/*
* Copyright 2012, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Assert.h"
#include "Log.h"
#include "RSTransforms.h"
#include "RSUtils.h"
#include "bcc/Config.h"
#include "bcinfo/MetadataExtractor.h"
#include "slang_version.h"
#include <cstdlib>
#include <functional>
#include <unordered_set>
#include <llvm/IR/DerivedTypes.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/MDBuilder.h>
#include <llvm/IR/Module.h>
#include <llvm/Pass.h>
#include <llvm/Support/raw_ostream.h>
#include <llvm/IR/DataLayout.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Type.h>
#include <llvm/Transforms/Utils/BasicBlockUtils.h>
#ifndef __DISABLE_ASSERTS
// Only used in bccAssert()
const int kNumExpandedForeachParams = 4;
const int kNumExpandedReduceAccumulatorParams = 4;
#endif
const char kRenderScriptTBAARootName[] = "RenderScript Distinct TBAA";
const char kRenderScriptTBAANodeName[] = "RenderScript TBAA";
using namespace bcc;
namespace {
static const bool gEnableRsTbaa = true;
/* RSKernelExpandPass
*
* This pass generates functions used to implement calls via
* rsForEach(), "foreach_<NAME>", or "reduce_<NAME>". We create an
* inner loop for the function to be invoked over the appropriate data
* cells of the input/output allocations (adjusting other relevant
* parameters as we go). We support doing this for any forEach or
* reduce style compute kernels.
*
* In the case of a foreach kernel or a simple reduction kernel, the
* new function name is the original function name "<NAME>" followed
* by ".expand" -- "<NAME>.expand".
*
* In the case of a general reduction kernel, the kernel's accumulator
* function is the one transformed, and the new function name is the
* original accumulator function name "<ACCUMFN>" followed by
* ".expand" -- "<ACCUMFN>.expand". Using the name "<ACCUMFN>.expand"
* for the function generated from the accumulator should not
* introduce any possibility for name clashes today: The accumulator
* function <ACCUMFN> must be static, so it cannot also serve as a
* foreach kernel; and the code for <ACCUMFN>.expand depends only on
* <ACCUMFN>, not on any other properties of the reduction kernel, so
* any reduction kernels that share the accumulator <ACCUMFN> can
* share <ACCUMFN>.expand also.
*
* Note that this pass does not delete the original function <NAME> or
* <ACCUMFN>. However, if it is inlined into the newly-generated
* function and not otherwise referenced, then a subsequent pass may
* delete it.
*/
class RSKernelExpandPass : public llvm::ModulePass {
public:
static char ID;
private:
static const size_t RS_KERNEL_INPUT_LIMIT = 8; // see frameworks/base/libs/rs/cpu_ref/rsCpuCoreRuntime.h
typedef std::unordered_set<llvm::Function *> FunctionSet;
enum RsLaunchDimensionsField {
RsLaunchDimensionsFieldX,
RsLaunchDimensionsFieldY,
RsLaunchDimensionsFieldZ,
RsLaunchDimensionsFieldLod,
RsLaunchDimensionsFieldFace,
RsLaunchDimensionsFieldArray,
RsLaunchDimensionsFieldCount
};
enum RsExpandKernelDriverInfoPfxField {
RsExpandKernelDriverInfoPfxFieldInPtr,
RsExpandKernelDriverInfoPfxFieldInStride,
RsExpandKernelDriverInfoPfxFieldInLen,
RsExpandKernelDriverInfoPfxFieldOutPtr,
RsExpandKernelDriverInfoPfxFieldOutStride,
RsExpandKernelDriverInfoPfxFieldOutLen,
RsExpandKernelDriverInfoPfxFieldDim,
RsExpandKernelDriverInfoPfxFieldCurrent,
RsExpandKernelDriverInfoPfxFieldUsr,
RsExpandKernelDriverInfoPfxFieldUsLenr,
RsExpandKernelDriverInfoPfxFieldCount
};
llvm::Module *Module;
llvm::LLVMContext *Context;
/*
* Pointers to LLVM type information for the the function signatures
* for expanded functions. These must be re-calculated for each module
* the pass is run on.
*/
llvm::FunctionType *ExpandedForEachType;
llvm::Type *RsExpandKernelDriverInfoPfxTy;
// Initialized when we begin to process each Module
bool mStructExplicitlyPaddedBySlang;
uint32_t mExportForEachCount;
const char **mExportForEachNameList;
const uint32_t *mExportForEachSignatureList;
// Turns on optimization of allocation stride values.
bool mEnableStepOpt;
uint32_t getRootSignature(llvm::Function *Function) {
const llvm::NamedMDNode *ExportForEachMetadata =
Module->getNamedMetadata("#rs_export_foreach");
if (!ExportForEachMetadata) {
llvm::SmallVector<llvm::Type*, 8> RootArgTys;
for (llvm::Function::arg_iterator B = Function->arg_begin(),
E = Function->arg_end();
B != E;
++B) {
RootArgTys.push_back(B->getType());
}
// For pre-ICS bitcode, we may not have signature information. In that
// case, we use the size of the RootArgTys to select the number of
// arguments.
return (1 << RootArgTys.size()) - 1;
}
if (ExportForEachMetadata->getNumOperands() == 0) {
return 0;
}
bccAssert(ExportForEachMetadata->getNumOperands() > 0);
// We only handle the case for legacy root() functions here, so this is
// hard-coded to look at only the first such function.
llvm::MDNode *SigNode = ExportForEachMetadata->getOperand(0);
if (SigNode != nullptr && SigNode->getNumOperands() == 1) {
llvm::Metadata *SigMD = SigNode->getOperand(0);
if (llvm::MDString *SigS = llvm::dyn_cast<llvm::MDString>(SigMD)) {
llvm::StringRef SigString = SigS->getString();
uint32_t Signature = 0;
if (SigString.getAsInteger(10, Signature)) {
ALOGE("Non-integer signature value '%s'", SigString.str().c_str());
return 0;
}
return Signature;
}
}
return 0;
}
bool isStepOptSupported(llvm::Type *AllocType) {
llvm::PointerType *PT = llvm::dyn_cast<llvm::PointerType>(AllocType);
llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*Context);
if (mEnableStepOpt) {
return false;
}
if (AllocType == VoidPtrTy) {
return false;
}
if (!PT) {
return false;
}
// remaining conditions are 64-bit only
if (VoidPtrTy->getPrimitiveSizeInBits() == 32) {
return true;
}
// coerce suggests an upconverted struct type, which we can't support
if (AllocType->getStructName().find("coerce") != llvm::StringRef::npos) {
return false;
}
// 2xi64 and i128 suggest an upconverted struct type, which are also unsupported
llvm::Type *V2xi64Ty = llvm::VectorType::get(llvm::Type::getInt64Ty(*Context), 2);
llvm::Type *Int128Ty = llvm::Type::getIntNTy(*Context, 128);
if (AllocType == V2xi64Ty || AllocType == Int128Ty) {
return false;
}
return true;
}
// Get the actual value we should use to step through an allocation.
//
// Normally the value we use to step through an allocation is given to us by
// the driver. However, for certain primitive data types, we can derive an
// integer constant for the step value. We use this integer constant whenever
// possible to allow further compiler optimizations to take place.
//
// DL - Target Data size/layout information.
// T - Type of allocation (should be a pointer).
