->push_back(gpu_state->debug_desc_layout);
modified_create_info->pSetLayouts = new_layouts->data();
modified_create_info->setLayoutCount = gpu_state->adjusted_max_desc_sets;
}
return true;
}
// Clean up GPU validation after the CreatePipelineLayout call is made
void CoreChecks::GpuPostCallCreatePipelineLayout(layer_data *device_data, VkResult result) {
auto gpu_state = GetGpuValidationState();
// Clean up GPU validation
if (result != VK_SUCCESS) {
ReportSetupProblem(device_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
"Unable to create pipeline layout. Device could become unstable.");
gpu_state->aborted = true;
}
}
// Free the device memory and descriptor set associated with a command buffer.
void CoreChecks::GpuPreCallRecordFreeCommandBuffers(layer_data *dev_data, uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers) {
auto gpu_state = GetGpuValidationState();
if (gpu_state->aborted) {
return;
}
for (uint32_t i = 0; i < commandBufferCount; ++i) {
auto cb_node = GetCBNode(pCommandBuffers[i]);
if (cb_node) {
for (auto &buffer_info : cb_node->gpu_buffer_list) {
if (BlockUsed(buffer_info.mem_block)) {
gpu_state->memory_manager->PutBackBlock(buffer_info.mem_block);
ResetBlock(buffer_info.mem_block);
}
if (buffer_info.desc_set != VK_NULL_HANDLE) {
gpu_state->desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
}
}
cb_node->gpu_buffer_list.clear();
}
}
}
// Just gives a warning about a possible deadlock.
void CoreChecks::GpuPreCallValidateCmdWaitEvents(layer_data *dev_data, VkPipelineStageFlags sourceStageMask) {
if (sourceStageMask & VK_PIPELINE_STAGE_HOST_BIT) {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
"CmdWaitEvents recorded with VK_PIPELINE_STAGE_HOST_BIT set. "
"GPU_Assisted validation waits on queue completion. "
"This wait could block the host's signaling of this event, resulting in deadlock.");
}
}
// Examine the pipelines to see if they use the debug descriptor set binding index.
// If any do, create new non-instrumented shader modules and use them to replace the instrumented
// shaders in the pipeline. Return the (possibly) modified create infos to the caller.
std::vector<safe_VkGraphicsPipelineCreateInfo> CoreChecks::GpuPreCallRecordCreateGraphicsPipelines(
layer_data *dev_data, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
auto gpu_state = GetGpuValidationState();
std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
std::vector<unsigned int> pipeline_uses_debug_index(count);
// Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
// descriptor set index.
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
new_pipeline_create_infos.push_back(pipe_state[pipeline]->graphicsPipelineCI);
if (pipe_state[pipeline]->active_slots.find(gpu_state->desc_set_bind_index) != pipe_state[pipeline]->active_slots.end()) {
pipeline_uses_debug_index[pipeline] = 1;
}
}
// See if any pipeline has shaders using the debug descriptor set index
if (std::all_of(pipeline_uses_debug_index.begin(), pipeline_uses_debug_index.end(), [](unsigned int i) { return i == 0; })) {
// None of the shaders in all the pipelines use the debug descriptor set index, so use the pipelines
// as they stand with the instrumented shaders.
return new_pipeline_create_infos;
}
// At least one pipeline has a shader that uses the debug descriptor set index.
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
if (pipeline_uses_debug_index[pipeline]) {
for (uint32_t stage = 0; stage < pCreateInfos[pipeline].stageCount; ++stage) {
const shader_module *shader = GetShaderModuleState(pCreateInfos[pipeline].pStages[stage].module);
VkShaderModuleCreateInfo create_info = {};
VkShaderModule shader_module;
create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
create_info.pCode = shader->words.data();
create_info.codeSize = shader->words.size() * sizeof(uint32_t);
VkResult result = GetDispatchTable()->CreateShaderModule(GetDevice(), &create_info, pAllocator, &shader_module);
if (result == VK_SUCCESS) {
new_pipeline_create_infos[pipeline].pStages[stage].module = shader_module;
} else {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(pCreateInfos[pipeline].pStages[stage].module),
"Unable to replace instrumented shader with non-instrumented one. "
"Device could become unstable.");
}
}
}
}
return new_pipeline_create_infos;
}
// For every pipeline:
// - For every shader in a pipeline:
// - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
// - Destroy it since it has been bound into the pipeline by now. This is our only chance to delete it.