// OrigStep - Original step increment (root.expand() input from driver).
llvm::Value *getStepValue(llvm::DataLayout *DL, llvm::Type *AllocType,
llvm::Value *OrigStep) {
bccAssert(DL);
bccAssert(AllocType);
bccAssert(OrigStep);
llvm::PointerType *PT = llvm::dyn_cast<llvm::PointerType>(AllocType);
if (isStepOptSupported(AllocType)) {
llvm::Type *ET = PT->getElementType();
uint64_t ETSize = DL->getTypeAllocSize(ET);
llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*Context);
return llvm::ConstantInt::get(Int32Ty, ETSize);
} else {
return OrigStep;
}
}
/// Builds the types required by the pass for the given context.
void buildTypes(void) {
// Create the RsLaunchDimensionsTy and RsExpandKernelDriverInfoPfxTy structs.
llvm::Type *Int8Ty = llvm::Type::getInt8Ty(*Context);
llvm::Type *Int8PtrTy = Int8Ty->getPointerTo();
llvm::Type *Int8PtrArrayInputLimitTy = llvm::ArrayType::get(Int8PtrTy, RS_KERNEL_INPUT_LIMIT);
llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*Context);
llvm::Type *Int32ArrayInputLimitTy = llvm::ArrayType::get(Int32Ty, RS_KERNEL_INPUT_LIMIT);
llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*Context);
llvm::Type *Int32Array4Ty = llvm::ArrayType::get(Int32Ty, 4);
/* Defined in frameworks/base/libs/rs/cpu_ref/rsCpuCore.h:
*
* struct RsLaunchDimensions {
* uint32_t x;
* uint32_t y;
* uint32_t z;
* uint32_t lod;
* uint32_t face;
* uint32_t array[4];
* };
*/
llvm::SmallVector<llvm::Type*, RsLaunchDimensionsFieldCount> RsLaunchDimensionsTypes;
RsLaunchDimensionsTypes.push_back(Int32Ty); // uint32_t x
RsLaunchDimensionsTypes.push_back(Int32Ty); // uint32_t y
RsLaunchDimensionsTypes.push_back(Int32Ty); // uint32_t z
RsLaunchDimensionsTypes.push_back(Int32Ty); // uint32_t lod
RsLaunchDimensionsTypes.push_back(Int32Ty); // uint32_t face
RsLaunchDimensionsTypes.push_back(Int32Array4Ty); // uint32_t array[4]
llvm::StructType *RsLaunchDimensionsTy =
llvm::StructType::create(RsLaunchDimensionsTypes, "RsLaunchDimensions");
/* Defined as the beginning of RsExpandKernelDriverInfo in frameworks/base/libs/rs/cpu_ref/rsCpuCoreRuntime.h:
*
* struct RsExpandKernelDriverInfoPfx {
* const uint8_t *inPtr[RS_KERNEL_INPUT_LIMIT];
* uint32_t inStride[RS_KERNEL_INPUT_LIMIT];
* uint32_t inLen;
*
* uint8_t *outPtr[RS_KERNEL_INPUT_LIMIT];
* uint32_t outStride[RS_KERNEL_INPUT_LIMIT];
* uint32_t outLen;
*
* // Dimension of the launch
* RsLaunchDimensions dim;
*
* // The walking iterator of the launch
* RsLaunchDimensions current;
*
* const void *usr;
* uint32_t usrLen;
*
* // Items below this line are not used by the compiler and can be change in the driver.
* // So the compiler must assume there are an unknown number of fields of unknown type
* // beginning here.
* };
*
* The name "RsExpandKernelDriverInfoPfx" is known to RSInvariantPass (RSInvariant.cpp).
*/
llvm::SmallVector<llvm::Type*, RsExpandKernelDriverInfoPfxFieldCount> RsExpandKernelDriverInfoPfxTypes;
RsExpandKernelDriverInfoPfxTypes.push_back(Int8PtrArrayInputLimitTy); // const uint8_t *inPtr[RS_KERNEL_INPUT_LIMIT]
RsExpandKernelDriverInfoPfxTypes.push_back(Int32ArrayInputLimitTy); // uint32_t inStride[RS_KERNEL_INPUT_LIMIT]
RsExpandKernelDriverInfoPfxTypes.push_back(Int32Ty); // uint32_t inLen
RsExpandKernelDriverInfoPfxTypes.push_back(Int8PtrArrayInputLimitTy); // uint8_t *outPtr[RS_KERNEL_INPUT_LIMIT]
RsExpandKernelDriverInfoPfxTypes.push_back(Int32ArrayInputLimitTy); // uint32_t outStride[RS_KERNEL_INPUT_LIMIT]
RsExpandKernelDriverInfoPfxTypes.push_back(Int32Ty); // uint32_t outLen
RsExpandKernelDriverInfoPfxTypes.push_back(RsLaunchDimensionsTy); // RsLaunchDimensions dim
RsExpandKernelDriverInfoPfxTypes.push_back(RsLaunchDimensionsTy); // RsLaunchDimensions current
RsExpandKernelDriverInfoPfxTypes.push_back(VoidPtrTy); // const void *usr
RsExpandKernelDriverInfoPfxTypes.push_back(Int32Ty); // uint32_t usrLen
RsExpandKernelDriverInfoPfxTy =
llvm::StructType::create(RsExpandKernelDriverInfoPfxTypes, "RsExpandKernelDriverInfoPfx");
// Create the function type for expanded kernels.
llvm::Type *VoidTy = llvm::Type::getVoidTy(*Context);
llvm::Type *RsExpandKernelDriverInfoPfxPtrTy = RsExpandKernelDriverInfoPfxTy->getPointerTo();
// void (const RsExpandKernelDriverInfoPfxTy *p, uint32_t x1, uint32_t x2, uint32_t outstep)
ExpandedForEachType = llvm::FunctionType::get(VoidTy,
{RsExpandKernelDriverInfoPfxPtrTy, Int32Ty, Int32Ty, Int32Ty}, false);
}
/// @brief Create skeleton of the expanded foreach kernel.
///
/// This creates a function with the following signature:
///
/// void (const RsForEachStubParamStruct *p, uint32_t x1, uint32_t x2,
/// uint32_t outstep)
///
llvm::Function *createEmptyExpandedForEachKernel(llvm::StringRef OldName) {
llvm::Function *ExpandedFunction =
llvm::Function::Create(ExpandedForEachType,
llvm::GlobalValue::ExternalLinkage,
OldName + ".expand", Module);
bccAssert(ExpandedFunction->arg_size() == kNumExpandedForeachParams);
llvm::Function::arg_iterator AI = ExpandedFunction->arg_begin();
(AI++)->setName("p");
(AI++)->setName("x1");
(AI++)->setName("x2");
(AI++)->setName("arg_outstep");
llvm::BasicBlock *Begin = llvm::BasicBlock::Create(*Context, "Begin",
ExpandedFunction);
llvm::IRBuilder<> Builder(Begin);
Builder.CreateRetVoid();
return ExpandedFunction;
}
// Create skeleton of a general reduce kernel's expanded accumulator.
//
// This creates a function with the following signature:
//
// void @func.expand(%RsExpandKernelDriverInfoPfx* nocapture %p,
// i32 %x1, i32 %x2, accumType* nocapture %accum)
//
llvm::Function *createEmptyExpandedReduceAccumulator(llvm::StringRef OldName,
llvm::Type *AccumArgTy) {
llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*Context);
llvm::Type *VoidTy = llvm::Type::getVoidTy(*Context);
llvm::FunctionType *ExpandedReduceAccumulatorType =
llvm::FunctionType::get(VoidTy,
{RsExpandKernelDriverInfoPfxTy->getPointerTo(),
Int32Ty, Int32Ty, AccumArgTy}, false);
llvm::Function *FnExpandedAccumulator =
llvm::Function::Create(ExpandedReduceAccumulatorType,
llvm::GlobalValue::ExternalLinkage,
OldName + ".expand", Module);
bccAssert(FnExpandedAccumulator->arg_size() == kNumExpandedReduceAccumulatorParams);
llvm::Function::arg_iterator AI = FnExpandedAccumulator->arg_begin();
using llvm::Attribute;
llvm::Argument *Arg_p = &(*AI++);
Arg_p->setName("p");
Arg_p->addAttr(llvm::AttributeSet::get(*Context, Arg_p->getArgNo() + 1,
llvm::makeArrayRef(Attribute::NoCapture)));
llvm::Argument *Arg_x1 = &(*AI++);
Arg_x1->setName("x1");
llvm::Argument *Arg_x2 = &(*AI++);
Arg_x2->setName("x2");
llvm::Argument *Arg_accum = &(*AI++);
Arg_accum->setName("accum");
Arg_accum->addAttr(llvm::AttributeSet::get(*Context, Arg_accum->getArgNo() + 1,
llvm::makeArrayRef(Attribute::NoCapture)));
llvm::BasicBlock *Begin = llvm::BasicBlock::Create(*Context, "Begin",
FnExpandedAccumulator);
llvm::IRBuilder<> Builder(Begin);
Builder.CreateRetVoid();
return FnExpandedAccumulator;
}
/// @brief Create an empty loop
///
/// Create a loop of the form:
///
/// for (i = LowerBound; i < UpperBound; i++)
/// ;
///
/// After the loop has been created, the builder is set such that
/// instructions can be added to the loop body.
///
/// @param Builder The builder to use to build this loop. The current
/// position of the builder is the position the loop
/// will be inserted.
/// @param LowerBound The first value of the loop iterator
/// @param UpperBound The maximal value of the loop iterator
/// @param LoopIV A reference that will be set to the loop iterator.
/// @return The BasicBlock that will be executed after the loop.
llvm::BasicBlock *createLoop(llvm::IRBuilder<> &Builder,
llvm::Value *LowerBound,
llvm::Value *UpperBound,
llvm::Value **LoopIV) {
bccAssert(LowerBound->getType() == UpperBound->getType());
llvm::BasicBlock *CondBB, *AfterBB, *HeaderBB;
llvm::Value *Cond, *IVNext, *IV, *IVVar;
CondBB = Builder.GetInsertBlock();
AfterBB = llvm::SplitBlock(CondBB, &*Builder.GetInsertPoint(), nullptr, nullptr);
HeaderBB = llvm::BasicBlock::Create(*Context, "Loop", CondBB->getParent());
CondBB->getTerminator()->eraseFromParent();
Builder.SetInsertPoint(CondBB);
// decltype(LowerBound) *ivvar = alloca(sizeof(int))
// *ivvar = LowerBound
IVVar = Builder.CreateAlloca(LowerBound->getType(), nullptr, BCC_INDEX_VAR_NAME);
Builder.CreateStore(LowerBound, IVVar);
// if (LowerBound < Upperbound)
// goto LoopHeader
// else
// goto AfterBB
Cond = Builder.CreateICmpULT(LowerBound, UpperBound);
Builder.CreateCondBr(Cond, HeaderBB, AfterBB);
// LoopHeader:
// iv = *ivvar
// <insertion point here>
// iv.next = iv + 1
// *ivvar = iv.next
// if (iv.next < Upperbound)
// goto LoopHeader
// else
// goto AfterBB
// AfterBB:
Builder.SetInsertPoint(HeaderBB);
IV = Builder.CreateLoad(IVVar, "X");
IVNext = Builder.CreateNUWAdd(IV, Builder.getInt32(1));
Builder.CreateStore(IVNext, IVVar);
Cond = Builder.CreateICmpULT(IVNext, UpperBound);
Builder.CreateCondBr(Cond, HeaderBB, AfterBB);
AfterBB->setName("Exit");
Builder.SetInsertPoint(llvm::cast<llvm::Instruction>(IVNext));
// Record information about this loop.
*LoopIV = IV;
return AfterBB;
}
// Finish building the outgoing argument list for calling a ForEach-able function.
//
// ArgVector - on input, the non-special arguments
// on output, the non-special arguments combined with the special arguments
// from SpecialArgVector
// SpecialArgVector - special arguments (from ExpandSpecialArguments())
// SpecialArgContextIdx - return value of ExpandSpecialArguments()
// (position of context argument in SpecialArgVector)
// CalleeFunction - the ForEach-able function being called
// Builder - for inserting code into the caller function
template<unsigned int ArgVectorLen, unsigned int SpecialArgVectorLen>
void finishArgList( llvm::SmallVector<llvm::Value *, ArgVectorLen> &ArgVector,
const llvm::SmallVector<llvm::Value *, SpecialArgVectorLen> &SpecialArgVector,
const int SpecialArgContextIdx,
const llvm::Function &CalleeFunction,
llvm::IRBuilder<> &CallerBuilder) {
/* The context argument (if any) is a pointer to an opaque user-visible type that differs from
* the RsExpandKernelDriverInfoPfx type used in the function we are generating (although the
* two types represent the same thing). Therefore, we must introduce a pointer cast when
* generating a call to the kernel function.
*/
const int ArgContextIdx =
SpecialArgContextIdx >= 0 ? (ArgVector.size() + SpecialArgContextIdx) : SpecialArgContextIdx;
ArgVector.append(SpecialArgVector.begin(), SpecialArgVector.end());
if (ArgContextIdx >= 0) {
llvm::Type *ContextArgType = nullptr;
int ArgIdx = ArgContextIdx;
for (const auto &Arg : CalleeFunction.getArgumentList()) {
if (!ArgIdx--) {
ContextArgType = Arg.getType();
break;
}
}
bccAssert(ContextArgType);
ArgVector[ArgContextIdx] = CallerBuilder.CreatePointerCast(ArgVector[ArgContextIdx], ContextArgType);
}
}
// GEPHelper() returns a SmallVector of values suitable for passing
// to IRBuilder::CreateGEP(), and SmallGEPIndices is a typedef for
// the returned data type. It is sized so that the SmallVector
// returned by GEPHelper() never needs to do a heap allocation for
// any list of GEP indices it encounters in the code.
typedef llvm::SmallVector<llvm::Value *, 3> SmallGEPIndices;
// Helper for turning a list of constant integer GEP indices into a
// SmallVector of llvm::Value*. The return value is suitable for
// passing to a GetElementPtrInst constructor or IRBuilder::CreateGEP().
//
// Inputs:
// I32Args should be integers which represent the index arguments
// to a GEP instruction.
//
// Returns:
// Returns a SmallVector of ConstantInts.
SmallGEPIndices GEPHelper(const std::initializer_list<int32_t> I32Args) {
SmallGEPIndices Out(I32Args.size());
llvm::IntegerType *I32Ty = llvm::Type::getInt32Ty(*Context);
std::transform(I32Args.begin(), I32Args.end(), Out.begin(),
[I32Ty](int32_t Arg) { return llvm::ConstantInt::get(I32Ty, Arg); });
return Out;
}
public:
explicit RSKernelExpandPass(bool pEnableStepOpt = true)
: ModulePass(ID), Module(nullptr), Context(nullptr),
mEnableStepOpt(pEnableStepOpt) {
}
virtual void getAnalysisUsage(llvm::AnalysisUsage &AU) const override {
// This pass does not use any other analysis passes, but it does
// add/wrap the existing functions in the module (thus altering the CFG).
}
// Build contribution to outgoing argument list for calling a
// ForEach-able function or a general reduction accumulator
// function, based on the special parameters of that function.