// - Track the shader in the shader_map
// - Save the shader binary if it contains debug code
void CoreChecks::GpuPostCallRecordCreateGraphicsPipelines(layer_data *dev_data, const uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
auto gpu_state = GetGpuValidationState();
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
auto pipeline_state = GetPipelineState(pPipelines[pipeline]);
if (nullptr == pipeline_state) continue;
for (uint32_t stage = 0; stage < pipeline_state->graphicsPipelineCI.stageCount; ++stage) {
if (pipeline_state->active_slots.find(gpu_state->desc_set_bind_index) != pipeline_state->active_slots.end()) {
GetDispatchTable()->DestroyShaderModule(GetDevice(), pCreateInfos->pStages[stage].module, pAllocator);
}
auto shader_state = GetShaderModuleState(pipeline_state->graphicsPipelineCI.pStages[stage].module);
std::vector<unsigned int> code;
// Save the shader binary if debug info is present.
// The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
// is destroyed. Applications may destroy ShaderModules after they are placed in a pipeline and before
// the pipeline is used, so we have to keep another copy.
if (shader_state && shader_state->has_valid_spirv) { // really checking for presense of SPIR-V code.
for (auto insn : *shader_state) {
if (insn.opcode() == spv::OpLine) {
code = shader_state->words;
break;
}
}
}
gpu_state->shader_map[shader_state->gpu_validation_shader_id].pipeline = pipeline_state->pipeline;
// Be careful to use the originally bound (instrumented) shader here, even if PreCallRecord had to back it
// out with a non-instrumented shader. The non-instrumented shader (found in pCreateInfo) was destroyed above.
gpu_state->shader_map[shader_state->gpu_validation_shader_id].shader_module =
pipeline_state->graphicsPipelineCI.pStages[stage].module;
gpu_state->shader_map[shader_state->gpu_validation_shader_id].pgm = std::move(code);
}
}
}
// Remove all the shader trackers associated with this destroyed pipeline.
void CoreChecks::GpuPreCallRecordDestroyPipeline(layer_data *dev_data, const VkPipeline pipeline) {
auto gpu_state = GetGpuValidationState();
for (auto it = gpu_state->shader_map.begin(); it != gpu_state->shader_map.end();) {
if (it->second.pipeline == pipeline) {
it = gpu_state->shader_map.erase(it);
} else {
++it;
}
}
}
// Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
bool CoreChecks::GpuInstrumentShader(layer_data *dev_data, const VkShaderModuleCreateInfo *pCreateInfo,
std::vector<unsigned int> &new_pgm, uint32_t *unique_shader_id) {
auto gpu_state = GetGpuValidationState();
if (gpu_state->aborted) return false;
if (pCreateInfo->pCode[0] != spv::MagicNumber) return false;
// Load original shader SPIR-V
uint32_t num_words = static_cast<uint32_t>(pCreateInfo->codeSize / 4);
new_pgm.clear();
new_pgm.reserve(num_words);
new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]);
// Call the optimizer to instrument the shader.
// Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
using namespace spvtools;
spv_target_env target_env = SPV_ENV_VULKAN_1_1;
Optimizer optimizer(target_env);
optimizer.RegisterPass(CreateInstBindlessCheckPass(gpu_state->desc_set_bind_index, gpu_state->unique_shader_module_id));
optimizer.RegisterPass(CreateAggressiveDCEPass());
bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm);
if (!pass) {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, VK_NULL_HANDLE,
"Failure to instrument shader. Proceeding with non-instrumented shader.");
}
*unique_shader_id = gpu_state->unique_shader_module_id++;
return pass;
}
// Create the instrumented shader data to provide to the driver.