//
// Signature - metadata bits for the signature of the callee
// X, Arg_p - values derived directly from expanded function,
// suitable for computing arguments for the callee
// CalleeArgs - contribution is accumulated here
// Bump - invoked once for each contributed outgoing argument
// LoopHeaderInsertionPoint - an Instruction in the loop header, before which
// this function can insert loop-invariant loads
//
// Return value is the (zero-based) position of the context (Arg_p)
// argument in the CalleeArgs vector, or a negative value if the
// context argument is not placed in the CalleeArgs vector.
int ExpandSpecialArguments(uint32_t Signature,
llvm::Value *X,
llvm::Value *Arg_p,
llvm::IRBuilder<> &Builder,
llvm::SmallVector<llvm::Value*, 8> &CalleeArgs,
const std::function<void ()> &Bump,
llvm::Instruction *LoopHeaderInsertionPoint) {
bccAssert(CalleeArgs.empty());
int Return = -1;
if (bcinfo::MetadataExtractor::hasForEachSignatureCtxt(Signature)) {
CalleeArgs.push_back(Arg_p);
Bump();
Return = CalleeArgs.size() - 1;
}
if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) {
CalleeArgs.push_back(X);
Bump();
}
if (bcinfo::MetadataExtractor::hasForEachSignatureY(Signature) ||
bcinfo::MetadataExtractor::hasForEachSignatureZ(Signature)) {
bccAssert(LoopHeaderInsertionPoint);
// Y and Z are loop invariant, so they can be hoisted out of the
// loop. Set the IRBuilder insertion point to the loop header.
auto OldInsertionPoint = Builder.saveIP();
Builder.SetInsertPoint(LoopHeaderInsertionPoint);
if (bcinfo::MetadataExtractor::hasForEachSignatureY(Signature)) {
SmallGEPIndices YValueGEP(GEPHelper({0, RsExpandKernelDriverInfoPfxFieldCurrent,
RsLaunchDimensionsFieldY}));
llvm::Value *YAddr = Builder.CreateInBoundsGEP(Arg_p, YValueGEP, "Y.gep");
CalleeArgs.push_back(Builder.CreateLoad(YAddr, "Y"));
Bump();
}
if (bcinfo::MetadataExtractor::hasForEachSignatureZ(Signature)) {
SmallGEPIndices ZValueGEP(GEPHelper({0, RsExpandKernelDriverInfoPfxFieldCurrent,
RsLaunchDimensionsFieldZ}));
llvm::Value *ZAddr = Builder.CreateInBoundsGEP(Arg_p, ZValueGEP, "Z.gep");
CalleeArgs.push_back(Builder.CreateLoad(ZAddr, "Z"));
Bump();
}
Builder.restoreIP(OldInsertionPoint);
}
return Return;
}
// Generate loop-invariant input processing setup code for an expanded
// ForEach-able function or an expanded general reduction accumulator
// function.
//
// LoopHeader - block at the end of which the setup code will be inserted
// Arg_p - RSKernelDriverInfo pointer passed to the expanded function
// TBAAPointer - metadata for marking loads of pointer values out of RSKernelDriverInfo
// ArgIter - iterator pointing to first input of the UNexpanded function
// NumInputs - number of inputs (NOT number of ARGUMENTS)
//
// InTypes[] - this function saves input type, they will be used in ExpandInputsBody().
// InBufPtrs[] - this function sets each array element to point to the first cell / byte
// (byte for x86, cell for other platforms) of the corresponding input allocation
// InStructTempSlots[] - this function sets each array element either to nullptr
// or to the result of an alloca (for the case where the
// calling convention dictates that a value must be passed
// by reference, and so we need a stacked temporary to hold
// a copy of that value)
void ExpandInputsLoopInvariant(llvm::IRBuilder<> &Builder, llvm::BasicBlock *LoopHeader,
llvm::Value *Arg_p,
llvm::MDNode *TBAAPointer,
llvm::Function::arg_iterator ArgIter,
const size_t NumInputs,
llvm::SmallVectorImpl<llvm::Type *> &InTypes,
llvm::SmallVectorImpl<llvm::Value *> &InBufPtrs,
llvm::SmallVectorImpl<llvm::Value *> &InStructTempSlots) {
bccAssert(NumInputs <= RS_KERNEL_INPUT_LIMIT);
// Extract information about input slots. The work done
// here is loop-invariant, so we can hoist the operations out of the loop.
auto OldInsertionPoint = Builder.saveIP();
Builder.SetInsertPoint(LoopHeader->getTerminator());
for (size_t InputIndex = 0; InputIndex < NumInputs; ++InputIndex, ArgIter++) {
llvm::Type *InType = ArgIter->getType();
/*
* AArch64 calling conventions dictate that structs of sufficient size
* get passed by pointer instead of passed by value. This, combined
* with the fact that we don't allow kernels to operate on pointer
* data means that if we see a kernel with a pointer parameter we know
* that it is a struct input that has been promoted. As such we don't
* need to convert its type to a pointer. Later we will need to know
* to create a temporary copy on the stack, so we save this information
* in InStructTempSlots.
*/
if (auto PtrType = llvm::dyn_cast<llvm::PointerType>(InType)) {
llvm::Type *ElementType = PtrType->getElementType();
InStructTempSlots.push_back(Builder.CreateAlloca(ElementType, nullptr,
"input_struct_slot"));
} else {
InType = InType->getPointerTo();
InStructTempSlots.push_back(nullptr);
}
SmallGEPIndices InBufPtrGEP(GEPHelper({0, RsExpandKernelDriverInfoPfxFieldInPtr,
static_cast<int32_t>(InputIndex)}));
llvm::Value *InBufPtrAddr = Builder.CreateInBoundsGEP(Arg_p, InBufPtrGEP, "input_buf.gep");
llvm::LoadInst *InBufPtr = Builder.CreateLoad(InBufPtrAddr, "input_buf");
llvm::Value *CastInBufPtr = nullptr;
if (mStructExplicitlyPaddedBySlang || (Module->getTargetTriple() != DEFAULT_X86_TRIPLE_STRING)) {
CastInBufPtr = Builder.CreatePointerCast(InBufPtr, InType, "casted_in");
} else {
// The disagreement between module and x86 target machine datalayout
// causes mismatched input/output data offset between slang reflected
// code and bcc codegen for GetElementPtr. To solve this issue, skip the
// cast to InType and leave CastInBufPtr as an int8_t*. The buffer is
// later indexed with an explicit byte offset computed based on
// X86_CUSTOM_DL_STRING and then bitcast to actual input type.
CastInBufPtr = InBufPtr;
}
if (gEnableRsTbaa) {
InBufPtr->setMetadata("tbaa", TBAAPointer);
}
InTypes.push_back(InType);
InBufPtrs.push_back(CastInBufPtr);
}
Builder.restoreIP(OldInsertionPoint);
}
// Generate loop-varying input processing code for an expanded ForEach-able function
// or an expanded general reduction accumulator function. Also, for the call to the
// UNexpanded function, collect the portion of the argument list corresponding to the
// inputs.
//
// Arg_x1 - first X coordinate to be processed by the expanded function
// TBAAAllocation - metadata for marking loads of input values out of allocations
// NumInputs -- number of inputs (NOT number of ARGUMENTS)
// InTypes[] - this function uses the saved input types in ExpandInputsLoopInvariant()
// to convert the pointer of byte InPtr to its real type.
// InBufPtrs[] - this function consumes the information produced by ExpandInputsLoopInvariant()
// InStructTempSlots[] - this function consumes the information produced by ExpandInputsLoopInvariant()
// IndVar - value of loop induction variable (X coordinate) for a given loop iteration
//
// RootArgs - this function sets this to the list of outgoing argument values corresponding
// to the inputs
void ExpandInputsBody(llvm::IRBuilder<> &Builder,
llvm::Value *Arg_x1,
llvm::MDNode *TBAAAllocation,
const size_t NumInputs,
const llvm::SmallVectorImpl<llvm::Type *> &InTypes,
const llvm::SmallVectorImpl<llvm::Value *> &InBufPtrs,
const llvm::SmallVectorImpl<llvm::Value *> &InStructTempSlots,
llvm::Value *IndVar,
llvm::SmallVectorImpl<llvm::Value *> &RootArgs) {
llvm::Value *Offset = Builder.CreateSub(IndVar, Arg_x1);
llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*Context);
for (size_t Index = 0; Index < NumInputs; ++Index) {
llvm::Value *InPtr = nullptr;
if (mStructExplicitlyPaddedBySlang || (Module->getTargetTriple() != DEFAULT_X86_TRIPLE_STRING)) {
InPtr = Builder.CreateInBoundsGEP(InBufPtrs[Index], Offset);
} else {
// Treat x86 input buffer as byte[], get indexed pointer with explicit
// byte offset computed using a datalayout based on
// X86_CUSTOM_DL_STRING, then bitcast it to actual input type.