bool CoreChecks::GpuPreCallCreateShaderModule(layer_data *dev_data, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
uint32_t *unique_shader_id, VkShaderModuleCreateInfo *instrumented_create_info,
std::vector<unsigned int> *instrumented_pgm) {
bool pass = GpuInstrumentShader(dev_data, pCreateInfo, *instrumented_pgm, unique_shader_id);
if (pass) {
instrumented_create_info->pCode = instrumented_pgm->data();
instrumented_create_info->codeSize = instrumented_pgm->size() * sizeof(unsigned int);
}
return pass;
}
// Generate the stage-specific part of the message.
static void GenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
switch (debug_record[kInstCommonOutStageIdx]) {
case 0: {
strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex]
<< " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". ";
} break;
case 1: {
strm << "Stage = Tessellation Control. Invocation ID = " << debug_record[kInstTessOutInvocationId] << ". ";
} break;
case 2: {
strm << "Stage = Tessellation Eval. Invocation ID = " << debug_record[kInstTessOutInvocationId] << ". ";
} break;
case 3: {
strm << "Stage = Geometry. Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
<< " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
} break;
case 4: {
strm << "Stage = Fragment. Fragment coord (x,y) = ("
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
} break;
case 5: {
strm << "Stage = Compute. Global invocation ID = " << debug_record[kInstCompOutGlobalInvocationId] << ". ";
} break;
default: {
strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
assert(false);
} break;
}
msg = strm.str();
}
// Generate the part of the message describing the violation.
static void GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg) {
using namespace spvtools;
std::ostringstream strm;
switch (debug_record[kInstValidationOutError]) {
case 0: {
strm << "Index of " << debug_record[kInstBindlessOutDescIndex] << " used to index descriptor array of length "
<< debug_record[kInstBindlessOutDescBound] << ". ";
vuid_msg = "UNASSIGNED-Descriptor index out of bounds";
} break;
case 1: {
strm << "Descriptor index " << debug_record[kInstBindlessOutDescIndex] << " is uninitialized. ";
vuid_msg = "UNASSIGNED-Descriptor uninitialized";
} break;
default: {
strm << "Internal Error (unexpected error type = " << debug_record[kInstValidationOutError] << "). ";
vuid_msg = "UNASSIGNED-Internal Error";
assert(false);
} break;
}
msg = strm.str();
}
static std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) {
auto object_label = report_data->DebugReportGetUtilsObjectName(object);
if (object_label != "") {
object_label = "(" + object_label + ")";
}
return object_label;
}
// Generate message from the common portion of the debug report record.
static void GenerateCommonMessage(const debug_report_data *report_data, const GLOBAL_CB_NODE *cb_node, const uint32_t *debug_record,
const VkShaderModule shader_module_handle, const VkPipeline pipeline_handle,
const uint32_t draw_index, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
if (shader_module_handle == VK_NULL_HANDLE) {
strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
<< LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
<< HandleToUint64(cb_node->commandBuffer) << "). ";
assert(true);
} else {
strm << std::hex << std::showbase << "Command buffer "
<< LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
<< HandleToUint64(cb_node->commandBuffer) << "). "
<< "Draw Index " << draw_index << ". "
<< "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "("
<< HandleToUint64(pipeline_handle) << "). "
<< "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "("
<< HandleToUint64(shader_module_handle) << "). ";
}
strm << std::dec << std::noshowbase;
strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
msg = strm.str();
}
// Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
// Split the single string into a vector of strings, one for each line, for easier processing.
static void ReadOpSource(const shader_module &shader, const uint32_t reported_file_id, std::vector<std::string> &opsource_lines) {
for (auto insn : shader) {
if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) {
std::istringstream in_stream;
std::string cur_line;
in_stream.str((char *)&insn.word(4));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
while ((++insn).opcode() == spv::OpSourceContinued) {
in_stream.str((char *)&insn.word(1));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
}
break;
}
}
}
// The task here is to search the OpSource content to find the #line directive with the
// line number that is closest to, but still prior to the reported error line number and
// still within the reported filename.
// From this known position in the OpSource content we can add the difference between
// the #line line number and the reported error line number to determine the location
// in the OpSource content of the reported error line.
//
// Considerations:
// - Look only at #line directives that specify the reported_filename since
// the reported error line number refers to its location in the reported filename.
// - If a #line directive does not have a filename, the file is the reported filename, or
// the filename found in a prior #line directive. (This is C-preprocessor behavior)
// - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
// original order and the #line directives are used to keep the numbering correct. This
// is why we need to examine the entire contents of the source, instead of leaving early
// when finding a #line line number larger than the reported error line number.
//
// GCC 4.8 has a problem with std::regex that is fixed in GCC 4.9. Provide fallback code for 4.8
#define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#if defined(__GNUC__) && GCC_VERSION < 40900
static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
// # line <linenumber> "<filename>" or
// #line <linenumber> "<filename>"
std::vector<std::string> tokens;
std::stringstream stream(string);
std::string temp;
uint32_t line_index = 0;
while (stream >> temp) tokens.push_back(temp);
auto size = tokens.size();
if (size > 1) {
if (tokens[0] == "#" && tokens[1] == "line") {
line_index = 2;
} else if (tokens[0] == "#line") {
line_index = 1;
}
}
if (0 == line_index) return false;
*linenumber = std::stoul(tokens[line_index]);
uint32_t filename_index = line_index + 1;
// Remove enclosing double quotes around filename
if (size > filename_index) filename = tokens[filename_index].substr(1, tokens[filename_index].size() - 2);
return true;
}
#else
static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
static const std::regex line_regex( // matches #line directives
"^" // beginning of line
"\\s*" // optional whitespace
"#" // required text
"\\s*" // optional whitespace
"line" // required text
"\\s+" // required whitespace
"([0-9]+)" // required first capture - line number
"(\\s+)?" // optional second capture - whitespace
"(\".+\")?" // optional third capture - quoted filename with at least one char inside
".*"); // rest of line (needed when using std::regex_match since the entire line is tested)
std::smatch captures;
bool found_line = std::regex_match(string, captures, line_regex);
if (!found_line) return false;
// filename is optional and considered found only if the whitespace and the filename are captured
if (captures[2].matched && captures[3].matched) {
// Remove enclosing double quotes. The regex guarantees the quotes and at least one char.
filename = captures[3].str().substr(1, captures[3].str().size() - 2);
}
*linenumber = std::stoul(captures[1]);
return true;
}
#endif // GCC_VERSION
// Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
// Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
static void GenerateSourceMessages(const std::vector<unsigned int> &pgm, const uint32_t *debug_record, std::string &filename_msg,
std::string &source_msg) {
using namespace spvtools;
std::ostringstream filename_stream;
std::ostringstream source_stream;
shader_module shader;
shader.words = pgm;
// Find the OpLine just before the failing instruction indicated by the debug info.
// SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
uint32_t instruction_index = 0;
uint32_t reported_file_id = 0;
uint32_t reported_line_number = 0;
uint32_t reported_column_number = 0;
if (shader.words.size() > 0) {
for (auto insn : shader) {
if (insn.opcode() == spv::OpLine) {
reported_file_id = insn.word(1);
reported_line_number = insn.word(2);
reported_column_number = insn.word(3);
}
if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
break;
}
instruction_index++;
}
}
// Create message with file information obtained from the OpString pointed to by the discovered OpLine.
std::string reported_filename;
if (reported_file_id == 0) {
filename_stream
<< "Unable to find SPIR-V OpLine for source information. Build shader with debug info to get source information.";
} else {
bool found_opstring = false;
for (auto insn : shader) {
if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) {
found_opstring = true;
reported_filename = (char *)&insn.word(2);
if (reported_filename.empty()) {
filename_stream << "Shader validation error occurred at line " << reported_line_number;
} else {
filename_stream << "Shader validation error occurred in file: " << reported_filename << " at line "
<< reported_line_number;
}
if (reported_column_number > 0) {
filename_stream << ", column " << reported_column_number;
}
filename_stream << ".";
break;
}
}
if (!found_opstring) {
filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction.";
}
}
filename_msg = filename_stream.str();
// Create message to display source code line containing error.