llvm::DataLayout DL(X86_CUSTOM_DL_STRING);
llvm::Type *InTy = InTypes[Index];
uint64_t InStep = DL.getTypeAllocSize(InTy->getPointerElementType());
llvm::Value *OffsetInBytes = Builder.CreateMul(Offset, llvm::ConstantInt::get(Int32Ty, InStep));
InPtr = Builder.CreateInBoundsGEP(InBufPtrs[Index], OffsetInBytes);
InPtr = Builder.CreatePointerCast(InPtr, InTy);
}
llvm::Value *Input;
llvm::LoadInst *InputLoad = Builder.CreateLoad(InPtr, "input");
if (gEnableRsTbaa) {
InputLoad->setMetadata("tbaa", TBAAAllocation);
}
if (llvm::Value *TemporarySlot = InStructTempSlots[Index]) {
// Pass a pointer to a temporary on the stack, rather than
// passing a pointer to the original value. We do not want
// the kernel to potentially modify the input data.
// Note: don't annotate with TBAA, since the kernel might
// have its own TBAA annotations for the pointer argument.
Builder.CreateStore(InputLoad, TemporarySlot);
Input = TemporarySlot;
} else {
Input = InputLoad;
}
RootArgs.push_back(Input);
}
}
/* Performs the actual optimization on a selected function. On success, the
* Module will contain a new function of the name "<NAME>.expand" that
* invokes <NAME>() in a loop with the appropriate parameters.
*/
bool ExpandOldStyleForEach(llvm::Function *Function, uint32_t Signature) {
ALOGV("Expanding ForEach-able Function %s",
Function->getName().str().c_str());
if (!Signature) {
Signature = getRootSignature(Function);
if (!Signature) {
// We couldn't determine how to expand this function based on its
// function signature.
return false;
}
}
llvm::DataLayout DL(Module);
if (!mStructExplicitlyPaddedBySlang && (Module->getTargetTriple() == DEFAULT_X86_TRIPLE_STRING)) {
DL.reset(X86_CUSTOM_DL_STRING);
}
llvm::Function *ExpandedFunction =
createEmptyExpandedForEachKernel(Function->getName());
/*
* Extract the expanded function's parameters. It is guaranteed by
* createEmptyExpandedForEachKernel that there will be four parameters.
*/
bccAssert(ExpandedFunction->arg_size() == kNumExpandedForeachParams);
llvm::Function::arg_iterator ExpandedFunctionArgIter =
ExpandedFunction->arg_begin();
llvm::Value *Arg_p = &*(ExpandedFunctionArgIter++);
llvm::Value *Arg_x1 = &*(ExpandedFunctionArgIter++);
llvm::Value *Arg_x2 = &*(ExpandedFunctionArgIter++);
llvm::Value *Arg_outstep = &*(ExpandedFunctionArgIter);
llvm::Value *InStep = nullptr;
llvm::Value *OutStep = nullptr;
// Construct the actual function body.
llvm::IRBuilder<> Builder(&*ExpandedFunction->getEntryBlock().begin());
// Collect and construct the arguments for the kernel().
// Note that we load any loop-invariant arguments before entering the Loop.
llvm::Function::arg_iterator FunctionArgIter = Function->arg_begin();
llvm::Type *InTy = nullptr;
llvm::Value *InBufPtr = nullptr;
if (bcinfo::MetadataExtractor::hasForEachSignatureIn(Signature)) {
SmallGEPIndices InStepGEP(GEPHelper({0, RsExpandKernelDriverInfoPfxFieldInStride, 0}));
llvm::LoadInst *InStepArg = Builder.CreateLoad(
Builder.CreateInBoundsGEP(Arg_p, InStepGEP, "instep_addr.gep"), "instep_addr");
InTy = (FunctionArgIter++)->getType();
InStep = getStepValue(&DL, InTy, InStepArg);
InStep->setName("instep");
SmallGEPIndices InputAddrGEP(GEPHelper({0, RsExpandKernelDriverInfoPfxFieldInPtr, 0}));
InBufPtr = Builder.CreateLoad(
Builder.CreateInBoundsGEP(Arg_p, InputAddrGEP, "input_buf.gep"), "input_buf");
}
llvm::Type *OutTy = nullptr;
llvm::Value *OutBasePtr = nullptr;
if (bcinfo::MetadataExtractor::hasForEachSignatureOut(Signature)) {
OutTy = (FunctionArgIter++)->getType();
OutStep = getStepValue(&DL, OutTy, Arg_outstep);
OutStep->setName("outstep");
SmallGEPIndices OutBaseGEP(GEPHelper({0, RsExpandKernelDriverInfoPfxFieldOutPtr, 0}));
OutBasePtr = Builder.CreateLoad(Builder.CreateInBoundsGEP(Arg_p, OutBaseGEP, "out_buf.gep"));
}
llvm::Value *UsrData = nullptr;
if (bcinfo::MetadataExtractor::hasForEachSignatureUsrData(Signature)) {
llvm::Type *UsrDataTy = (FunctionArgIter++)->getType();
llvm::Value *UsrDataPointerAddr = Builder.CreateStructGEP(nullptr, Arg_p, RsExpandKernelDriverInfoPfxFieldUsr);
UsrData = Builder.CreatePointerCast(Builder.CreateLoad(UsrDataPointerAddr), UsrDataTy);
UsrData->setName("UsrData");
}
llvm::BasicBlock *LoopHeader = Builder.GetInsertBlock();
llvm::Value *IV;
createLoop(Builder, Arg_x1, Arg_x2, &IV);
llvm::SmallVector<llvm::Value*, 8> CalleeArgs;
const int CalleeArgsContextIdx = ExpandSpecialArguments(Signature, IV, Arg_p, Builder, CalleeArgs,
[&FunctionArgIter]() { FunctionArgIter++; },
LoopHeader->getTerminator());
bccAssert(FunctionArgIter == Function->arg_end());
// Populate the actual call to kernel().
llvm::SmallVector<llvm::Value*, 8> RootArgs;
llvm::Value *InPtr = nullptr;
llvm::Value *OutPtr = nullptr;
// Calculate the current input and output pointers
//
// We always calculate the input/output pointers with a GEP operating on i8
// values and only cast at the very end to OutTy. This is because the step
// between two values is given in bytes.
//
// TODO: We could further optimize the output by using a GEP operation of
// type 'OutTy' in cases where the element type of the allocation allows.
if (OutBasePtr) {
llvm::Value *OutOffset = Builder.CreateSub(IV, Arg_x1);
OutOffset = Builder.CreateMul(OutOffset, OutStep);
OutPtr = Builder.CreateInBoundsGEP(OutBasePtr, OutOffset);
OutPtr = Builder.CreatePointerCast(OutPtr, OutTy);
}
if (InBufPtr) {
llvm::Value *InOffset = Builder.CreateSub(IV, Arg_x1);
InOffset = Builder.CreateMul(InOffset, InStep);
InPtr = Builder.CreateInBoundsGEP(InBufPtr, InOffset);
InPtr = Builder.CreatePointerCast(InPtr, InTy);
}
if (InPtr) {
RootArgs.push_back(InPtr);
}
if (OutPtr) {
RootArgs.push_back(OutPtr);
}
if (UsrData) {
RootArgs.push_back(UsrData);
}
finishArgList(RootArgs, CalleeArgs, CalleeArgsContextIdx, *Function, Builder);
Builder.CreateCall(Function, RootArgs);
return true;
}
/* Expand a pass-by-value foreach kernel.