if ((reported_file_id != 0)) {
// Read the source code and split it up into separate lines.
std::vector<std::string> opsource_lines;
ReadOpSource(shader, reported_file_id, opsource_lines);
// Find the line in the OpSource content that corresponds to the reported error file and line.
if (!opsource_lines.empty()) {
uint32_t saved_line_number = 0;
std::string current_filename = reported_filename; // current "preprocessor" filename state.
std::vector<std::string>::size_type saved_opsource_offset = 0;
bool found_best_line = false;
for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
uint32_t parsed_line_number;
std::string parsed_filename;
bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename);
if (!found_line) continue;
bool found_filename = parsed_filename.size() > 0;
if (found_filename) {
current_filename = parsed_filename;
}
if ((!found_filename) || (current_filename == reported_filename)) {
// Update the candidate best line directive, if the current one is prior and closer to the reported line
if (reported_line_number >= parsed_line_number) {
if (!found_best_line ||
(reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
saved_line_number = parsed_line_number;
saved_opsource_offset = std::distance(opsource_lines.begin(), it);
found_best_line = true;
}
}
}
}
if (found_best_line) {
assert(reported_line_number >= saved_line_number);
std::vector<std::string>::size_type opsource_index =
(reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
if (opsource_index < opsource_lines.size()) {
source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
} else {
source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
<< opsource_lines.size() << " lines.";
}
} else {
source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
}
} else {
source_stream << "Unable to find SPIR-V OpSource.";
}
}
source_msg = source_stream.str();
}
// Pull together all the information from the debug record to build the error message strings,
// and then assemble them into a single message string.
// Retrieve the shader program referenced by the unique shader ID provided in the debug record.
// We had to keep a copy of the shader program with the same lifecycle as the pipeline to make
// sure it is available when the pipeline is submitted. (The ShaderModule tracking object also
// keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.)
//
void CoreChecks::AnalyzeAndReportError(const layer_data *dev_data, GLOBAL_CB_NODE *cb_node, VkQueue queue, uint32_t draw_index,
uint32_t *const debug_output_buffer) {
using namespace spvtools;
const uint32_t total_words = debug_output_buffer[0];
// A zero here means that the shader instrumentation didn't write anything.
// If you have nothing to say, don't say it here.
if (0 == total_words) {
return;
}
// The first word in the debug output buffer is the number of words that would have
// been written by the shader instrumentation, if there was enough room in the buffer we provided.
// The number of words actually written by the shaders is determined by the size of the buffer
// we provide via the descriptor. So, we process only the number of words that can fit in the
// buffer.
// Each "report" written by the shader instrumentation is considered a "record". This function
// is hard-coded to process only one record because it expects the buffer to be large enough to
// hold only one record. If there is a desire to process more than one record, this function needs
// to be modified to loop over records and the buffer size increased.
auto gpu_state = GetGpuValidationState();
std::string validation_message;
std::string stage_message;
std::string common_message;
std::string filename_message;
std::string source_message;
std::string vuid_msg;
VkShaderModule shader_module_handle = VK_NULL_HANDLE;
VkPipeline pipeline_handle = VK_NULL_HANDLE;
std::vector<unsigned int> pgm;
// The first record starts at this offset after the total_words.
const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset];
// Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
// by the instrumented shader.
auto it = gpu_state->shader_map.find(debug_record[kInstCommonOutShaderId]);
if (it != gpu_state->shader_map.end()) {
shader_module_handle = it->second.shader_module;
pipeline_handle = it->second.pipeline;
pgm = it->second.pgm;
}
GenerateValidationMessage(debug_record, validation_message, vuid_msg);
GenerateStageMessage(debug_record, stage_message);
GenerateCommonMessage(report_data, cb_node, debug_record, shader_module_handle, pipeline_handle, draw_index, common_message);
GenerateSourceMessages(pgm, debug_record, filename_message, source_message);
log_msg(GetReportData(), VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, HandleToUint64(queue),
vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(), stage_message.c_str(),
filename_message.c_str(), source_message.c_str());
// The debug record at word kInstCommonOutSize is the number of words in the record
// written by the shader. Clear the entire record plus the total_words word at the start.