*/
bool ExpandForEach(llvm::Function *Function, uint32_t Signature) {
bccAssert(bcinfo::MetadataExtractor::hasForEachSignatureKernel(Signature));
ALOGV("Expanding kernel Function %s", Function->getName().str().c_str());
// TODO: Refactor this to share functionality with ExpandOldStyleForEach.
llvm::DataLayout DL(Module);
if (!mStructExplicitlyPaddedBySlang && (Module->getTargetTriple() == DEFAULT_X86_TRIPLE_STRING)) {
DL.reset(X86_CUSTOM_DL_STRING);
}
llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*Context);
llvm::Function *ExpandedFunction =
createEmptyExpandedForEachKernel(Function->getName());
/*
* Extract the expanded function's parameters. It is guaranteed by
* createEmptyExpandedForEachKernel that there will be four parameters.
*/
bccAssert(ExpandedFunction->arg_size() == kNumExpandedForeachParams);
llvm::Function::arg_iterator ExpandedFunctionArgIter =
ExpandedFunction->arg_begin();
llvm::Value *Arg_p = &*(ExpandedFunctionArgIter++);
llvm::Value *Arg_x1 = &*(ExpandedFunctionArgIter++);
llvm::Value *Arg_x2 = &*(ExpandedFunctionArgIter++);
// Arg_outstep is not used by expanded new-style forEach kernels.
// Construct the actual function body.
llvm::IRBuilder<> Builder(&*ExpandedFunction->getEntryBlock().begin());
// Create TBAA meta-data.
llvm::MDNode *TBAARenderScriptDistinct, *TBAARenderScript,
*TBAAAllocation, *TBAAPointer;
llvm::MDBuilder MDHelper(*Context);
TBAARenderScriptDistinct =
MDHelper.createTBAARoot(kRenderScriptTBAARootName);
TBAARenderScript = MDHelper.createTBAANode(kRenderScriptTBAANodeName,
TBAARenderScriptDistinct);
TBAAAllocation = MDHelper.createTBAAScalarTypeNode("allocation",
TBAARenderScript);
TBAAAllocation = MDHelper.createTBAAStructTagNode(TBAAAllocation,
TBAAAllocation, 0);
TBAAPointer = MDHelper.createTBAAScalarTypeNode("pointer",
TBAARenderScript);
TBAAPointer = MDHelper.createTBAAStructTagNode(TBAAPointer, TBAAPointer, 0);
/*
* Collect and construct the arguments for the kernel().
*
* Note that we load any loop-invariant arguments before entering the Loop.
*/
size_t NumRemainingInputs = Function->arg_size();
// No usrData parameter on kernels.
bccAssert(
!bcinfo::MetadataExtractor::hasForEachSignatureUsrData(Signature));
llvm::Function::arg_iterator ArgIter = Function->arg_begin();
// Check the return type
llvm::Type *OutTy = nullptr;
llvm::LoadInst *OutBasePtr = nullptr;
llvm::Value *CastedOutBasePtr = nullptr;
bool PassOutByPointer = false;
if (bcinfo::MetadataExtractor::hasForEachSignatureOut(Signature)) {
llvm::Type *OutBaseTy = Function->getReturnType();
if (OutBaseTy->isVoidTy()) {
PassOutByPointer = true;
OutTy = ArgIter->getType();
ArgIter++;
--NumRemainingInputs;
} else {
// We don't increment Args, since we are using the actual return type.
OutTy = OutBaseTy->getPointerTo();
}
SmallGEPIndices OutBaseGEP(GEPHelper({0, RsExpandKernelDriverInfoPfxFieldOutPtr, 0}));
OutBasePtr = Builder.CreateLoad(Builder.CreateInBoundsGEP(Arg_p, OutBaseGEP, "out_buf.gep"));
if (gEnableRsTbaa) {
OutBasePtr->setMetadata("tbaa", TBAAPointer);
}
if (mStructExplicitlyPaddedBySlang || (Module->getTargetTriple() != DEFAULT_X86_TRIPLE_STRING)) {
CastedOutBasePtr = Builder.CreatePointerCast(OutBasePtr, OutTy, "casted_out");
} else {
// The disagreement between module and x86 target machine datalayout
// causes mismatched input/output data offset between slang reflected
// code and bcc codegen for GetElementPtr. To solve this issue, skip the
// cast to OutTy and leave CastedOutBasePtr as an int8_t*. The buffer
// is later indexed with an explicit byte offset computed based on
// X86_CUSTOM_DL_STRING and then bitcast to actual output type.
CastedOutBasePtr = OutBasePtr;
}
}
llvm::SmallVector<llvm::Type*, 8> InTypes;
llvm::SmallVector<llvm::Value*, 8> InBufPtrs;
llvm::SmallVector<llvm::Value*, 8> InStructTempSlots;
bccAssert(NumRemainingInputs <= RS_KERNEL_INPUT_LIMIT);
// Create the loop structure.
llvm::BasicBlock *LoopHeader = Builder.GetInsertBlock();
llvm::Value *IV;
createLoop(Builder, Arg_x1, Arg_x2, &IV);
llvm::SmallVector<llvm::Value*, 8> CalleeArgs;
const int CalleeArgsContextIdx =
ExpandSpecialArguments(Signature, IV, Arg_p, Builder, CalleeArgs,
[&NumRemainingInputs]() { --NumRemainingInputs; },
LoopHeader->getTerminator());
// After ExpandSpecialArguments() gets called, NumRemainingInputs
// counts the number of arguments to the kernel that correspond to
// an array entry from the InPtr field of the DriverInfo
// structure.
const size_t NumInPtrArguments = NumRemainingInputs;
if (NumInPtrArguments > 0) {
ExpandInputsLoopInvariant(Builder, LoopHeader, Arg_p, TBAAPointer, ArgIter, NumInPtrArguments,
InTypes, InBufPtrs, InStructTempSlots);
}
// Populate the actual call to kernel().
llvm::SmallVector<llvm::Value*, 8> RootArgs;
// Calculate the current input and output pointers.
// Output
llvm::Value *OutPtr = nullptr;
if (CastedOutBasePtr) {
llvm::Value *OutOffset = Builder.CreateSub(IV, Arg_x1);
if (mStructExplicitlyPaddedBySlang || (Module->getTargetTriple() != DEFAULT_X86_TRIPLE_STRING)) {
OutPtr = Builder.CreateInBoundsGEP(CastedOutBasePtr, OutOffset);
} else {
// Treat x86 output buffer as byte[], get indexed pointer with explicit
// byte offset computed using a datalayout based on
// X86_CUSTOM_DL_STRING, then bitcast it to actual output type.
uint64_t OutStep = DL.getTypeAllocSize(OutTy->getPointerElementType());
llvm::Value *OutOffsetInBytes = Builder.CreateMul(OutOffset, llvm::ConstantInt::get(Int32Ty, OutStep));
OutPtr = Builder.CreateInBoundsGEP(CastedOutBasePtr, OutOffsetInBytes);
OutPtr = Builder.CreatePointerCast(OutPtr, OutTy);
}
if (PassOutByPointer) {
RootArgs.push_back(OutPtr);
}
}
// Inputs
if (NumInPtrArguments > 0) {
ExpandInputsBody(Builder, Arg_x1, TBAAAllocation, NumInPtrArguments,
InTypes, InBufPtrs, InStructTempSlots, IV, RootArgs);
}
finishArgList(RootArgs, CalleeArgs, CalleeArgsContextIdx, *Function, Builder);
llvm::Value *RetVal = Builder.CreateCall(Function, RootArgs);
if (OutPtr && !PassOutByPointer) {
RetVal->setName("call.result");
llvm::StoreInst *Store = Builder.CreateStore(RetVal, OutPtr);
if (gEnableRsTbaa) {
Store->setMetadata("tbaa", TBAAAllocation);
}
}
return true;
}
// Certain categories of functions that make up a general
// reduce-style kernel are called directly from the driver with no
// expansion needed. For a function in such a category, we need to
// promote linkage from static to external, to ensure that the
// function is visible to the driver in the dynamic symbol table.