const uint32_t words_to_clear = 1 + std::min(debug_record[kInstCommonOutSize], (uint32_t)kInstMaxOutCnt);
memset(debug_output_buffer, 0, sizeof(uint32_t) * words_to_clear);
}
// For the given command buffer, map its debug data buffers and read their contents for analysis.
void CoreChecks::ProcessInstrumentationBuffer(const layer_data *dev_data, VkQueue queue, GLOBAL_CB_NODE *cb_node) {
auto gpu_state = GetGpuValidationState();
if (cb_node && cb_node->hasDrawCmd && cb_node->gpu_buffer_list.size() > 0) {
VkResult result;
char *pData;
uint32_t draw_index = 0;
for (auto &buffer_info : cb_node->gpu_buffer_list) {
uint32_t block_offset = buffer_info.mem_block.offset;
uint32_t block_size = gpu_state->memory_manager->GetBlockSize();
uint32_t offset_to_data = 0;
const uint32_t map_align = std::max(1U, static_cast<uint32_t>(GetPDProperties()->limits.minMemoryMapAlignment));
// Adjust the offset to the alignment required for mapping.
block_offset = (block_offset / map_align) * map_align;
offset_to_data = buffer_info.mem_block.offset - block_offset;
block_size += offset_to_data;
result = GetDispatchTable()->MapMemory(cb_node->device, buffer_info.mem_block.memory, block_offset, block_size, 0,
(void **)&pData);
// Analyze debug output buffer
if (result == VK_SUCCESS) {
AnalyzeAndReportError(dev_data, cb_node, queue, draw_index, (uint32_t *)(pData + offset_to_data));
GetDispatchTable()->UnmapMemory(cb_node->device, buffer_info.mem_block.memory);
}
draw_index++;
}
}
}
// Submit a memory barrier on graphics queues.
// Lazy-create and record the needed command buffer.
void CoreChecks::SubmitBarrier(layer_data *dev_data, VkQueue queue) {
auto gpu_state = GetGpuValidationState();
const auto *dispatch_table = GetDispatchTable();
uint32_t queue_family_index = 0;
auto it = dev_data->queueMap.find(queue);
if (it != dev_data->queueMap.end()) {
queue_family_index = it->second.queueFamilyIndex;
}
// Pay attention only to queues that support graphics.
// This ensures that the command buffer pool is created so that it can be used on a graphics queue.
VkQueueFlags queue_flags = GetPhysicalDeviceState()->queue_family_properties[queue_family_index].queueFlags;
if (!(queue_flags & VK_QUEUE_GRAPHICS_BIT)) {
return;
}
// Lazy-allocate and record the command buffer.
if (gpu_state->barrier_command_buffer == VK_NULL_HANDLE) {
VkResult result;
VkCommandPoolCreateInfo pool_create_info = {};
pool_create_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
pool_create_info.queueFamilyIndex = queue_family_index;
result = dispatch_table->CreateCommandPool(GetDevice(), &pool_create_info, nullptr, &gpu_state->barrier_command_pool);
if (result != VK_SUCCESS) {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
"Unable to create command pool for barrier CB.");
gpu_state->barrier_command_pool = VK_NULL_HANDLE;
return;
}
VkCommandBufferAllocateInfo command_buffer_alloc_info = {};
command_buffer_alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
command_buffer_alloc_info.commandPool = gpu_state->barrier_command_pool;
command_buffer_alloc_info.commandBufferCount = 1;
command_buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
result =
dispatch_table->AllocateCommandBuffers(GetDevice(), &command_buffer_alloc_info, &gpu_state->barrier_command_buffer);
if (result != VK_SUCCESS) {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
"Unable to create barrier command buffer.");
dispatch_table->DestroyCommandPool(GetDevice(), gpu_state->barrier_command_pool, nullptr);
gpu_state->barrier_command_pool = VK_NULL_HANDLE;
gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
return;
}
// Hook up command buffer dispatch
*((const void **)gpu_state->barrier_command_buffer) = *(void **)(GetDevice());
// Record a global memory barrier to force availability of device memory operations to the host domain.