// This promotion is safe because we don't have any kind of cross
// translation unit linkage model (except for linking against
// RenderScript libraries), so we do not risk name clashes.
bool PromoteReduceFunction(const char *Name, FunctionSet &PromotedFunctions) {
if (!Name) // a presumably-optional function that is not present
return false;
llvm::Function *Fn = Module->getFunction(Name);
bccAssert(Fn != nullptr);
if (PromotedFunctions.insert(Fn).second) {
bccAssert(Fn->getLinkage() == llvm::GlobalValue::InternalLinkage);
Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
return true;
}
return false;
}
// Expand the accumulator function for a general reduce-style kernel.
//
// The input is a function of the form
//
// define void @func(accumType* %accum, foo1 in1[, ... fooN inN] [, special arguments])
//
// where all arguments except the first are the same as for a foreach kernel.
//
// The input accumulator function gets expanded into a function of the form
//
// define void @func.expand(%RsExpandKernelDriverInfoPfx* %p, i32 %x1, i32 %x2, accumType* %accum)
//
// which performs a serial accumulaion of elements [x1, x2) into *%accum.
//
// In pseudocode, @func.expand does:
//
// for (i = %x1; i < %x2; ++i) {
// func(%accum,
// *((foo1 *)p->inPtr[0] + i)[, ... *((fooN *)p->inPtr[N-1] + i)
// [, p] [, i] [, p->current.y] [, p->current.z]);
// }
//
// This is very similar to foreach kernel expansion with no output.
bool ExpandReduceAccumulator(llvm::Function *FnAccumulator, uint32_t Signature, size_t NumInputs) {
ALOGV("Expanding accumulator %s for general reduce kernel",
FnAccumulator->getName().str().c_str());
// Create TBAA meta-data.
llvm::MDNode *TBAARenderScriptDistinct, *TBAARenderScript,
*TBAAAllocation, *TBAAPointer;
llvm::MDBuilder MDHelper(*Context);
TBAARenderScriptDistinct =
MDHelper.createTBAARoot(kRenderScriptTBAARootName);
TBAARenderScript = MDHelper.createTBAANode(kRenderScriptTBAANodeName,
TBAARenderScriptDistinct);
TBAAAllocation = MDHelper.createTBAAScalarTypeNode("allocation",
TBAARenderScript);
TBAAAllocation = MDHelper.createTBAAStructTagNode(TBAAAllocation,
TBAAAllocation, 0);
TBAAPointer = MDHelper.createTBAAScalarTypeNode("pointer",
TBAARenderScript);
TBAAPointer = MDHelper.createTBAAStructTagNode(TBAAPointer, TBAAPointer, 0);
auto AccumulatorArgIter = FnAccumulator->arg_begin();
// Create empty accumulator function.
llvm::Function *FnExpandedAccumulator =
createEmptyExpandedReduceAccumulator(FnAccumulator->getName(),
(AccumulatorArgIter++)->getType());
// Extract the expanded accumulator's parameters. It is
// guaranteed by createEmptyExpandedReduceAccumulator that
// there will be 4 parameters.
bccAssert(FnExpandedAccumulator->arg_size() == kNumExpandedReduceAccumulatorParams);
auto ExpandedAccumulatorArgIter = FnExpandedAccumulator->arg_begin();
llvm::Value *Arg_p = &*(ExpandedAccumulatorArgIter++);
llvm::Value *Arg_x1 = &*(ExpandedAccumulatorArgIter++);
llvm::Value *Arg_x2 = &*(ExpandedAccumulatorArgIter++);
llvm::Value *Arg_accum = &*(ExpandedAccumulatorArgIter++);
// Construct the actual function body.
llvm::IRBuilder<> Builder(&*FnExpandedAccumulator->getEntryBlock().begin());
// Create the loop structure.
llvm::BasicBlock *LoopHeader = Builder.GetInsertBlock();
llvm::Value *IndVar;
createLoop(Builder, Arg_x1, Arg_x2, &IndVar);
llvm::SmallVector<llvm::Value*, 8> CalleeArgs;
const int CalleeArgsContextIdx =
ExpandSpecialArguments(Signature, IndVar, Arg_p, Builder, CalleeArgs,
[](){}, LoopHeader->getTerminator());
llvm::SmallVector<llvm::Type*, 8> InTypes;
llvm::SmallVector<llvm::Value*, 8> InBufPtrs;
llvm::SmallVector<llvm::Value*, 8> InStructTempSlots;
ExpandInputsLoopInvariant(Builder, LoopHeader, Arg_p, TBAAPointer, AccumulatorArgIter, NumInputs,
InTypes, InBufPtrs, InStructTempSlots);
// Populate the actual call to the original accumulator.
llvm::SmallVector<llvm::Value*, 8> RootArgs;
RootArgs.push_back(Arg_accum);
ExpandInputsBody(Builder, Arg_x1, TBAAAllocation, NumInputs, InTypes, InBufPtrs, InStructTempSlots,
IndVar, RootArgs);
finishArgList(RootArgs, CalleeArgs, CalleeArgsContextIdx, *FnAccumulator, Builder);
Builder.CreateCall(FnAccumulator, RootArgs);
return true;
}
// Create a combiner function for a general reduce-style kernel that lacks one,
// by calling the accumulator function.
//
// The accumulator function must be of the form
//
// define void @accumFn(accumType* %accum, accumType %in)
//
// A combiner function will be generated of the form
//
// define void @accumFn.combiner(accumType* %accum, accumType* %other) {
// %1 = load accumType, accumType* %other
// call void @accumFn(accumType* %accum, accumType %1);
// }
bool CreateReduceCombinerFromAccumulator(llvm::Function *FnAccumulator) {
ALOGV("Creating combiner from accumulator %s for general reduce kernel",
FnAccumulator->getName().str().c_str());
using llvm::Attribute;
bccAssert(FnAccumulator->arg_size() == 2);
auto AccumulatorArgIter = FnAccumulator->arg_begin();
llvm::Value *AccumulatorArg_accum = &*(AccumulatorArgIter++);
llvm::Value *AccumulatorArg_in = &*(AccumulatorArgIter++);
llvm::Type *AccumulatorArgType = AccumulatorArg_accum->getType();
bccAssert(AccumulatorArgType->isPointerTy());
llvm::Type *VoidTy = llvm::Type::getVoidTy(*Context);
llvm::FunctionType *CombinerType =
llvm::FunctionType::get(VoidTy, { AccumulatorArgType, AccumulatorArgType }, false);
llvm::Function *FnCombiner =
llvm::Function::Create(CombinerType, llvm::GlobalValue::ExternalLinkage,
nameReduceCombinerFromAccumulator(FnAccumulator->getName()),
Module);
auto CombinerArgIter = FnCombiner->arg_begin();
llvm::Argument *CombinerArg_accum = &(*CombinerArgIter++);
CombinerArg_accum->setName("accum");
CombinerArg_accum->addAttr(llvm::AttributeSet::get(*Context, CombinerArg_accum->getArgNo() + 1,
llvm::makeArrayRef(Attribute::NoCapture)));
llvm::Argument *CombinerArg_other = &(*CombinerArgIter++);
CombinerArg_other->setName("other");
CombinerArg_other->addAttr(llvm::AttributeSet::get(*Context, CombinerArg_other->getArgNo() + 1,
llvm::makeArrayRef(Attribute::NoCapture)));
llvm::BasicBlock *BB = llvm::BasicBlock::Create(*Context, "BB", FnCombiner);
llvm::IRBuilder<> Builder(BB);
if (AccumulatorArg_in->getType()->isPointerTy()) {
// Types of sufficient size get passed by pointer-to-copy rather
// than passed by value. An accumulator cannot take a pointer
// at the user level; so if we see a pointer here, we know that
// we have a pass-by-pointer-to-copy case.
llvm::Type *ElementType = AccumulatorArg_in->getType()->getPointerElementType();
llvm::Value *TempMem = Builder.CreateAlloca(ElementType, nullptr, "caller_copy");
Builder.CreateStore(Builder.CreateLoad(CombinerArg_other), TempMem);
Builder.CreateCall(FnAccumulator, { CombinerArg_accum, TempMem });
} else {
llvm::Value *TypeAdjustedOther = CombinerArg_other;
if (AccumulatorArgType->getPointerElementType() != AccumulatorArg_in->getType()) {
// Call lowering by frontend has done some type coercion
TypeAdjustedOther = Builder.CreatePointerCast(CombinerArg_other,
AccumulatorArg_in->getType()->getPointerTo(),
"cast");
}
llvm::Value *DerefOther = Builder.CreateLoad(TypeAdjustedOther);
Builder.CreateCall(FnAccumulator, { CombinerArg_accum, DerefOther });
}
Builder.CreateRetVoid();
return true;
}
/// @brief Checks if pointers to allocation internals are exposed
///
/// This function verifies if through the parameters passed to the kernel
/// or through calls to the runtime library the script gains access to
/// pointers pointing to data within a RenderScript Allocation.
/// If we know we control all loads from and stores to data within
/// RenderScript allocations and if we know the run-time internal accesses
/// are all annotated with RenderScript TBAA metadata, only then we
/// can safely use TBAA to distinguish between generic and from-allocation
/// pointers.
bool allocPointersExposed(llvm::Module &Module) {
// Old style kernel function can expose pointers to elements within
// allocations.
// TODO: Extend analysis to allow simple cases of old-style kernels.
for (size_t i = 0; i < mExportForEachCount; ++i) {
const char *Name = mExportForEachNameList[i];
uint32_t Signature = mExportForEachSignatureList[i];
if (Module.getFunction(Name) &&
!bcinfo::MetadataExtractor::hasForEachSignatureKernel(Signature)) {
return true;
}
}
// Check for library functions that expose a pointer to an Allocation or
// that are not yet annotated with RenderScript-specific tbaa information.
static const std::vector<const char *> Funcs{
// rsGetElementAt(...)
"_Z14rsGetElementAt13rs_allocationj",
"_Z14rsGetElementAt13rs_allocationjj",
"_Z14rsGetElementAt13rs_allocationjjj",
// rsSetElementAt()
"_Z14rsSetElementAt13rs_allocationPvj",
"_Z14rsSetElementAt13rs_allocationPvjj",
"_Z14rsSetElementAt13rs_allocationPvjjj",
// rsGetElementAtYuv_uchar_Y()
"_Z25rsGetElementAtYuv_uchar_Y13rs_allocationjj",
// rsGetElementAtYuv_uchar_U()
"_Z25rsGetElementAtYuv_uchar_U13rs_allocationjj",
// rsGetElementAtYuv_uchar_V()
"_Z25rsGetElementAtYuv_uchar_V13rs_allocationjj",
};
for (auto FI : Funcs) {
llvm::Function *Function = Module.getFunction(FI);
if (!Function) {
ALOGE("Missing run-time function '%s'", FI);
return true;
}
if (Function->getNumUses() > 0) {
return true;
}
}
return false;
}
/// @brief Connect RenderScript TBAA metadata to C/C++ metadata
///
/// The TBAA metadata used to annotate loads/stores from RenderScript
/// Allocations is generated in a separate TBAA tree with a
/// "RenderScript Distinct TBAA" root node. LLVM does assume may-alias for
/// all nodes in unrelated alias analysis trees. This function makes the
/// "RenderScript TBAA" node (which is parented by the Distinct TBAA root),
/// a subtree of the normal C/C++ TBAA tree aside of normal C/C++ types. With
/// the connected trees every access to an Allocation is resolved to
/// must-alias if compared to a normal C/C++ access.
void connectRenderScriptTBAAMetadata(llvm::Module &Module) {
llvm::MDBuilder MDHelper(*Context);
llvm::MDNode *TBAARenderScriptDistinct =
MDHelper.createTBAARoot("RenderScript Distinct TBAA");
llvm::MDNode *TBAARenderScript = MDHelper.createTBAANode(
"RenderScript TBAA", TBAARenderScriptDistinct);
llvm::MDNode *TBAARoot = MDHelper.createTBAARoot("Simple C/C++ TBAA");
TBAARenderScript->replaceOperandWith(1, TBAARoot);
}
virtual bool runOnModule(llvm::Module &Module) {
bool Changed = false;
this->Module = &Module;
Context = &Module.getContext();
buildTypes();
bcinfo::MetadataExtractor me(&Module);
if (!me.extract()) {
ALOGE("Could not extract metadata from module!");
return false;
}
mStructExplicitlyPaddedBySlang = (me.getCompilerVersion() >= SlangVersion::N_STRUCT_EXPLICIT_PADDING);
// Expand forEach_* style kernels.
mExportForEachCount = me.getExportForEachSignatureCount();
mExportForEachNameList = me.getExportForEachNameList();
mExportForEachSignatureList = me.getExportForEachSignatureList();
for (size_t i = 0; i < mExportForEachCount; ++i) {
const char *name = mExportForEachNameList[i];
uint32_t signature = mExportForEachSignatureList[i];
llvm::Function *kernel = Module.getFunction(name);
if (kernel) {
if (bcinfo::MetadataExtractor::hasForEachSignatureKernel(signature)) {
Changed |= ExpandForEach(kernel, signature);
kernel->setLinkage(llvm::GlobalValue::InternalLinkage);
} else if (kernel->getReturnType()->isVoidTy()) {
Changed |= ExpandOldStyleForEach(kernel, signature);
kernel->setLinkage(llvm::GlobalValue::InternalLinkage);
} else {
// There are some graphics root functions that are not
// expanded, but that will be called directly. For those
// functions, we can not set the linkage to internal.
}
}
}
// Process general reduce_* style functions.
const size_t ExportReduceCount = me.getExportReduceCount();
const bcinfo::MetadataExtractor::Reduce *ExportReduceList = me.getExportReduceList();
// Note that functions can be shared between kernels
FunctionSet PromotedFunctions, ExpandedAccumulators, AccumulatorsForCombiners;
for (size_t i = 0; i < ExportReduceCount; ++i) {
Changed |= PromoteReduceFunction(ExportReduceList[i].mInitializerName, PromotedFunctions);
Changed |= PromoteReduceFunction(ExportReduceList[i].mCombinerName, PromotedFunctions);
Changed |= PromoteReduceFunction(ExportReduceList[i].mOutConverterName, PromotedFunctions);
// Accumulator
llvm::Function *accumulator = Module.getFunction(ExportReduceList[i].mAccumulatorName);
bccAssert(accumulator != nullptr);
if (ExpandedAccumulators.insert(accumulator).second)
Changed |= ExpandReduceAccumulator(accumulator,
ExportReduceList[i].mSignature,
ExportReduceList[i].mInputCount);
if (!ExportReduceList[i].mCombinerName) {
if (AccumulatorsForCombiners.insert(accumulator).second)
Changed |= CreateReduceCombinerFromAccumulator(accumulator);
}
}
if (gEnableRsTbaa && !allocPointersExposed(Module)) {
connectRenderScriptTBAAMetadata(Module);
}
return Changed;
}
virtual const char *getPassName() const {
return "forEach_* and reduce_* function expansion";
}
}; // end RSKernelExpandPass
} // end anonymous namespace
char RSKernelExpandPass::ID = 0;
static llvm::RegisterPass<RSKernelExpandPass> X("kernelexp", "Kernel Expand Pass");
namespace bcc {
const char BCC_INDEX_VAR_NAME[] = "rsIndex";
llvm::ModulePass *
createRSKernelExpandPass(bool pEnableStepOpt) {
return new RSKernelExpandPass(pEnableStepOpt);
}
} // end namespace bcc