VkCommandBufferBeginInfo command_buffer_begin_info = {};
command_buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
result = dispatch_table->BeginCommandBuffer(gpu_state->barrier_command_buffer, &command_buffer_begin_info);
if (result == VK_SUCCESS) {
VkMemoryBarrier memory_barrier = {};
memory_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT;
dispatch_table->CmdPipelineBarrier(gpu_state->barrier_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_HOST_BIT, 0, 1, &memory_barrier, 0, nullptr, 0, nullptr);
dispatch_table->EndCommandBuffer(gpu_state->barrier_command_buffer);
}
}
if (gpu_state->barrier_command_buffer) {
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &gpu_state->barrier_command_buffer;
dispatch_table->QueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
}
}
// Issue a memory barrier to make GPU-written data available to host.
// Wait for the queue to complete execution.
// Check the debug buffers for all the command buffers that were submitted.
void CoreChecks::GpuPostCallQueueSubmit(layer_data *dev_data, VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits,
VkFence fence) {
auto gpu_state = GetGpuValidationState();
if (gpu_state->aborted) return;
SubmitBarrier(dev_data, queue);
dev_data->device_dispatch_table.QueueWaitIdle(queue);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
auto cb_node = GetCBNode(submit->pCommandBuffers[i]);
ProcessInstrumentationBuffer(dev_data, queue, cb_node);
for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
ProcessInstrumentationBuffer(dev_data, queue, secondaryCmdBuffer);
}
}
}
}
void CoreChecks::GpuAllocateValidationResources(layer_data *dev_data, const VkCommandBuffer cmd_buffer,
const VkPipelineBindPoint bind_point) {
VkResult result;
if (!(GetEnables()->gpu_validation)) return;
auto gpu_state = GetGpuValidationState();
if (gpu_state->aborted) return;
std::vector<VkDescriptorSet> desc_sets;
VkDescriptorPool desc_pool = VK_NULL_HANDLE;
result = gpu_state->desc_set_manager->GetDescriptorSets(1, &desc_pool, &desc_sets);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
"Unable to allocate descriptor sets. Device could become unstable.");
gpu_state->aborted = true;
return;
}
VkDescriptorBufferInfo desc_buffer_info = {};
desc_buffer_info.range = gpu_state->memory_manager->GetBlockSize();
auto cb_node = GetCBNode(cmd_buffer);
if (!cb_node) {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
"Unrecognized command buffer");
gpu_state->aborted = true;
return;
}
GpuDeviceMemoryBlock block = {};
result = gpu_state->memory_manager->GetBlock(&block);
if (result != VK_SUCCESS) {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
"Unable to allocate device memory. Device could become unstable.");
gpu_state->aborted = true;
return;
}
// Record buffer and memory info in CB state tracking
cb_node->gpu_buffer_list.emplace_back(block, desc_sets[0], desc_pool);
// Write the descriptor
desc_buffer_info.buffer = block.buffer;
desc_buffer_info.offset = block.offset;
VkWriteDescriptorSet desc_write = {};
desc_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
desc_write.descriptorCount = 1;
desc_write.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_write.pBufferInfo = &desc_buffer_info;
desc_write.dstSet = desc_sets[0];
GetDispatchTable()->UpdateDescriptorSets(GetDevice(), 1, &desc_write, 0, NULL);
auto iter = cb_node->lastBound.find(VK_PIPELINE_BIND_POINT_GRAPHICS); // find() allows read-only access to cb_state
if (iter != cb_node->lastBound.end()) {
auto pipeline_state = iter->second.pipeline_state;
if (pipeline_state && (pipeline_state->pipeline_layout.set_layouts.size() <= gpu_state->desc_set_bind_index)) {
GetDispatchTable()->CmdBindDescriptorSets(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeline_state->pipeline_layout.layout, gpu_state->desc_set_bind_index, 1,
desc_sets.data(), 0, nullptr);
}
} else {
ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
"Unable to find pipeline state");
gpu_state->aborted = true;
return;
}
}